| ISSN (Print): 2224-9893 ISSN (Online): 2226-1869 | ||
| SELF-SIMILAR LOCALIZED CONVECTIVE STRUCTURES S.N. Aristov, D.V. Knyazev Received: 11.04.2013 Published: 11.04.2013  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  The problem of convective flow in a layer of viscous fluid, caused by local heating, is considered. The problem solution was sought within the class of exact solutions of the thermo-gravitational convection generalizing well-known class of solutions of the Navier-Stokes equations involved the Burger’s and Sullivan’s vortexes. The two families of self-similar solutions of the problem for a unit Prandtl`s number are found, it allow to describe the evolution of two different types of radial – localized vortices. In both cases, the radial component of the velocity at a distance from the axis of symmetry of the vortices is inversely proportional to the radius, while the vertical component of the velocity and the temperature in the first case decayed as the square of the distance from the axis, and the second – exponentially. The separate linear equation for the azimuthal velocity with coefficients depending on the current function of meridian flow is obtained. By virtue of the similarity equation admits particular solutions with separated variables, the composition of which allows us to describe the transfer of angular momentum (circulation, if it is different from zero) from infinity to the center of the vortex, as well as to trace the evolution of an arbitrary localized initial perturbation of azimuthal velocity. These vortex formations are decay in the time due to the vortex and thermal diffusion. The Found exact solutions are the simple, usefully models of localized convective vortices and previously were not known. Keywords: convection, Oberbeck – Boussinesq equations, exact solutions, localized vortexes. Authors:  Aristov Sergey Nikolaevich (Perm, Russian Federation) – Doctor of Physical and Mathematical Sciences, general scientist, ICMM UB RAS (1, Academic Korolev st., 614013, Perm, Russian Federation, e-mail: asn@icmm.ru). Knyazev Denis Vyacheslavovich (Perm, Russian Federation) – Ph.D. in Physical and Mathematical Sciences, scientist, ICMM UB RAS (1, Academic Korolev st., 614013, Perm, Russian Federation, e-mail: dvk@icmm.ru). References:  1. Gershuny G.Z., Zkuhovicky E.M. Konvektivnaya ustoychivost neszhimaemoy zhidkosti [The convective stability of the incompressible fluid]. Moscow: Nauka, 1972, 392 p. 2. Bogatyrev G.P. Excitation of cyclonic vortex or laboratory model of tropical cyclone. JEPT Lett, 1990, vol. 51, no. 11, pp. 630-633. 3. Goldshtik M.A., Shtern V.N., Yavorsky N.I. Vyazkie techeniya s paradoksalnimi svoyctvami [Viscose flows with paradoxical properties]. Novosibirsk: Nauka, 1989, 336 p. 4. Prager S. Spiral flow in a stationary porous pipe. Phys. Fluids, 1964, vol. 7, pp. 907-908. 5. Aristov S.N. A stationary cylindrical vortex in a viscous fluid. Doklady Physics, 2001, vol. 46, iss. 4, pp. 251-253. 6. Burde H.I. On the motion of fluid near a stretching circular cylinder. J. of Appl. Math. and Mech, 1989, vol. 53, iss. 2, pp. 271-273. 7. Burgers J.M. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech, 1948, no. 1, pp. 171-199. 8. Sullivan R.D. A two-cell solution of the Navier-Stokes equations. J. Aero/Space Sci., 1959, vol. 26, pp. 767-768. 9. Rott N. On the viscous core of a line vortex. ZAMP, 1958, vol. 9b, pp. 543 – 553. 10. Bellamy-Knights P.G. An unsteady two-cell vortex solution of the Navier-Stokes equations. J. Fluid Mech., 1970, vol. 41, part 3, pp. 673-687. 11. Huang S.-L., Chen H.-S., Chu C.-C., Chang C.-C. On the transition process of a swirling vortex generated in a rotating thank. Exp. Fluids, 2008, vol. 45, pp. 267-282. ON THE SOLVING OF EQUILIBRIUM PROBLEM FOR THE SOFT NETWORK SHELL WITH A LOAD CONCENTRATED AT THE POINT I.B. Badriev, V.V. Banderov, O.A. Zadvornov. Received: 11.03.2013 Published: 11.03.2013  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  À spatial equilibrium problem of a soft network shell in the presence of external point load concentrated at some point is considered. A network shell is understood to mean the shell which has as its strength basement the net formed by two families of mutually intersecting, absolutely flexible, elastic threads. It is supposed that functions describing physical relations in the threads are continuous, non-decreasing, and have the linear growth at infinity. The generalized problem in the form of operator equation in the Sobolev space is formulated. It is proved that the set of solutions of the generalized problem is non-empty, convex, and closed. The finite dimensional approximations of the problem are constructed and their convergence is investigated. To solve the problem, we used a two-layer iterative method. This method was realized numerically. The numerical experiments made for the model problems confirmed the efficiency of the iterative method. Keywords: ìathematical simulation, soft network shell, finite dimensional approximations, point load, two-layer iterative method. Authors:  Badriev Ildar Burkhanovich (Kazan, Russian Federation) – Doctor of Physical and Mathematical Sciences, Professor, Department of Calculation Mathematics, Kazan Federal University (18, Kremlevskaja st., 420008, Kazan, Russian Federation, e-mail: ildar.badriev@ksu.ru) Banderov Victor Victorovich (Kazan, Russian Federation) – Ph.D. in Physical and Mathematical Sciences, Deputy Director for Research and Innovations of Institute of Computer Mathematics and Information Technologies, Kazan Federal University (18, Kremlevskaja st., 420008, Kazan, Russian Federation, e-mail: Victor.banderov@ksu.ru) Zadvornov Oleg Anatol’evich (Kazan, Russian Federation) – Doctor of Physical and Mathematical Sciences, Professor, Head of Department of Calculation Mathematics, Kazan Federal University (18, Kremlevskaja st., 420008, Kazan, Russian Federation, e-mail: Oleg.Zadvornov@ksu.ru) References:  1. Belotserkovskii S.M., Nisht M.I., Ponomarev A.T., Rysev O.V. Issledovanie parashytov i del’taplanov na EVM [Study of parachutes and gliders on the computers]. Ed. S.M. Belotserkovskii. Moscow: Mashinostroenie, 1987, 260 p. 2. Gimadiev R.Sh. Dinamika myagkikh obolochek parashytnogo tipa [Dynamics of soft shells parachute type]. Kazanskiy gosudarstvenniy energeticheskiy universitet, 2006, 208 p. 3. Dneprov I.V., Ponomarev A.T., Rysev O.V., Semushin S.A. Issledovanie processov nagruzheniya i deformirovaniya parashutov [Simulation of parachute loading and deformation]. Mathematical Modeling, 1993, vol. 5, no 3, pp. 97-109. 4. Ermolov V.V. Vozdukhooprnye zdaniya I sooruzheniya [Inflatable buildings and constructions]. Moscow: Stroyizdat, 1980, 304 p. 5. Magoula V.E. Sudovye elastichnye konstruktsii [Ship elastic construction]. Leningrad: Sudostroenie, 1978, 263 p. 6. Magoula V.E., Druz B.I., Kulagin V.D., Miloslavskaya E.P., Novoselov M.V. Sudovye myagkie emkosti [Ship soft containers]. Leningrad: Sudostroenie, 1966, 287 p. 7. Mitkevich A.B., Ponomarev V.P., Nikitin O.D. Razrabotka i eksperimental’naya proverka kriteriev modelirovaniya napryazhenno-deformirovannogo sostoyaniya elastichnikh rezervuarov podushechnogo tipa dlya hraneniya goryuchego [Development and experimental verification of the criteria for modeling the stress-strain state of elastic-type pillow tanks for fuel storage]. Voprosy oboronnoy tekhniki, 2006, no. 3/4, pp. 16-22. 8. Miftakhov R.N. Issledovanie tkani zheludka cheloveka pri odnoosnom rastyazhenii [The study of human gastric tissue under uniaxial tension]. Trydy seminara «Gydrouprugost obolochek» Iss. 16. Kazanskiy fisiko-technicheskiy institut; 1983, pp. 163-171. 9. Otto F., Trostel’ R. Pnevmaticheskie stroitel’nye konstruktsii [Pneumatic building constructions]. Moscow: Stroyizdat, 1967, 320 p. 10. Polyakova E.V., Tovstik PE, Filippov SB Osesimmetrichnaya deformatsiya myagkoy armirovannoy nityami toroidal’noy obolochki [Axisymmetric deformation of soft yarns reinforced toroidal shell]. Vestnik Sankt-Peterburgskogo universiteta. Series 1, 2011, iss. 3, pp. 131-142. 11. Polyakova E.V., Tovstik P.E., Filippov S.B., Chaikin V.A. Osesimmetrichnaya deformatsiya toroobraznoy obolochki is nitey pod deystviem vnutrennego davleniya [Axisymmetric deformation of a toroidal shell of the strands under internal pressure]. Vestnik Sankt-Peterburgskogo universiteta. Series 1, 2009, iss. 4, pp. 98-113. 12. Polyakova E.V., Chaykin V.A. Prikladnye zadachi mekhaniki myagkikh obolochek i tkaney [Applied problems in the mechanics of soft tissues and shells]. Sankt-Petersburgskiy gosudarstvenny universitet technologii i disayna, 2006, 193 p. 13. Edward W. A general theory of parachute opening. J. Aircraft, 1972, vol. 9, no 4, pp. 257-258. 14. Badriev I.B., Zadvornov O.A. Issledovanie razreshimosti statsionarnich zadach dlya setchatikh obolochek [Investigation of solvability of stationary problems for network shells]. Izvestiya vuzov. Matematika, 1992, vol. 36, no. 11, pp. 3-7. 15. Zadvornov O.A Postanovka i issledovanie statsionarnoy zadachi o kontakte myagkoy obokochki s prepyatstviem [Formulation and investigation of a stationary problem of the contact of a soft shell with an obstacle]. Izvestya vuzov. Matematika, 2003, vol. 47, no 1, pp. 45-52. 16. Badriev I.B., Banderov V.V., Zadvornov O.A. Postanovka i chislennoe issledovanie osesimmetrichnoi zadachi o ravnovesii myagkoy obokochki vrascheniya [Statement and numerical investigation of the axisymmetric equilibrium problem of the soft shell of rotation]. Issledovaniya po prikladnoi matematike i informatike. Kazanskiy gosudarstvenny universitet, 2004, iss. 25, pp. 11-33. 17. Badriev I.B., Zadvornov O.A. Issledovanie razreshimosti osesimmetrichnoy zadachi ob opredelenii polozheniya ravnovesiya myagkoy obokochki vrascheniya [Investigation of the solvability of an axisymmetric problem of determining the equilibrium position of a soft shell of revolution]. Izvestya vuzov. Matematika, 2005, no 1, pp. 25-30. 18. Badriev I.B., Banderov V.V., Zadvornov O.A. Iteratsionnie metodi resheniya zadach o ravnovesii myagkih setchatih obokochek vrascheniya [The iterative methods of solving of the axisymmetric equilibrium problem of the soft shell of revolution]. Trudi Srednevolzhskogo matematicheskogo obschestva, 2007, vol. 9, no 2, pp. 14-18. 19. Lions J.-L. Quelque problèmes méthodes de résolution des problèmes aux limites nonlinéaires. Paris: Dunod, 1969, 588 p. 20. Gajewskii H., Gröger K., Zacharias K. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Berlin: Akademie-Verlag, 1974, 336 c. 21. Zadvornov O.A Issledovanie nelineynoy statsionarnoy zadachi filtratsii pri nalichii tochechnikh istochnikov [Investigation of a nonlinear stationary problem of filtration in the presence of a point source ]. Izvestya vuzov. Matematika, 2005, vol. 49, no 1, pp. 58-63. 22. Zadvornov O.A Suschestvovanie resheniya kvasilineynoy ellipticheskoy zadachi pri nalichii tochechnikh istochnikov [Existence of solutions for quasilinear elliptic boundary value problem in the presence of point sources]. Uchenye zapiski Kazanskogo universiteta. Ser. Fiziko-matematicheskie nauki, 2010, vol. 152, b.1, pp. 155-163. 23. Badriev I.B., Karchevskii M.M. Convergence of an iterative process in a Banach space. Journal of Mathematical Sciences, 1994, vol. 71, no. 6, pp. 2727-2735. 24. Ridel' V.V., Gulin B.V. Dinamika myagkikh obolochek [Dynamics of Soft Shells]. Moscow: Nauka, 1990, 206 p. 25. Biderman V.L., Bukhin B.L. The equilibrium equations of the network membrane Mechanics of Solids, 1966, no. 1, pp. 84-89. 26. Vladimirov V.S. Equations of Mathematical Physics. New York: Marcel Dekker, Inc., 1971, 426 p. 27. Lyashko A.D., Karchevskij M.M. O reshenii nekotorih nelineynikh zadach teorii filtratsii [Über die Lösung einiger nichtlinearer Probleme der Filtrationstheorie]. Izvestya vuzov. Matematika, 1975, no. 6, pp. 73-81. 28. Ciarlet P. The finite element method for elliptic problems. Studies in Mathematics and its Applications. Vol. 4. Amsterdam – New York – Oxford: North-Holland Publishing Company, 1978, 580 p. 29. Temam R. Navier-Stokes Equations. Theory and Numerical Analysis. Amsterdam: North Holland Publishing Company, 1979. 30. Glovinski R., Lions J.L., Trémolières R. Analyse Numérique des inéquations variationneles. Paris: Dunod, 1976. 31. Gol'shtein E.G., Tret'yakov N.V. Modifitsirovannye funktsii Lagranzha [Modfied Lagrangians]. Moscow: Nauka, 1989. 32. Zhu D. New classes of generalized monotonicity. Journal of Optimazation Theory and Applications, 1995, vol. 87, no. 2, pp. 457-471. MATHEMATICAL SIMULATION OF STEADY FILTRATION WITH MULTIVALUED LAW I.B. Badriev, L.A. Nechaeva. Received: 15.03.2013 Published: 15.03.2013  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  We consider a steady process of filtration of the incompressible high-viscosity fluid, following multivalued filtration law. Generalized statement of this problem is formulated in the form of mixed variational inequality with monotone operator and separable generally nondifferentiable functional in Hilbert space. To this problem the problem of finding the boundaries of limit-equilibrium unrecovered visco-plastic oil in multilayer beds can be reduced. We establish the properties of operator (inverse strong monotonicity, coerciveness) and functional (Lipschitz continuity, convexity) contained in this variational inequality. This makes it possible to apply the known results in the theory of monotone operators to prove the existence theorem. To solve the variational inequality, we suggest iterative method that does not require the inversion of the original operator. Each step of the iterative process can essentially be reduced to the solution of the boundary-value problem for the Laplace operator. The investigation of the convergence of the iterative process is performed by its reduction to the successive approximation method for finding a fixed point of some operator (the transition operator). We obtain a relationship between the solution of the original variational inequality and the components of the fixed point of this transition operator. We show that the transition operator is nonexpanding; moreover, we obtain an inequality stronger than the nonexpansion inequality. We also show that the transition operator is asymptotically regular. This permits one to prove the weak convergence of the successive approximations. This method was realized numerically. The numerical experiments made for the model problems confirmed the efficiency of the iterative method. It is must to be mentioned that the suggested methods permit one to find approximate values not only of the solution itself but also of its characteristics (for filtration problems, these are approximate values of the solution gradient and also the approximate values of filtration rate on the sets according to the points of multivalence in filtration law), which is very useful from the practical viewpoint. Keywords: mathematical simulation, steady filtration, variational inequality, nondifferentiable functional, inverse strongly monotone operator, iterative method. Authors:  Badriev Ildar Burkhanovich (Kazan, Russian Federation) – Doctor of Physical and Mathematical Sciences, Professor, Department of Calculation Mathematics, Kazan Federal University (18, Kremlevskaja st., 420008, Kazan, Russian Federation, e-mail: ildar.badriev@ksu.ru). Nechaeva Ludmila Anatol’evna (Kazan, Russian Federation) – research associate, Institute of Informatics of the Tatarstan Republic Academy of Sciences (36A, Levo-Bulachnaja st., 420111, Kazan, Russian Federation, e-mail: nechaeva.ludmila 64@mail.ru). References:  1. Entov V.M., Malakhova T.A., Pankov V.N., Pan'ko S.V. Calculation of the Limit-equilibrium of Retained Viscoplastic Oil Extracted from a Nonuniform Stratified Layer by Water. Journal of Applied Mathematics and Mechanics, 1980, vol. 44, iss. 1, pp. 76-82. 2. Entov V.M., Pankov V.N., Pan'ko S.V. On the Analysis of Retained Residual Viscoplastic Petroleum. Journal of Applied Mathematics and Mechanics, 1980, vol. 44, iss. 5, pp. 597-603. 3. Entov V.M., Pankov V.N., Pan’ko S.V. Matematicheskaya teoriya tselikov ostatochnoi vyazkoplastichnoi nefti [Mathematical Theory of Unrecovered Visco-Plastic Oil]. Tomskij universitet, 1989. 4. Entov V.M., Pan'ko S.V. Variational Formulation of the Problem of Retained Viscoplastic Oil. Journal of Applied Mathematics and Mechanics, 1984, vol. 48, iss. 6, pp. 707-712. 5. Lapin A.V. Investigation of Some Non-linear Problems of Filtering Theory. USSR Computational Mathematics and Mathematical Physics, 1979, vol. 19, no 3, pp. 135-148. 6. Lyashko A.D., Karchevskii M.M. Difference Methods of Solving Nonlinear Problems in the Theory of Filtration. Soviet Mathematics, 1983, vol. 27, no.7, p. 34-56. 7. Gol'shtein E.G., Tret'yakov N.V. Modifitsirovannye funktsii Lagranzha [Modified Lagrangians]. Moscow: Nauka, 1989. 8. Badriev I.B., Zadvornov O.A. A Decomposition Method for Variational Inequalities of the Second Kind with Strongly Inverse-Monotone Operators. Differential Equations, 2003, vol. 39, no. 7, pp. 936-944. 9. Badriev I.B., Zadvornov O.A. Analysis of the Stationary Filtration Problem with a Multivalued Law in the Presence of a Point Source. Differential Equations, 2005, vol. 41, no. 7, pp. 915-922. 10. Lions J.-L. Quelque problèmes méthodes de résolution des problèmes aux limites nonlinéaires. Paris: Dunod, 1969. 11. Vainberg M.M. Variatzionnye metody issledovania nelineinykh operatorov [Variationa Methods of Research of Nonlinear Operators]. Moscow: Gostekhizdat, 1956. 12. Ekeland I, Temam R. Convex Analysis and Variational Problems. Amsterdam: North Holland Publishing Company, New York: Oxford American Elsevier Publishing Company, 1976. 13. Karchevskiy M.M., Badriev I.B. Nelineynye zadachi teorii filtrazii s razryvnymi monotonnymi operatorami [Nonlinear Problems of Filtration Theory with Discontinuous Monotone Operators]. Chislennye metody mekhaniki sploshnoj sredy, Novosibirsk: Institut teoreticheskoj i prikladnoj mekhaniki, 1979, vol. 10, no. 5, pp. 63-78. 14. Tzeng P. Futher Applications of a Splitting Algorithm to Decomposition in Variational Inequalities and Convex Programming. Mathematical Programming, 1990, vol. 48, pp. 249-264. 15. Zhu D., Marcotte P. New Classes of Generalized Monotonicity. Journal of Optimization Theory and Applications, 1995, vol. 87, no 2, pp. 457-471. 16. Lyashko A.D., Karchevskiy M.M. On the Solution of Some Nonlinear Problems of the Seepage Theory. Soviet Mathematics, 1975, vol. 19, no. 6, pp. 60-66. 17. Résolution numériques de problèmes aux limites par des méthodes de Lagrangien augmenté. Ed. M. Fortin, R. Glowinski. Paris: Dunod, 1983, 320 p. 18. Badriev I.B., Zadvornov O.A. Iteratzionnye metody reshenia variatzionnykh neravenstv v gil’bertovykh prostransyvakh [Iterative Methods for Variational Inequalities in Hilbert Spaces]. Kazanskiy gosudarstvenniy universitet, 2007. 19. Browder F.E., Petryshin W.V. The Solution by Iteration of Nonlinear Functional Equations in Banach Spaces. Bulletin of the American Mathematical Society, 1966, vol. 72, pp. 571-575 20. Opial Z. Weak Convergence of the Sequence of Successive Approximations for Nonexpansive Mappings. Bulletin of the American Mathematical Society, 1967, vol. 73, no 4, pp. 591-597. 21. Badriev I.B., Zadvornov O.A., Ismagilov L.N. Primenenie metoda decompozicii dlya chislennogo resheniya nelineynyh stacionarnyh zadach teorii filtracii [The Use of the Decomposition Method for the Numerical Solution of Some Nonlinear Steady-State Problems of Filtration Theory]. Issledovanija po prikladnoj matematike i informatike. Kazanskiy gosudarstvenny universitet, 2003, iss. 24, pp. 12-24. METHODS FOR COMPUTING A TRANSFER MATRICES OF ELASTIC DEFORMATIONS Yu.N. Belyayev. Received: 26.02.2013 Published: 26.02.2013  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  Review of matrix methods, which describe the propagation of waves in layered media, is given. The method of representation transfer matrix (or characteristic matrix) as a solution of system of first order differential equations is developed. This system of equations is called the defining. The method of obtaining the defining system of equations is shown by the example of thermoelastic waves. Traditional methods of finding the matrix exponential are considered: Taylor series expansion, Chebyshev and Padé rational approximations, scaling and squaring, methods based on numerical integration of ordinary differential equation, matrix decomposition methods (eigenvectors method, QR algorithm, Jordan canonical form, Schur decomposition, block diagonal method), Lagrange-Sylvester formula, Baker formula, Newton formula, Laplace transforms. The method of symmetric polynomials is presented. Symmetric polynomial of n-th order, introduced by the author, used to express the entire functions of matrices, including matrix exponential. This method does not require the computation (or estimation) of matrix eigenvalues. Algorithm to compute integer powers of matrices, based on the use of symmetric polynomials, is the least expensive in the number of elementary multiplications and, therefore, the most accurate in comparison with other known methods. The formulas, which analytically express transfer matrix of elastic deformation of 2-4-order through elementary symmetric polynomials, are presented. Analytical estimation of the modulus of symmetric polynomials is given. Symmetric polynomial method allows to control roundoff and truncation errors in the calculation of the transfer matrix. Evaluation of the scaling factor, which provides a reliable calculation of the matrix exponential with admissible error is made. The calculation of the transfer matrix of elastic waves in layered media by symmetric polynomials have advantages compared with other approaches on a combination of parameters such as generality, reliability, stability, accuracy, simplicity, ease of use and efficiency of the numerical algorithm. Keywords: elastic waves, layered media, matrix, exponential, polynomials, roundoff error, scaling. Authors:  Belyayev Yuriy Nikolaevich (Syktyvkar, Russian Federation) – Ph. D. in Physical and Mathematical Sciences, Ass. Professor, Department of Mathematical Modelling and Cybernetics, Syktyvkarskiy gosudarsrvenniy universitet (55, Oktyabrskiy av., 167001, Syktyvkar, Russian Federation, e-mail: ybelyayev@mail.ru). References:  1. Gorelik G.S. Kolebaniya i volny [Vibrations and waves]. Moscow-Leningrad: Gosudarstvennoje isdatelstvo tekhniko-teoreticheskoy literatury, 1950, 551 p. 2. Brekhovskikh L.M. Volny v sloistyh sredah [Waves in layered media]. Moscow: Akademia nauk USSR, 1957, 503 p. 
 
 3. Ginzburg V.L. Rasprostranenie elektromagnitnyh voln v plazme [Propagation of electromagnetic waves in plasma]. Moscow: Nauka, 1967, 684 p. 4. Brekhovskikh L.M., Godin O.A. Akustika sloistyh sred [Acoustics of layered media]. Moscow: Nauka, 1989, 416 p. 5. Feinberg E.L. Rasprostranenie radio voln vdol’ zemnoi poverhnosti [Radio wave propagation along the Earth's surface]. Moscow: Nauka, 1999, 496 p. 6. Bullen K.E. An introduction to the theory of seismology. Cambridge: Cambr. Univ. Press, 1963, 381 p. 7. Ewing W.M., Jardetzky W.S., Press F. Elastic waves in layered media. New York: McGraw-Hill Book Company, 1957, 380 p. 8. Mead D.J. A general theory of harmonic wave propagation in linear periodic systems with multiple coupling. J. Sound Vibr, 1973, vol. 27, pp. 235-260. 9. Sibiryakov B.P., Maksimov L.A., Tatarnikov M.A. Anizotropiya i dispersiya uprugih voln v sloistyh periodicheskih strukturah [Anisotropy and dispersion of elastic waves in layered periodic structures]. Novisibirsk: Nauka, 1980. 72 p. 10. Shulga N.A. Osnovy mehaniki sloistyh sred periodicheskoi struktury [Fundamentals of mechanics of the periodic structure of layered media]. Kiev: Naukova dumka, 1981, 200 p. 11. Meyers M.A., Mishra A., Benson D.J. Mechanical properties of nanocrystalline materials. Progress in Materials Science, 2006, vol. 51, pp. 427-556. 12. Lapteva T.V., Tarasenko O.S., Tarasenko S.V. Effekty magnitouprugogo vzaimodeistviya pri rasprostranenii sdvigovoi volny v odnomernom magnitnom akusticheskom fononnom kristalle [Magnetoelastic interaction in a shear wave propagating in a one-dimensional acoustically gyrotropic magnetic phononic crystal]. Fizika tverdogo tela, 2007, vol. 49, no. 7, pp. 1210 – 1216. 13. Strutt J.W. (Lord Rayleigh). Teoriya zvuka [The theory of sound]. Moscow: Gosudarstvennoje isdatelstvo tekhniko-teoreticheskoy literatury, 1955, vol. II, 476 p. 14. Vinogradova M.B., Rudenko O.V., Sukhorukov A.P. Teoriya voln [Wave Theory]. Moscow: Nauka, 1979, 383 p. 
 
 15. Molotov L.A. Matrichnyi metod v teorii rasprostraneniya voln v sloistyh uprugih i gidkih sredah [Matrix method in the theory of wave propagation in layered elastic and liquid media]. Leningrad: Nauka, 1984, 201 p. 16. Abelés F. Recherehes sur la propagation des ondes electromagnetiques sinusoidals dans les milieux stratifiées. Application aux conches minces. Ann. Phys., 1950, vol. 5, pp. 596-640, 706-782. 17. Born M., Wolf E. Osnovy optiki [Principles of optics]. Moscow: Nauka, 1970, 856 p. 18. Berning P.H. Theory and calculations of optical thin films. Physics of thin films. Vol. 1. Ed. G. Hass. San Diego: Academic, 1963, pp. 69-132. 19. Telen A. Design of multilayer interference filters. Physics of thin films. Vol. 5. Ed. G. Hass, R.E. Thun. San Diego: Academic, 1969, pp. 47-86. 20. Jacobson R. Inhomogeneous and coevaporated homogeneous films for optical applications. Physics of thin films. Vol. 8. Ed. G. Hass, M.Y. Francombe, R.W. Hoffman. New York: Academic, 1975, pp. 51-98. 21. Knittl Zd. Optics of thin films (An optical multilayer theory). New York: J. Wiley & Sons, 1975, 548 p. 22. Bondar’ E.A., Shadrina L.P. A Metod opredeleniya opticheskih postoyannyh pogloshayushei plenki v sostave sloistoi sistemy [Method for determining the optical constants of an absorbing film entering into the composition of a layered system]. Optica i spectroskopiya, 2004, vol. 96, no. 1, pp. 128-132. 23. Belyayev Yu.N Rasseyanie voln nepreryvno sloistymi uprugimi sredami. [Wave scattering continuously stratified elastic media]. Vestnik Syktyvkarskogo universiteta. Ser. 1. Mathematika, mekhanika, informatika. 2011, no. 13, pp. 75-88. 24. Belyayev Yu.N. The theory of X-ray diffraction in layered crystals [Teoriya rentgenovskoi difraktsii v sloistyh kristallah]. Summary of the thesis Ph. D. in Physical and Mathematical Sciences. Moscowskiy gosudarstvenniy universitet, 1982, 17 p. 25. Belyayev Yu. Matrichnyi podhod teorii voln k sloistym sredam [Matrix approach of wave theory to layered media]. Saarbrücken: LAP Lambert Academic Publishing, 2012, 156 p. 26. Tsu R., Esaki L. Tunneling in a finite superlattice. Appl. Phys. Lett., 1973, vol. 22, pp. 562-564. 27. Trzeciakowski W. Boundary conditions and interface states in heterostructures, Phys. Rev. B., 1988, vol. 38, no. 6, pp. 4322-4325. 28. Vladimirov M.R., Kavokin A.V Kraevye elektronnye sostoyaniya v poluprovodnikovyh sverhreshetkah [Boundary electronic states in semiconductor superlattices]. Fisika tverdogo tela, 1995, vol. 37, no. 7, pp. 2163-2188. 29. Bass F.G., Bulgakov A.A., Tetervov A.P. Vysokochastotnye svoistva poluprovodnikov so sverhreshetkami [High-frequency properties of the semiconductor superlattice]. Moscow: Nauka, 1989, 287 p. 30. Baskakov S.I. Radiotehnicheskie tsepi s raspredelennymi parametrami [Radio circuits with distributed parameters]. Moscow: Vysshaya shkola, 1980, 152 p. 31. Elashi Ch. Volny v aktivnyh I passivnyh periodiceskih strukturah [Waves in active and passive periodic structures: a review]. Trudy instituta inzhenerov po elektrotekhnike i radioelektronike, 1976, vol. 64, no. 12, pp. 22-59. 32. Thomson W.T. Transmission of elastic wave through a stratified solid material. J. Appl. Phys. 1950, vol. 21, no. 1, pp. 89-93. 33. Haskell N.A. The dispersion of surface waves on multilayered. Bul. Seism. Soc. Amer. 1953, vol. 43, no. 1, pp. 17-34. 34. Teitler S. Henvis B. Refraction in stratified anisotropic media. J. Opt. Soc. Amer. 1970, vol. 6, pp. 830-834. 35. Berreman D.W. Optics in stratified and anisotropic media: matrix formulation. J. Opt. Soc. Amer. 1972, vol. 62, pp. 502-510. 36. Berreman D.W. Optics in smoothly varying anisotropic planar structures: application to liquid-crystal twist cells. J. Opt. Soc. Amer. 1973, vol. 63, pp. 1374-1380. 37. Lin-Chung P.J. Teitler S. Matrix formalisms for optics in stratified anisotropic media. J. Opt. Soc. Amer. A. 1984, vol. 1, pp. 703-705. 38. Abdulhalim I., Benguigui L., Weil R. Selective reflection by helicoidal liquid crystals. Results of an exact calculation using characteristic matrix method. J. Phys. (Paris). 1985, vol. 46, pp. 815-825. 39. Abdulhalim I. Analytic propagation matrix method for anisotropic magneto-optic layered media. J. Opt. A: Pure Appl. Opt. 2000, pp. 557-564. 40. Wöhler H., Haas G., Fritsch M., Mlynski D.A. Faster matrix method for uniaxial inhomogeneous media. J. Opt. Soc. Amer. A. 1988, vol. 5, pp. 1554-1557. 
 41. Arzhannikov A.V., Kuznetsov S.A. Metody rascheta spektralnyh svoistv mnogosloinyh struktur na osnove skreshennyh reshetok-polyarizatorov [Methods for calculating the spectral properties of multilayer structures based on arrays of crossed polarizer]. Gurnal tehnicheskoi fiziki. 2001, vol. 71, vyp. 12. pp. 1-5. 42. Andreeva M.A., Rosete K., Khapachev Yu.P. Matrix analog of Takagi equations for grazing-incidence diffraction. Phys. stat. sol. (a), 1985, vol. 88, pp. 455-462. 43. Andreeva M.A., Rosete K. Teoriya otrageniya ot messbauerovskogo zerkala. Uchet posloinyh izmenenii parametrov sverhtonkih vzaimodeistvii vblizi poverhnosti [Theory of reflection from the Mössbauer mirror. Accounting changes fibrewise hyperfine parameters close to the surface]. Vestnik Moscowskogo universiteta. Ser. 3. Physika. Astronomiya. 1986, vol. 27, no. 3, pp. 57-62. 44. Cowley J. Fizika difraktsii [Diffraction physics]. Moscow: Mir, 1979, 432 p. 45. Monaco S.F. The use of Chebyshev polynomials in the computation of inhomogeneous thin dielectric films with exponentially varying index. Thin Solid Films, 1980, vol. 73, pp. L1-L4. 46. Tolstoy I. Effects of density stratification on sound waves. J. Geophys. Res, 1965. vol. 70, pp. 6009-6015. 47. Robins A.J. Reflection of plane acoustic waves from a layer of varying density. J. Acoust. Soc. Amer., 1990, vol. 87, pp. 1546-1552. 48. Huang G.Y., Wang Y.S., Yu S.W. Stress concentration at apenny-shaped cracks in a nonhomogeneous medium under torsion. Acta Mech., 2005, vol. 180, pp. 107-115. 49. Itou S. Transient dynamic stress intensity factors around two rectangular cracks in nonhomogeneous interfacial layer between two elastic half-spaces under impact load. Acta Mech., 2007, vol. 192, pp. 89-110. 50. Gantmakher F.R. Teoriya matrits [Matrix theory]. Moscow: Nauka, 1988, 552 p. 51. Kurosh A.G. Kurs vysshei algebry [Course in higher algebra]. Moscow: Nauka, 1971, 432 p. 52. Lankaster P. Teoriya matrits [Theory of matrices]. Moscow: Mir, 1969, 272 p. 
 
 53. Marcus M., Minc H. Obzor po teorii matrits I matrichnyh neravenstv [Matrix theory and matrix inequalities]. Moscow: Nauka, 1972, 232 p. 54. Bellman R. Vvedenie v teoriyu matrits [Introduction to matrix analysis]. Moscow: Nauka, 1976, 352 p. 55. Liou M.L. A novel method of evaluating transient response. Proc. IEEE, 1966, vol. 54, pp. 20-23. 56. Everling W. On the evaluation of by power series. Proc. IEEE, 1967, vol. 55, p. 413. 57. Bickart T.A. Matrix exponential: Approximation by truncated power series. Proc. IEEE, 1968, vol. 56, pp. 372-373. 58. Angot A. Matematika dlya elektro- i radioingenerov [Mathematics for electrical and radio engineers]. Moscow: Nauka, 1967, 780 p. 59. Cody W.J., Meinardus G., Varga R.S. Chebyshev rational approximation to exp(-x) in [0;∞] and applications to heat conduction problems. J. Approx. Theory, 1969, vol. 2, pp. 50-65. 60. Padé H. Sur la repréesentation approchéee d’une fonction par des fractions rationnelles. Thèse de Doctorat présentée à l’Université de la Sorbonne, 1892. Annales Scientifiques de l'Ecole Normale. (3ieme Serie), 1892, vol. 9, pp. 1-93. 61. Gragg W.B. The Padé Table and Its Relation to Certain Algorithms of Numerical Analysis. SIAM Review, 1972, vol. 14, no. 1, pp. 1-62. 62. Fair W., Luke Y. Padé approximations to the operator exponential. Numer. Math, 1970, vol. 14, pp. 379-382. 63. Wragg A., Davies C. Computation of the exponential of a matrix I: Theoretical considerations. J. Inst. Math. Appl, 1973, vol. 11, pp. 369-375. 64. Wragg A., Davies C. Computation of the exponential of a matrix II: Practical considerations. J. Inst. Math. Appl, 1975, vol. 15, pp. 273-278. 65. Arioli M., Codenotti B., Fassino C. The Padé method for computing the matrix exponential. Lin. Alg. Applic, 1996, vol. 240, pp. 111-130. 66. Ward R.C. Numerical computation of the matrix exponential with accuracy estimate. SIAM J. Numer. Anal, 1977, vol. 14, pp. 600-610. 67. Scraton R.E. Comment on rational approximants to the matrix exponential. Electron. Lett, 1971, vol. 7, pp. 260-261. 68. Kamke E. Spravochnik po obyknovennym differentsial’nym uravneniyam [Handbook on ordinary differential equations]. Moscow: Nauka, 1965, 704 p. 69. Sovremennye metody resheniya obyknovennyh differentsial’nyh uravnenii [Modern methods of solving ordinary differential equations]. Ed. J. Hall, J. Watt. Moscow: Mir, 1979, 312 p. 70. Bahvalov N.S., Zhidkov N.P., Kobelkov G.M. Chislennye metody [Numerical methods]. Moscow: Binom, 2003, 632 p. 71. Moler C., Van Loan C. Nineteen dubious ways to compute the exponential of matrix, Twenty-five years later. SIAM Review, 2003, vol. 45, no. 1, pp. 3-49. 72. Mastascusa E. J. A relation between Liou's method and fourth order Runge-Kutta method for evaluation of transient response. Proc. IEEE, 1969, vol. 57, pp. 803-804. 73. Whitney D. E. More similarities between Runge-Kutta and matrix exponential methods for evaluating transient response. Proc. IEEE, 1969, vol. 57, pp. 2053-2054. 74. Krylov A.N. O chislennom reshenii uravneniya, kotorym v tekhnicheskikh voprosakh opredelyayutsya chastoty malykh kolebanii material’nykh sistem [One numerical solution of the equations that defines the frequencies of small oscillations of material systems in technical issues]. Isvestiya Akademii nauk SSSR. VII seriya. Matematika, 1931, no. 4, pp. 491-539. 75. Faddeev D.K., Faddeev V.N. Vychislitel’nye metody lineinoi algebry [Computational methods of linear algebra]. Moscow: Nauka, 1963, 656 p. 76. Samuelson P.A. A method of determining explicitly the coefficients of the characteristic equation. Ann. Math. Statistics, 1942, vol. 13, pp. 424-429. 77. Danilevsky A.M. O chislennom reshenii vekovogo uravneniya [On the numerical solution of the secular equation]. Matematicheskii sbornik, 1937, vol. 2, pp. 169-171. 78. Morris J., Heed J.W. Lagrangian frequency equation. Fn “escalator” method for numerical solution. Aircraft Eng., 1942, vol. 14, pp. 312-314, 316. 79. Wilkinson J.H. Algebraicheskaya problema sobstvennyh znacheniy [The algebraic eigenvalue problem]. Moscow: Nauka, 1970, 564 p. 80. Smith B.T., Boyle J.M., Dongarra J.J., Garbow B.S., Ikebe Y., Klema V.C., Moler C.B. Matrix Eigensystem Routines: EISPACK Guide, 2nd ed. Lecture Notes in Comput. Sci. 6, New York; Springer-Verlag, 1976, 551 p. 81. Golub G.H., Wilkinson J.H. Ill-conditioned eigensystems and the computation of the Jordan canonical form. SIAM Review, 1976, vol. 18, pp. 578-619. 82. Kågstrom B., Ruhe A. An algorithm for numerical computation of the Jordan normal form of a complex matrix. ACM Transactions on Mathematical Software, 1980, vol. 6, pp. 437-443. 83. Parlett B.N. A recurrence among the elements of functions of triangular matrices. Linear Algebra Appl, 1976, vol. 14, pp. 117-121. 84. Vidysager M. A novel method of evaluating in closed form. IEEE Trans. Automatic Control, 1970, vol. AC-15, pp. 600-601. 85. MacDuffee C.C. The Theory of Matrices. New York: Chelsea, 1956, 128 p. 86. Liou M.L. Evaluation of the transition matrix. Proc. IEEE, 1967, vol. 55, pp. 228-229. 87. Bierman G.J. Finite series solutions for the transition matrix and covariance of a time invariant system. IEEE Trans. Automatic Control, 1971, vol. AC-16, pp. 173-175. 88. Chen C.F., Parker R.R. Generalization of Heaviside’s expansion technique to transition matrix evaluation. IEEE Trans. Educ, 1966, vol. E-9, pp. 209-212. 89. Rao K.R., Ahmed N. Heaviside expansion of transition matrices. Proc. IEEE, 1968, vol. 56, pp. 884-886. 90. Zakian V. Solution of homogeneous ordinary linear differential equations by numerical inversion of Laplace transforms. Electron. Lett., 1971, vol. 7, pp. 546-548. 91. Belyayev Yu.N. Algebra tenzorov [Tensor algebra]. Syktyvkarskiy gosudarstvenniy universitet, 2009, 180 p. 92. Belyayev Yu.N. Vektornyi i tenzornyi analiz [Vector and tensor analysis]. Syktyvkarskiy gosudarstvenniy universitet, 2010, 298 p. 93. Belyayev Yu.N. Representation of matrix functions by means of symmetric polynomials. Book of abstracts of the International Conference on Algebra, august 20–26 2012. Kiev: Institute of mathematics NAS of Ukraine, 2012. pp. 30. 94. Belyayev Yu.N. Primenenie simmetricheskikh mnogochlenov v reshenii zadachi Koshi [Application of symmetric polynomials in the solution of the Cauchy problem]. Tezisy Megdunarodnoi konferentsii “Algebra i lineinaya optimizatsiya” Ekaterinburg: Uralskiy politekhnicheskiy institut, 2012. pp. 20-22. 95. Belyayev Yu.N. Calculations of transfer matrix by means of symmetric polynomials. Days on Diffraction 2012. Proceedings of the International Conference May 28, June 1 2012. Sankt Peterburg, Russia, pp. 36-41. 96. Belyayev Yu.N. Matrichnyi metod rascheta pererasseyaniya voln v periodicheskoi strukture [Matrix method of calculating the rescatteriing wave in a periodic structure]. Vestnik Samarskogo gosudarstvennogo technicheskogo universiteta. Ser. Fiziko-matematicheskie nauki, 2011, no 2(23), pp. 142-148. 97. Belyaev Yu.N., Kolpakov A.V. On the theory of X-ray diffraction in a perfect crystal with distorted surface layer. Phys. stat. sol.(a), 1983, vol. 76, pp. 641-646. 98. Belyayev Yu.N. Harakteristicheskaya matritsa sloisto-periodicheskoi struktury [Characteristic matrix of layered periodic structure]. Vestnik Syktyvkarskogo gosudarstvennogo universiteta. Ser. 1. Matematika, mechanika, informatika, 2010, no. 11, pp. 86-91. 99. Floquet G. Sur les équations différentielles linéaires á coefficients périodiques. Ann. sciéntifiques de l'Ecole Normale supérieure, ser. 2, 1883, vol. 12, no. 1, pp. 47-88. 100. Bloch F. Űber die Quantenmechanik der Elektronen in Kristallgittern. Z. Physik, 1928, vol. 52, pp. 555-600. 101. Ashcroft N.W., Mermin D. Fizika tverdogo tela [Solid state physics]. Vol. 1. Moscow: Mir, 1979, 400 p. 102. Chen Z., Yu S., Meng L., Lin Y. Effective properties of layered magneto-electro-elastic composites. Compos. Struct, 2002, vol. 57, pp. 177-182. 103. Bagdasaryan G.E., Danoyan Z.N. Elektromagnitouprugie volny [Electromagnetoelasticity wave]. Erevanskiy gosudarstvenniy universitet, 2006, 492 p. 104. Bhangale R.K., Ganesan N. Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates. Int. J. Solids Struct, 2006, vol. 43, pp. 3230-3253. 105. Guo S.H. A fully dynamic theory of piezoelectromagnetic waves. Acta Mech., 2010, vol. 215, pp. 335-344. 106. Guo S.H. The thermo-electromagnetic waves in piezoelectric solids. Acta Mech., 2011, vol. 219, pp. 231-240. 107. Xiaoshan Cao, Junping Shi, Feng Jin Lamb wave propagation in the functionally graded piezoelectric–piezomagnetic material plate. Acta Mech., 2012, vol. 223, pp. 1081-1091. THE DURABILITY INCREASE OF THE TITANIUM COMPRESSOR DISK WITH THE HELP OF ALLOY STRUCTURE MANAGEMENT IN THE NEAR-SURFACE LAYER N.G. Burago, I.S. Nikitin. Received: 15.03.2013 Published: 15.03.2013  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  The present paper is devoted to the fatigue durability of structurally inhomogeneous disk of constant thickness under low-cycle (LCF) and very high-cycle (VHCF) loading. For this purpose, two modelling problems of elasticity theory for circular disk loading were solved. In the first problem the centrifugal loading is applied to the disk, also the variable and periodical in the angle radial stresses are applied on the external contour, modelling the centrifugal loading from the blades (LCF). In the second problem the disc bending equation is solved under periodical in the angle torques on the external contour. The cyclic torques model the high-frequency blades vibrations and correspond to the very high-cycle fatigue (VHCF). The structure and depth of near-surface layer with the increasing fatigue characteristics are determined for which the maximum durability is achieved for each regime of cyclical loading. Total radial and tangential stresses at the rim of the disc under the action of centrifugal forces are determined. The distribution of durability in the vicinity of the radial rim of the titanium disk (LCF mode) for a homogeneous structure and inhomogeneous structure is found. The dependence of the logarithm of the durability on the fatigue limit in the surface layer is cflculated (LCF mode). We calculated also the total radial and tangential shear stresses in the rim of the disc, corresponding to a maximum torsion of the blades in clockwise and counter-clockwise directions (VHCF). The distribution of durability along the radius of the rim titanium disc and the dependence of logarithm of the durability on the fatigue limit in the surface layer (VHCF mode) are also defined. Keywords: very-high-cycle fatigue, low-cycle fatigue, structural inhomogeneity, near-surface layer, durability, stress concentration, vibrations of blades, flight loading cycle Authors:  Burago Nikolay Georgievich (Moscow, Russian Federation) – Doctor of Physical and Mathematical Sciences, Leading Researcher, Laboratory of Modelling in Institute for problems in mechanics of RAS (101, Vernadskiy av., 119526, Moscow, Russian Federation, e-mail: buragong@yandex.ru). Nikitin Ilya Stepanovich (Moscow, Russian Federation) – Doctor of Physical and Mathematical Sciences, Leading Researcher, Department of Math. Modelling Institute for computes aided RAS (19/18, 2-nd Brestskaya st., 123056, Moscow, Russian Federation, e-mail: i_nikitin@list.ru). References:  1. Polkin I.S. Perspektivy razvitiya granulnoy metallurgii titanovih splavov [Development prospective of granular metallurgy of titanium alloys]. Tekhnologiya legkikh splavov, 2011, no. 4, pp. 5-11. 2. Garibov G.S., Grits N.M. [et al.] [Study of possibility of gas-turbine engine production with variable structure and functional-gradient characteristics from granules of different fractions]. Tekhnologia leghikh splavov, 2011, no. 4, pp. 41-50. 3. Il’in A.A., Skvortsova S.V. [et al.] Vzaimosvyaz’ structure i kompleksa mekhanicheskikh svoystv v titanovom splave VT6 [Correlation between the structure and set of mechanical characteristics of the titanium alloy BT6]. Titanium, 2011, no. 1, pp. 26-29. 4. Rabotnov Yu.N. Mekhanika deformiruemogo tverdogo tela [Mechanics of Solids]. Moscow: Nauka. Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1979, 744 p. 5. Burago N.G., Zhuravlev A.B., Nikitin I.S. Models of Multiaxial Fatigue Fracture and Service Life Estimation of Structural Elements. Mechanics of Solids, 2011, vol. 46, no. 6, pp. 828-838. 6. Dem’yanushko I.V., Birger I.A. Raschet na prochnost’ vrashchayushchikhsya diskov [Strength calculation of rotating disks]. Moscow: Mashinostroenie, 1978, 247 p. MATHEMATICAL MODELING OF PHASE TRANSFORMATIONS IN STEEL UNDER THERMOMECHANICAL LOADING I.L. Isupova, P.V. Trusov. Received: 21.07.2013 Published: 21.07.2013  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  The article is devoted to the mathematical modeling of phase transformations in steels under thermomechanical loading. To construct the model, a multilevel approach based on the use of internal variables in its structure – the parameters characterizing the state and evolution of meso- and microstructure of the material – has been applied. The proposed model can be used to describe diffusionless (martensitic) and diffusion phase transformations. When modeling the diffusion phase transformations 0take into account the fact that, along with the restructuring of the crystal lattice can be redistribution of carbon and alloying elements. Statement of the general problem of individual facilitated the release of subtasks – namely, determining the stress-strain state, temperature, and describe the redistribution of alloying elements, which can be formulated in relation to independent productions. For the considered sub-tasks include different types of models. So much for the problem of determining the stress-strain state uses a direct model of the second type, and for the problems of heat conduction and diffusion – a direct model of the first type. In this case, the problem of describing the redistribution of atoms of carbon and alloying elements is considered only at the meso level, since it is at this scale diffusion processes are significant. The paper presents the general structure of the two-level model. For the problem of determining the stress-strain state, problems of heat conduction and diffusion are all considered statement on the scales. Special attention is given to obtaining a kinetic equation for the change of the volume fractions of the coexisting phases. Keywords: phase transformation, steel, multi-level model, the internal variables. Authors:  Isupova Irina Leonidovna (Perm, Russian Federation) – postgraduate student of Department of Mathematical Modeling of Systems and Processes, Perm National Research Polytechnic University (29, Komsomolsky av., 614990, Perm, Russian Federation, e-mail: enotyforever@yandex.ru). Trusov Peter Valentinovich (Perm, Russian Federation) – Doctor of Physical and Mathematical Sciences, Professor, Head of Department of Mathematical Modeling of Systems and Processes, Perm National Research Polytechnic University (29, Komsomolsky av., 614990, Perm, Russian Federation, e-mail: tpv@matmod.pstu.ac.ru). References:  1. Volegov P.S., Nikityuk À.S., Yants À.Yu. Geometriya poverkhnosti tekuchesti i zakony uprochneniya v fizicheskikh teoriyakh plastichnosti [The geometry of the yield surface and hardening laws in physical theories of plasticity]. Vestnik Permskogo gosudarstvemmogo polytechnicheskogo universiteta. Mekhanika, 2009, no. 17, pp. 25-33. 2. Isupova I.L., Trusov P.V. Obzor matematicheskikh modeley dlya opisaniya fazovykh prevrashcheniy v stalyakh [Review of mathematical models on phase transformations in steels]. Vestnik Permskogo natsionalnogo issledovatelskogo polytekhnicheskogo universiteta. Mekhanika, 2013, no. 3, pp. 3. Lurie À.I. Nelineynaya teoriya uprugosti [Nonlinear theory of elasticity]. Moscow: Nauka, 1980, 512 p. 4. Pozdeev À.À., Trusov P.V., Nyashin Yu.I. Bolshie uprugo-plasticheskie deformatsii: teoriya, algoritmy, prilozheniya [Large elastic-plastic deformation: theory, algorithms and applications]. Moscow: Nauka, 1986, 232 p. 5. Kondepudi D., Prigogine I. Modern thermodynamics: from heat engines to dissipative structures. John Wiley & Sons, 1998, 508 p. 6. Trusov P.V., Shveykin A.I. Mnogourovnevye fizicheskie modeli mono- i polikristallov. Statisticheskie modeli [Multilevel physical models of single- and polycrystals. Statistical models]. Fizicheskaya mezomekhanika, 2011, no. 4, pp. 17-28. 7. Trusov P.V., Shveykin A.I. Mnogourovnevye fizicheskie modeli mono- i polikristallov. Pryamye modeli [Multilevel physical models of single- and polycrystals. Direct models]. Fizicheskaya mezomekhanika, 2011, vol. 14, no. 4, pp. 5-30. 8. Trusov P.V., Àshikhmin V.N., Volegov P.S., Shveykin A.I. Konstitutivnye sootnosheniya i ikh primenenie dlya opisaniya evolyutsii mikrostructury [Constitutive relations and their application to the description of microstructure evolution]. Fizicheskaya mezomekhanika, 2009, vol. 12, no. 3, pp. 61-71. 9. Trusov P.V., Àshikhmin V.N., Shveykin A.I. Dvukhurovnevaya model uprugoplasticheskogo deformirovaniya polikristallicheskikh materialov [Two-level model for polycrystalline materials elastoplastic deformation]. Mekhanika kompozitsionnykh materialov i konstruktsiy, 2009, vol. 15, no. 3, pp. 327-344. 10. Trusov P.V., Shveykin A.I., Nechaeva E.S., Volegov P.S. Mnogourovnevye modeli neuprugogo deformirovaniya materialov i ikh primenenie dlya opisaniya vnutrenney struktury [Multilevel models of inelastic deformation of material and their application for description of internal structure]. Fizicheskaya mezomekhanika, 2012, vol. 15, no. 1, pp. 33-56. 11. Trusov P.V., Nechaeva E.S., Shveykin A.I. Primenenie nesimmetrichnykh mer napryazhennogo i deformirovannogo sostoyaniya pri postroenii mnogourovnevykh konstitutivnykh modeley materialov [Non-symmetric stress-strain measures using when construct multilevel constitutive material models]. Fizicheskaya mezomekhanika, 2013, vol. 16, no. 2, pp. 15-31. 12. Beese A.M., Mohr D. Anisotropic plasticity model coupled with lode angle dependent strain-induced transformation kinetics law. Submitted for publication, 2011. 13. Cherkaoui M., Berveiller M., Sabar H. Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals. International Journal of Plasticity, 1998, vol. 14, no. 7, pp. 597-626. 14. Dinsdale A.T. SGTE Data for Pure Elements. Calphad, 1991, vol. 15, pp. 317-425. 15. Ozdemir I., Brekelmans W.A.M., Geers M.G.D. Computational homogenization for heat conduction in heterogeneous solids. International Journal for Numerical Methods in Engineering, 2008, vol. 73, no. 2, pp. 185-204. 16. Redlich O., Kister A.T. Algebraic representation of thermodynamic properties and the classification solutions. Ind. Eng. Chem., 1948, vol. 40, no. 2, pp. 345-348. 17. Wagemaker M., Mulder F.M., Van der Ven A. The role of surface and interface energy on phase stability of nanosized insertion compounds. Adv. Mater., 2009, vol. 21, pp. 2703-2709. 18. Wang J.J., Van Der Zwaag S. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel. Metall. Mater. Trans. A, 2001, vol. 32, no. 6, pp. 1527-1539. REVIEW OF MATHEMATICAL MODELS ON PHASE TRANSFORMATIONS IN STEELS I.L. Isupova, P.V. Trusov. Received: 00.00.0000 Published: 00.00.0000  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  In steels all known solid state phase transformations are observed: polymorphic transformation with wide spectrum of morphological and kinetics features, eutectoid decomposition (pearlite transformation), decomposition of supersaturated solid solutions, short- and long – range ordering in austenite and martensite. The important feature of these systems is different diffusion mobility of metal and carbon atoms. Therefore, reorientation of the crystal lattice may occur simultaneously with the diffusion redistribution of carbon and alloying elements. In the present article reviews the papers on mathematical modeling of diffusionless (martensitic) and diffusion phase transformations in steels under thermomechanical loading. There are two basic approaches to constructing models of the polymorphic transformations. The first method is based on an explicit introduction to the consideration of interfaces according to the conditions at the interface of a deformable material and the kinetics of the new phase. The second method involves the development of models based on the introduction of additional state parameters that characterize certain features of the material structure "on average" (for example, the concentration of a new phase), and the formulation of relations for them. Models used to describe the phase transitions are manifold. In the present review we present works that are considered and multi-level, and self-consistent, and direct model. We also consider the work that use gradient theory, which allows to take into account the impact of scale factors on the processes of phase transformations and behavior of the investigated steel. Keywords: review, models, phase transformations, steels. Authors:  Isupova Irina Leonidovna (Perm, Russian Federation) – postgraduate student, Department of Mathematical Modeling of Systems and Processes, Perm National Research Polytechnic University (29, Komsomolsky av., 614990, Perm, Russian Federation, e-mail: enotyforever@yandex.ru). Trusov Peter Valentinovich (Perm, Russian Federation) – Doctor of Physical and Mathematical Sciences, Professor, Head of Department of Mathematical Modeling of Systems and Processes, Perm National Research Polytechnic University (29, Komsomolsky av., 614990, Perm, Russian Federation, e-mail: tpv@matmod.pstu.ac.ru). References:  1. Grinfeld M.A. Metody mekhaniki sploshnykh sred v teorii fazovykh prevrashcheniy [Methods of continuum mechanics in the theory of phase transitions]. Moscow: Nauka, 1990. 312 p. 2. Kashchenko Ì.P., Chashchina V.G. Dinamicheskaya teoriya g–a martensitnogo prevrashcheniya v splavakh zheleza i reshenie problemy kriticheskogo razmera zerna [Dynamic theory of g–a martensite phase transformation in Fe-based alloys and problem of grain critical size]. Ìoscow, Izhevsk: NITS Regularnaya i khaoticheskaya dinamica, Izhevskiy institute kompyuternykh issledovaniy, 2010, 132 p. 3. Kashchenko Ì.P., Chashchina V.G. Formirovanie martensitnykh kristallov v predelnom sluchae sverkhzvukovoy skorosti rosta [Formation of martensitic crystals in the limiting case of supersonic growth speed]. Pisma o materialakh, 2011, vol. 1, pp. 7-14. 4. Lebedev V.G., Danilov D.À., Galenko P.K. Ob uravneniyakh modeli fazovogo polya dlya neizotermicheskoy kinetiki prevrashcheniya v mnogokomponentnykh i mnogofaznykh sistemakh [Phase-field model equations for non isothermal kinetics of transitions in a multi-component and multi-phase system]. Vestnik Udmurtskogo gosudarstvennogo universiteta. Fizika i Khimiya, 2010, iss. 1, pp. 26-33. 5. Movchan À.À., Movchan I.À. Odnomernaya mikromekhanicheskaya model nelineynogo deformirovaniya splavov s pamyatyu formy pri pryamom i obratnom termouprigikh prevrashcheniyakh [One-dimensional micromechanical model of the nonlinear deformation of shape memory alloys for forward and reverse thermoelastic transformations]. Mekhanika kompozitsionnykh materialov i konstruktsiy, 2007, vol. 13, no. 3, pp. 297-322. 6. Movchan À.À., Movchan I.À., Silchenko L.G. Mikromekhanicheskaya model nelineynogo deformirovaniya splavov s pamyatyu formy pri fazovykh i strukturnykh prevrashcheniyakh [Micromechanical model of the nonlinear deformation of shape memory alloys during phase and structural transformations]. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela, 2010, no. 3, pp. 118-130. 7. Trusov P.V., Shveykin A.I. Mnogourovnevye fizicheskiy modeli mono- i polikristallov. Statisticheskie modeli [Multilevel physical models of single- and polycrystals. Statistical models]. Fizicheskaya mezomekhanika, 2011, no. 4, pp. 17-28. 8. Trusov P.V., Shveykin A.I. Mnogourovnevye fizicheskiy modeli mono- i polikristallov. Pryamye modeli [Multilevel physical models of single- and polycrystals. Direct models]. Fizicheskaya mezomekhanika, 2011, vol. 14, no. 4, pp. 5-30. 9. Freidin À.B., Sharipova L.L. Ravnovesnye dvukhfaznye deformatsii i zony fazovykh perekhodov v priblizhenii malykh deformatsiy [Equilibrium two-phase deformations and phase transitions zones in the small strain]. Izvestiya vuzov Severo-Kavkazskogo regiona. Nelineynye problemy mekhaniki sploshnykh sred. Special Issue, 2003, pp. 291-298. 10. Avrami, M. Kinetics of phase change. II: transformation-time relations for random distribution of nuclei. Journal of Chemical Physics, 1940, vol. 8, pp. 212. 11. Barbe F., Quey R., Taleb L. Numerical modelling of the plasticity induced during diffusive transformation. Case of a cubic array of nuclei. Europ. J. Mechanics A/Solids, 2007, vol. 26, pp.611-625. 12. Barbe F., Quey R. A numerical modelling of 3D polycrystal-to-polycrystal diffusive phase transformations involving crystal plasticity. Int. J. Plasticity, 2011, vol. 27, pp. 823-840. 13. Berveiller M., Zaoui A. An extension of the self-consistent scheme to plastically-flowing polycrystals. J. Mech. Phys. Solids, 1979, vol. 26, pp. 325-344. 14. Cahn J.W., Hilliard J.E. Free energy of a non-uniform systems. I. Interfacial free energy. J. Chem. Phys, 1958, vol. 28, pp. 258-266. 15. Chen L.-Q., Khachaturyan A. Computer simulation of structural transformations during precipitation of an ordered intermetallic phase. Acta Mater, 1991, vol. 39, pp. 2533-2551. 16. Cherkaoui M., Berveiller M., Sabar H. Micromechanical modeling of martensitic transformation induced plasticity (trip) in austenitic single crystals. Int. J. Plasticity, 1998, vol. 14, no.7, pp. 597-626. 17. Fischlschweiger M., Cailletaud G., Antretter T.A mean-field model for transformation induced plasticity including backstress effects for non-proportional loadings. Int. J. Plasticity, 2012, vol. 37, p. 53-71. 18. Fleck N.A., Hutchinson J.W. A reformulation of strain gradient plasticity. J. Mech. Phys. Solids, 2001, vol. 49, pp. 2245-2271. 19. Hsu T.Y. Additivity Hypothesis and Effects of Stress on Phase Transformations in Steel. Current Opinion in Solid State & Materials Science, 2005, vol. 9, pp. 256-268. 20. Hüßler I. Mathematische Untersuchungen eines gekoppelten Systems von ODE und PDE zur Modellierung von Phasenumwandlungen im Stahl, Diplomarbeit im Studiengang Technomathematik, Universität Bremen, 2007, 100 p. 21. Inoue T., Wang, Z.G. Coupling between stresses, temperature and metallic structural during processes involving phase transformation. Mater. Sci. Technol., 1985, vol. 1, pp. 845-850. 22. Iwamoto T. Multiscale computational simulation of deformation behavior of TRIP steel with growth of martensitic particles in unit cell by asymptotic homogenization method. Int. J. Plasticity, 2004, vol. 20, p. 841-869. 23. Koistinen D.P., Marburger R.E. A general equation prescribing the extent of the austenite-martensite transformation in pure ironcarbon alloys and plain carbon steels. Acta Metallurgica, 1959, vol. 7, pp. 59-60. 24. Kroner E. Zur plastischen verformung des vielkristalls. Acta Metall, 1961, vol. 9, pp. 155-161. 25. Kouznetsova V.G., Geers M.G.D. A multi-scale model of martensitic transformation plasticity. Mechanics of Materials, 2008, vol. 40, pp. 641-657. 26. Lee M.-G., Kim S.-J., Han H.N. Crystal plasticity finite element modeling of mechanically induced martensitic transformation (MIMT) in metastable austenite. Int. J. Plasticity, 2010, vol. 26, pp. 688-710. 27. Logé R.E., Chastel Y.B. Coupling the thermal and mechanical fields to metallurgical evolutions within a finite element description of a forming process. Comput. Methods Appl. Mech. Engrg., 2006, vol.195, pp. 6843-6857. 28. Loginova I., Amberg G., Agren J. Phase-field simulations of non-isothermaly binary alloy solidification. Acta. Materialia, 2001, vol. 49, pp. 573-581. 29. Mahnken R., Schneidt A., Antretter T. Macro modelling and homogenization for transformation induced plasticity of a low-alloy steel. Int. J. Plasticity, 2009, vol. 25, pp. 183-204. 30. Mazzoni-Leduc L., Pardoen T., Massart T.J. Strain gradient plasticity analysis of transformation induced plasticity in multiphase steels. Int. J. Solids and Structures, 2008, vol. 45, pp. 5397-5418. 31. Olson G.B., Cohen M. Kinetics of strain-induced martensitic nucleation. Metallurgical Transactions A, 1975, vol. 6A, pp. 791-795. 32. Petit-Grostabussiat S., Taleb L., Jullien J.-F. Experimental results on classical plasticity of steels subjected to structural transformations. Int. J. Plasticity, 2004, vol. 20, pp. 1371-1386. 33. Shi J., Turteltaub S., Van der Giessen E. Analysis of grain size effects on transformation-induced plasticity based on a discrete dislocation-transformation model. J. Mech. Phys. Solids, 2010, vol. 58, pp. 1863-1878. 34. Steinbach I., Apel M. Multi-phase field model for solid state transformation with elastic strain. Physica D, 2006, vol. 217, pp. 153-160. 35. Tjahjanto D.D., Turteltaub S., Suiker A.S.J. Crystallographically based model for transformation-induced plasticity in multiphase carbon steels. Continuum Mech. Thermodyn, 2008, vol. 19, pð. 399-422. 36. Turteltaub S., Suiker A.S.J. A multiscale thermomechanical model for cubic to tetragonal martensitic phase transformations. Int. J. Solids and Structures, 2005, doi:10.1016/j.ijsolstr.2005.06.065. 37. Varma M. R., Sasikumar R., Pillai S. G. K. Cellular automaton simulation of microstructure evolution during austenite decomposition under continuous cooling conditions. Bull. Mater. Sci., 2001, vol. 24, no. 3, pp. 305-312. 38. Wang Y., Chen L.-Q., Khachaturyan A.G. Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap. Acta Metall. Mater., 1993, vol. 41, no. 1, pp. 279-296. 39. Yamanaka A., Takaki T., Tomita Y. Elastoplastic phase-field simulation of martensitic transformation with plastic deformation in polycrystal. Int. J. Mech. Sci., 2010, vol. 52, pp. 245-250. THE MATHEMATICAL MODEL OF NICKEL MELT CONVECTION IN THE INDUCTION MELTING. THE SOLVING OF THE MAGNETIC SUBPROBLEM I.L. Nikulin, A.V. Perminov. Received: 00.00.0000 Published: 00.00.0000  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  In this paper mathematical model is developed for the study of metal melt flows general regularities in nonuniform alternating magnetic field, in which cylindrical area filed with paramagnetic conducting melt is considered, the symmetry axis is directed verticaly.The model include the equations describing spatial magnetic field distribution for the inductor representing itself shot coil, the equations for induced currents arising in metal volume at alternating inductor magnetic field, the equation of heat energy transfer that includes movement of media and volume heat sources, the equation of melt convection in Boussinesq approximation with accounting of Lorentz force actin to the melt. On the side and bottom solid area boundaries slip conditions for velocities, top boundary of melt is free. Heat sink on side surface is determined by Newton-Richman law, on the top it is calculated Stefan-Boltzmann law, bottom is considered as insulated. The governing equations and boundary conditions are given in dimensionless form. It is shown the given problem can be reduced to the consecutive solving the magnetic and thermoconvective subproblem. In axial symmetrical external magnetic field approximation for different magnetic Reynolds numbers the magnetic field strength spatiotemporal distributions in melt, densities of electrical currents and heat source powers are calculated. The parameters given above changes regularities at the control parameter – Reynolds number variations are detected. This information will later allow modeling the melt convective flow and revealing the effects are important for understanding the processes regulating the distribution of impurities. Keywords: mathematical modeling, magnetic field, magnetic field diffusion equation, magnetic Reynolds number, induction current, convection. Authors:  Nikulin Illarion Leonidovich (Perm, Russian Federation) – Ph.D. in Technical Sciences, Ass. Professor, Department of General Physics, Perm National Research Polytechnic University (29, Komsomolsky av., 614990, Perm, Russian Federation, å-mail: nil@mail.ru). Perminov Anatoliy Victorovich (Perm, Russian Federation) – Ph.D. in Physical and Mathematical Sciences, Ass. Professor, Department of General Physics, Perm National Research Polytechnic University (29, Komsomolsky av., 614990, Perm, Russian Federation, å-mail: perminov1973@mail.ru). References:  1. Hripchenko S.Ju. [et al.] Kristallizacija cilindricheskiih aljuminievykh slitkov pri MGD-peremeshivanii [The Crystallization of Cylindrical Aluminum Ingots under MHD-sreering]. Tezisy dokladov Rossijskoy konferentsii po magnitnoy gidrodinamike: Perm, 18–22 ijunja 2012. Perm: Institut mekhaniki sploshnykh sred. Ural’skoe otdelenie Rossiyskoy akademii nauk, 2012, pp. 101. 2. Lyubimova T.P. [et al.] Numerical Investigation of Dynamic Magnetic Field Influence on Vertical Bridgman Crystal Growth. Proc. of Int. Conf. «Advanced Problems in Thermal Convection». Perm, 2004, ðp. 343-349. 3. Ljubimova T.P., Fajzrahmanova I.S. Chislennoe issledovanie vlijanija beguschego magnitnogo polja na teplomassoperenos v zhidkoj zone [Numerical modelling of the running magnetic field influence on heat and mass transfer in the liquid zone]. Sbornik nauchnykh trudov «Gidrodinamika». Permskiy universitet, 2004, vol. 11, pp. 173-190. 4. Demin V.A., Makarov D.V. Vlijanie vrashhajushhegosja magnitnogo polja na rasplav v cilindricheskoj zhidkoj zone [The Rotating Magnetic Field Influence on the Melt in the Cylindrical Liquid Zone]. Vestnik Permskogo universiteta, vypusk 1, Fizika, 2004, pp. 106-111. 5. Tsaplin A.I. Teplofizika vneshnih vozdejstvij pri kristallizacii stal'nyh slitkov na mashinah nepreryvnogo lit'ja [Thermophysics of the External Influence at the Crystallization Steel Ingots in the Continious Casting Machines]. Ekaterinburg: Uralskoe otdelenie RAN, 1995, 238 p. 6. Shjojden O., Leman A. Razrabotki v oblasti jelektromagnitnogo peremeshivanija (JeMP) rasplava v pechah dlja plavki aljuminija [The Engineering in Field of Electromagnetic Steering (EMS) of Melt in Aluminum Casting Furnaces]. Sbornik nauchnykh statej «Cvetnye metally Sibiri», Krasnojarsk: Verso, 2009, pp. 648-656. 7. Svojstva jelementov [The Elements Properties ]: spravochnik. Ed. M.E. Drits. Moscow: Metallurgija, 1997, 432 p. 8. Landau L.D., Livshic I.M. Jelektrodinamika sploshnyh sred [Electrodynamics of Continous Media]. Moscow: Nauka, 1982, 620 p. 9. Lyubimov D.V. [et al.]. Stability of convection in a horizontal channel subjected to a longitudinal temperature gradient. Part 2. Effect of a magnetic field. J. Fluid Mech., 2009, vol. 635, pp. 297-319. 10. Kutateladze S.S. Teploperedacha i gidrodinamicheskoe soprotivlenie [The Thermotransfer and Hydrodynamic Resistance]. Moscow: Jenergoatomizdat, 1990, 367 p. MODEL FOR THE SPALLING FORMATION N.V. Savelieva, Bayandin Yu.V., Naimark O.B. Received: 06.08.2013 Published: 06.08.2013  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  In the earlier works of authors there was proposed the structural-phenomenological model of the materials behavior under shock-wave loading, based on the statistical-thermodynamic description of the medium with the typical mesoscopic defects (microcracks and microshears). The independent structural variables: the defect density tensor associated with the strain due to the defects and the structural scaling parameter that depends on two structural scales, ratio of the characteristic defect size and the distance between them are introduced in the model. The thermodynamic state of the system is described using the thermodynamic potential (Helmholtz free energy, which depends on the introduced structural variables). In the present study there was modified the earlier proposed model of a plate plane collision on the basis of the equations describing the evolution of the bulk and shear defects with the failure criterion and up to a volume fraction of defects in a given critical value. Formulated boundary problem of planar shock wave loading was solved numerically in the application package MATLAB using the finite difference method and the multi-step time integration with the automatic step selection. Verification of the model was carried out on the experimentally obtained free-surface velocity profiles of vanadium sample at pressures of 6 GPa. Comparison of numerical results with the experimental data shows a good agreement. Model identification of the vanadium spall strength made it possible to establish the dependence between the spall strength growth and the external influence. Keywords: shock-wave loading, spall failure, defects Authors:  Savelieva Natalia Vladimirovna (Perm, Russian Federation) – postgraduate student, Department of Mathematical Modeling of Systems and Processes, of Perm National Research Polytechnic University (29, Komsomolsky av., 614990, Perm, Russian Federation), research engineer ICMM UB RAS (1, Akademic Korolev st., 614013, Perm, e-mail: saveleva@icmm.ru). Bayandin Yuriy Vitalievich (Perm, Russian Federation) – Ph.D. in Physical and Mathematical Sciences, scientist ICMM UB RAS (1, Akademic Korolev st., 614013, Russian Federation, Perm, e-mail: buv@icmm.ru). Naimark Oleg Borisovich (Perm, Russian Federation) – Doctor of Physical and Mathematical Sciences, Professor, laboratory’s head of ICMM UB RAS (1, Akademic Korolev st., 614013, Perm, Russian Federation, e-mail: naimark@icmm.ru). References:  1. Kanel G.I., Razorenov S.V., Utkin L.V., Fortov V.Å. Udarno-volnovye yavleniya v kondensirovannykh sredakh [Shock-wave phenomena in condensed matter]. Moscow: Yanus-K, 1996. 408 p. 2. Garkuschin G.V., Kanel G.I., Razorenov S.V. Soprotivlenie deformirovaniyu i razrusheniyu alyuminiya AD1 v usloviyakh udarno-volnovogo nagruzheniya pri temperaturax 20 i 600°C [Resistance to deformation and fracture of aluminum AD1 under shock-wave loading at 20 and 600°C]. Fizika tverdogo tela, 2010, iss. 11, vol. 52, pp. 2216-2222. 3. Mescheryakov Yu.I., Divakov À.Ê., Gigacheva N.I., Makarevich I.P., Muschnikova S.Yu., Kalinin G.Yu. O mexanizmakh mikro-makro e'nergoobmena pri udarnom nagruzhenii tverdykh tel [On the mechanisms of micro-macro of energy under impact loading of solids]. Pis'ma v zhurnal tekhnicheskoj fiziki, 2010, iss. 11, vol. 36, pp. 54-60. 4. Razorenov S.V., Savinych À.S., Zaretskiy Å.B., Kanel G.I., Kolobov Yu.R. Vliyanie predvaritel'nogo deformacionnogo uprochneniya na napryazhenie techeniya pri udarnom szhatii titana i titanovogo splava [The influence of strain hardening prior to the flow stress by shock compression of titanium and titanium alloy]. Fizika tverdogo tela, 2005, iss. 4, vol. 47, pp. 639-645. 5. Bo Ren, Shaofan Li, Jing Qian, Xiaowei Zeng. Meshfree simulation of spall fracture. Computer method in applied mechanics and engineering, 2011, vol. 200, pp. 797-811. 6. Danian Chen, S.T.S. Al-Hassani, M.Sarumi, Xiaogang Jin. Crack straining-based spall model. International Journal of Impact Engineering, 1997, vol. 19, no.2, pp. 107-116. 
 7. Chen Danian, Yu Yuying, Yin Zhihua, Wang Huanran, Liu Guoqing, Xie Shugang. A modified Cochran-Banner spall model. International Journal of Impact Engineering, 2005, vol. 31, pp. 1106-1118. 8. Naimark Î.B. Kollektivnye svojstva ansamblej defektov i nekotorye nelinejnye problemy plastichnosti i razrusheniya [Collective properties of ensembles of defects and some nonlinear problems of plasticity and fracture] Fizicheskaya mezomekhanika, 2003, vol. 6, iss. 4, pp. 45-72. 9. Saveleva S.V., Bayandin Yu.V., Naimark O.B. Chislennoe modelirovanie deformirovaniya i razrusheniya metallov v usloviyax ploskogo udara [Numerical simulation of deformation and fracture of metals under plane shock wave loading]. Vychislitel'naya mekhanika sploshnykh sred, 2012, vol. 5, no. 3, pp. 300-307. 10. Bayandin Yu.V. Issledovanie avtomodel'nykh zakonomernostej formirovaniya plasticheskikh frontov v metallakh pri intensivnykh vozdejstviyakh [Investigation of self-similar regularities of formation of plastic fronts in metals in the intensity of the impact]: PhD thesis. Thesis of doctors degree dissertation, Perm, 2007, 119 p. 11. Bayandin Yu.V., Naimark Î.B., Uvarov S.V. Strukturno-skejlingovye perekhody pri dinamicheskikh i udarno-volnovykh nagruzkakh v tverdykh telakh [Structural-scaling transitions in dynamic and shock waves in solids loadings]. Fizika e'kstremal'nykh sostoyanij veshhestva – 2008. Chernogolovka, 2008, pp. 122-124. 12. Tonks D.L. The DataShop: à Database of Weak-Shock Constitutive Data. LosAlamos, New Mexico, 1991, 135 p. THERMOELASTICITY OF MICROPOLAR ORTHOTROPIC THIN SHELLS S.H. Sargsyan, A.J. Farmanyan. Received: 16.07.2013 Published: 16.07.2013  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  Three dimensional equations and boundary conditions of non-interacted thermoelasticity of micropolar orthotropic bodies with free fields of displacements and rotations are studied. Taking into consideration qualatative aspects of asymptotic solution of boundary-value problem of three-dimensional micropolar thermoelasticity in thin domain of the shell, adequate kynematic and static hypotheses are formulated for the construction of applied two-dimensional theory of thermoelasticity of micropolar orthotropic thin shells with free fields of diaplacements and rotations. Accepted kynemathic hypotheses are Timoshnenko's kynemathic hypotheses generalized for micropolar case. Beside of the hypothesis of normal stresses, accepted in theory of thin shells, some static assumptions are formulated which are conformable to asymptotic theory. For temperature function assumption of its linear distribution by shell thickness is accepted. On the basis of the accepted generalized hypotheses applied theory of thermoelasticity of micropolar orthotropic thin shells with free fields of displacements and rotations is constructed. Theories of thermoelasticity of micropolar orthotropic thin bars and plates with free fields of displacements and rotations are obtained as private cases. Keywords: micropolar elasticity, orthotropic material, thin shell, temperature tension general theory. Authors:  Sargsyan Samvel Hovhannes (Gyumri, Republic of Armenia) – Ph.D., Doctor of Sciences, Professor, Correspondent-member of NAS RA, Head for Higher Mathematics Chair, Gyumri State Pedagogical Institute (4, Paruyr Sevak st., 377526, Gyumri, Republic of Armenia, e-mail: s_sargsyan@yahoo.com). Farmanyan Anahit Jora (Gyumri, Republic of Armenia) – Ph.D., Vice-rector on Scientific and International Affairs, Gyumri State Pedagogical Institute (4, Paruyr Sevak st., 377526, Gyumri, Republic of Armenia, References:  1. Podstrugach Ya. S., Shvac R.N. Termouprugost tonkikh obolochek [Thermoelasticity of thin shells]. Kiev: Naukova dumka, 1978, 344 p. 2. Shvec R.N., Lun E.I. Nekotorie vaprosi teorii termouprugosti ortotropnix obolochek s uchotom inercii vrasheniya I poperechnovo sdviga [Some problems of theory of thermoelasticity of orthotropic shells with consideration of rotation inertia and transverse shear]. Applied mechanics, 1971, vol. 7, no. 10, pp. 121-125. 3. Nowacki V. Momentnie naprajeniya v termouprugosti [Moment stresses in thermoelasticity]. Applied mechanics, 1967, vol. 3, no. 1, pp. 3-17. 4. Nowacki W. Couple-stresses in the theory of thermoelasticity. Irreversible aspects of continuum mechanics and transfer of physical characteristics in moving fluids. IUTAM Symposia.Vienna, 1966. Editors H.Parkus, L.I.Sedov. Springer-Verlag. Wien; New York, 1966, pp. 259-278. 5. Nowacki W. Theory of asymmetric elasticity. Pergamon Press. Oxford. New York. Toronto. Sydney. Paris. Frankfurt, 1986, 383 p. 6. Sargsyan S.H. Matematicheskaya model mikropolyarnix uprugikh tonkikh plastin I osobennosti ikh prochnostnikh i joskostnikh xarakteristikh [Mathematical model of micropolar elastic thin plates and features of strength and rigidity]. Applied mechanics and technical physics, 2012, vol. 53, no. 2, pp.148-155. 7. Sargsyan S.H. Obshaya teoriya mikropolyarnix uprugix tonkix obolochek [General theory of micropolar elastic thin shells]. Physical mesomechanics, 2011, vol. 14, no. 1, pp. 55-66. 8. Sargsyan S.H. Mathematical models of micropolar elastic thin shells. Advanced structured materials. Shell-like structures. Non-classical theories and applications. Springer, 2011, vol. 15, pp. 91-100. 9. Sargsyan S.H. Termoelasticity of thin shells on the basis of asymmetrical theory of elasticity. Journal of Thermal Stresses, 2009, vol. 32, no. 6, pp. 791-818. 10. Sargsyan S.H. Termouprugost mikropolyarnikh tonkikh obolochek [Thermoelasticity of micropolar thin shells]. Sbornik nauchnykh trudov mezhdunarodnoy konferencii «Aktualnye problemy mehaniki sploshnoi sredy». 8-12 October 2012. Tcaxkadzor. Armenia. Yerevan, 2012, pp. 184-189. 11. Iesen D. Torsion of anisotropic micropolar elastic cylinders. ZAMM, 1974, vol. 54, no. 12, pp. 773-779. 12. Goldenveyzer A.L.. Teoriya uprugikh tonkikh obolochek [Theory of elastic thin shells]. Moscow: Gosudarstvennoje isdatelstvo tekhniko-teoreticheskoy literatury, 1953, 544 p. 13. Grigorenko Ya.M., Vasilenko A.T. Teoriya obolochek peremennoy jostkosti [Theory of shells of variable rigidity]. Kiev: Naukova dumka, 1981, 544 p. 14. Podstrigach Ya.S., Pelekh B.L. Termouprugie zadachi dlya obolochek I plastin s nizkoj sdvigavoy joskostu [Thermoelastic problems for shells and plates with low shear rigidity]. Teplovye napryazheniya v e’lementakh konstruktsiy, 1970, vol. 10, pp. 17-23. 
 | ||