| ISSN (Print): 2224-9893 ISSN (Online): 2226-1869 | ||
| Features of low-temperature deformation and fracture of combined plastic pipes Anoshkin A.N., Pospelov A.B., Iakushev R.M. Received: 04.03.2014 Published: 30.06.2014  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  Double-layer composite structures with one load-bearing high-strength layer made of metal, reinforced composite or rigid plastic and other one made of high deformability polymer or elastomer providing high tightness, chemical and corrosion protection are widespread. Due to differences in the mechanical properties and linear thermal expansion coefficient, high level of stresses can occur in the layers of such structures during temperature changes. Considering the long-term nature of loading, the defects probability, the availability of complex stress state in the layers and temperature dependence of the physical and mechanical properties of polymers, the issues of the providing of long-term mechanical strength and failure-free operability of such structures are highly relevant. Object of study in this paper is polymeric pipe combined of two layers made of thermoplastic (HDPE) and fiberglass. The purpose of research is to identify the causes of brittle fracture of thermoplastic layer at low temperatures. The experimental results of cold resistance of HDPE specimens and pipe samples at temperatures down to -50°Ñ are presented in this paper. A comparison with the previous results of calculations of technological residual stresses in these pipes was done. The test method for fragility of HDPE under complex stress state at low temperatures was proposed. As a result of pipe samples testing the process steps which can effect on cold resistance of plastic pipes were identified. Keywords: stress-strain state, fracture, HDPE, polyethylene, fiberglass, cold-resistance, test, bi-axial loading, combined pipe, long-term strength, technological stress. Authors:  Aleksandr N. Anoshkin (Perm, Russian Federation) – Doctor of Technical Sciences, Professor, Head of Science and Innovation, Perm National Research Polytechnic University (29, Komsomolsky av., 614990, Perm, Russian Federation, e-mail: anoshkin@pstu.ru). Aleksei B. Pospelov (Perm, Russian Federation) – Chief specialist Scientific and educational center of Aircraft Composite Technology, Perm National Research Polytechnic University (15, Akademik Korolev str., 614990, Perm, Russian Federation, e-mail: pospelov-kt@pstu.ru). Ravil' M. Iakushev (Perm, Russian Federation) – Ph.D. in Technical Sciences, Head of Laboratory, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences (3, Akademik Koroleva str., 614013, Perm, Russian Federation, e-mail: ravilyakushev@yandex.ru). References:  1. Riabets Iu.S, Bulmanis V.N., Davydova N.N. Razrabotka konstruktsii i tekhnologii khladostoikikh biplastmassovykh trub [Development of design and technology of cold-resistant biplastic pipes]. Ekspress-informatsiia Nauchno-issledovatel'skogo instituta tekhniko-ekonomicheskikh issledovanii. Seriia “Ekspluatatsiia, remont, zashchita ot korrozii oborudovaniia i sooruzhenii”, vol. 4. Moscow, 1988, pp. 1-12. 2. Larionov A.F. Materialy i tekhnologiia biplastmassovykh trub, uzlov styka i soedinitel'nykh elementov vnutripromyslovykh nefteprovodov [Materials and technology biplastic pipes joint nodes and connecting elements infield pipelines]. Thesis for the degree of candidate of technical sciences. Permskii gosudarstvennyi tekhnicheskii universitet, 2000, 156 p. 3. Sirotkin O.S. [et al.] Sozdanie truboprovodnykh sistem s primeneniem biplastmassovykh i polimernykh kompozitsionnykh materialov dlia izdelii grazhdanskoi morskoi tekhniki [Creation of pipeline systems using biplastic and polymer composite materials for civil marine engineering products]. Molodoi uchenyi, 2013, no. 5, pp. 101-104. 4. Pavlov N.N. Starenie plastmass v estestvennykh i iskusstvennykh usloviiakh [Aging of plastics in natural and artificial conditions]. Moscow: Khimiia, 1982. 224 p. 5. Bulmanis V.N. Ekspluatatsionnaia ustoichivost' polimernykh voloknistykh kompozitov i izdelii v usloviiakh kholodnogo klimata [Operational stability of polymer fiber composites and products in a cold climate]. Thesis of doctor’s degree dissertation. Iakutsk, Institut fiziko-tekhnicheskikh problem Severa Akademii Nauk SSSR,1989. 472 p. 6. Haddad G.N. Recent Innovations in PVC/FXP Composite Pipe. Po-lym. Plast. Techn. Eng., 1977, vol. 9-2, pp. 207-251 7. Usemann K.W. Kunststofferohre in der Trinkwasserinstallaion. Neue DELIWA-Z, 1987, bd. 38, no. 1, pp. 5-8. 8. White R.J., Phillips R.G. Environmental Stress-Rupture Mechanisms in Glass Fibre. Polyester Laminates, Proceedings of 5th Intern.Conf. on Compos. Mater. (ICCM-5). San Diego, California, 1985, pp. 1089-1099. 9. Cowley W.E., Deut N.P., Morris R.H. The Brittle Failure of UPVC Lined Glass Reinforced Plastics Pipe Lines. Chemistry and Industry, 1978, no. 6, pp. 365-369. 10. Guan Z.W., Boot J.C. Creep analysis of polymeric pipes under internal pressure. PolymEngSci., 2001, vol. 41, no. 6, pp. 955-961. 11. Babenko F.I., Fedorov Iu.Iu. Otsenka nesushchei sposobnosti armirovannykh polietilenovykh trub dliagazoprovodov v usloviiakh kholodnogo klimata [Evaluation of bearing capacity of reinforced polyethylene pipes for gas pipelines in cold climates]. Nauka i obrazovanie, 2009, no. 1, pp. 46-49. 
 12. Babenko F.I., Fedorov Iu.Iu. Deformatsionno-prochnostnye svoistva armirovannykh polietilenovykh trub rossiiskogo proizvodstva pri nizkikh temperaturakh [The stress-strain properties of reinforced polyethylene pipes of Russian production at low temperatures]. Elektronnyi nauchnyi zhurnal Neftegazovoe delo, 2010, no. 2, p. 69, available at: http://www.ogbus.ru/autors/Babenko1.pdf. 13. Struchkov A.S. Raschet vnutrennikh sdvigovykh usilii v biplastmassovoi trube v oblasti konstruktivnogo soedineniia pri otritsatel'nykh temperaturakh [Calculation of internal shear in biplastmassovoy pipe in constructive connections at low temperatures]. Trudy mezhdunarodnoi konferentsii “Fiziko-tekhnicheskie problemy Severa (chast' III)”. Iakutskii nauchnyi tsentr Rossiiskoi akademii nauk, 2000, pp. 32-43. 14. Struchkov A.S., Kolodeznikov I.N. Osevye temperaturnye napriazheniia v poli-etilenovom truboprovode iz PE80 pri vozdeistvii nizkikh temperature [Axial thermal stresses in a plastic pipe of PE80 at lower temperatures]. Trudy I Evraziiskogo simpoziuma “EURASTRENCOLD-2002” (chast' II). Iakutskii nauchnyi tsentr Rossiiskoi akademii nauk, 2002, pp. 175-181. 15. Struchkov A.S., Rodionov A.K., Lapii G.P. Khladostoikost' biplastmassovykh trub, prednaznachennykh dlya transportirovki nefti [Cold resistance biplastmassovyh pipes for transporting oil]. Materialy V mezhdunarodnoi konferentsii “Khimiia nefti i gaza”. Institut optiki atmosfery Sibirskogo otdeleniia Rossiiskoi akademii nauk, Tomsk, 2003, pp. 294-296. 16. Struchkov A.S., Fedorov SP., Kolodeznikov I.N. Temperaturnye napriazheniia v gazovykh polietilenovykh trubakh pri nizkikh klimaticheskikh temperaturakh [Thermal stresses in gas polyethylene pipes at low climatic temperatures]. Materialy V mezhdunarodnoi konferentsii “Khimiia nefti i gaza”. Institut optiki atmosfery Sibirskogo otdeleniia Rossiiskoi akademii nauk. Tomsk, 2003, pp. 296-299. 17. Pospelov A.B., Tarakanov A.I., Shaklein O.V. Opyt primeneniya stekloplastikovykh kombinirovannykh (biplastmassovykh) trub pri obustroistve neftianykh mestorozhdenii [Experience of using fiberglass composite (biplastic) pipes in development of oil fields]. Truboprovody i ekologiia, 2003, no. 3, pp. 24-25. 18. Babenko F.I., Bulmanis V.N., Rodionov A.K. Inzhenernaia klimatologiya polimernykh materialov [Engineering plastics climatology]. Trudy mezhdunarodnoi konferentsii “Fiziko-tekhnicheskie problemy Severa (chast' II)”. Iakutskii nauchnyi tsentr Rossiiskoi akademii nauk, 2000, pp. 62-81. 19. Babenko F.I., Ivanov V.I., Kovalenko N.A., Rodionov A.K. Temperaturnye ogranicheniia na usloviia transportirovki trub i montazha polietilenovykh truboprovodov [Temperature limits on the conditions of transport of pipes and installation of polyethylene pipes]. Trudy I Evraziiskogo simpoziuma “EURASTRENCOLD-2002” (chast' IV). Iakutskii nauchnyi tsentr Rossiiskoi akademii nauk, 2002, pp. 3-9. 20. Riabets Iu.S., Bulmanis V.N. Prochnost' i deformativnost' polimernykh trub pri ekspluatatsii v usloviiakh kholodnogo klimata [Strength and deformation of plastic pipes for operation in cold climates]. Izvestiia Sibirskogo otdeleniya Akademii nauk SSSR. Seriya tekhnicheskikh nauk, 1989, vol. 1, pp. 106-109. 21. Struchkov A.S. Khladostoikost' i osobennosti soprotivleniia razrusheniiu neftegazovykh plastmassovykh trub [Cold resistance and fracture resistance characteristics of oil and gas plastic pipe]. Thesis of doctor’s degree dissertation. Iakutsk, 2005, 398 p. 22. Anoshkin A.N., Pospelov A.B. Otsenka prochnosti kompozitnykh biplastmassovykh trub pri ikh ekspluatatsii v usloviiakh nizkikh temperatur. [Estimation of durability of composite biplastic pipes at their operation in conditions of low temperatures]. Neftianoe khoziaistvo, 2008, no. 9, pp. 56-58. 23. Bokshitskii M.N. Dlitel'naya prochnost' polimerov [Long-term strength of polymers]. Moscow: Khimiya, 1978. 308 p. 24. Gol'dman A.Ia. Prognozirovanie deformatsionno-prochnostnykh svoistv polimernykh i kompozitsionnykh materialov [Prediction of thermo-mechanical properties of polymeric and composite materials]. Leningrad: Khimiya, 1988. 272p. 25. Kliueva V.V. Ispytatel'naia tekhnika [Testing Equipment: Handbook. Part 2]. Moscow: Mahinostroenie, 1982. 560 p. 26. Chizhevskii K.G. Raschet kruglykh i kol'tsevykh plastin. Spravochnoe posobie [Calculation of circular and ring plates. Handbook]. Leningrad: Mashinostroenie, 1977. 184 p. 27. Anoshkin A.N., Tashkinov A.A., Larionov A.F., Pospelov A.B. Raschet tekhnologicheskikh napriazhenii v protsesse proizvodstva biplastmassovykh trub [Calculation of stresses in the technological process of production of biplastic pipes]. Moscow: Mashinostroenie, 1997, no. 3, pp. 24-32. 28. Anoshkin A.N., Larionov A.F., Pospelov A.B., Iakushev R.M. Issledovanie mekhanicheskikh svoistv i otsenka napriazhennogo sostoianiia polietilenovogo sloia biplastmassovykh trub pri nizkikh temperaturakh [Investigation of Mechanical Properties and evaluation of the stress state of the polyethylene layer biplastic pipes at low temperatures]. Vestnik Permskogo gosudarstvennogo tekhnicheskogo universiteta. Aerokosmicheskaia tekhnika, 2004, no. 16, pp. 5-11. Modelling of fluid filtration through plastically deformed porous medium in the process of extrusion Anferov S.D., Skul’skiy O.I. Received: 22.12.2013 Published: 30.06.2014  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  Mathematical models of fluid flow through non-deformable or elastically deformable porous media have become widely used. Especially they are common in water resources and oil drilling problems. The proposed hydrodynamic model of fluid filtration through plastically deforming porous skeleton, finds application in the investigation of the rapeseed extrusion extraction process. During this process the porous skeleton undergoes large inelastic deformation, which requires an alternative approach to the material behavior description. The material was presented by a two-component mixture of plastically deformable compressible porous medium saturated by oil. The mixture components were assumed to be nonreactive. According to the polymers extrusion processing theory, the problem was considered in reverse motion, the screw channel was unrolled on the plane, and viscous fluid model was used as governing equation for both mixture components. Further problem formulation was performed in the framework of the Euler motion description approach in a two-dimensional formulation for the plane of screw channel middlesection. Boundary-value problem formulated based on momentum balance and mass conservation equations for each mixture component. The boundary value problem independent variables are the mixture pressure, oil pressure, mixture velocity and oil velocity. The hypothesis of extraction speed proportionality to the oil pressure allows obtaining an approximate analytical solution for a constant filtration and compressibility coefficients. Keywords: mathematical model, plastically deformed porous medium, extrusion and extraction, filtration, oil, rape seeds. Authors:  Sergey D. Anferov (Perm, Russian Federation) – Research Engineer of Laboratory of Thermoplastics Mechanics, Institute of Continuous Media Mechanics UrB RAS (1, Akademik Korolev str., 614013, Perm, Russian Federation, e-mail: anferov@icmm.ru). Oleg I. Skulskiy (Perm, Russian Federation) – Doctor of Technical Sciences, Leading Researcher of Laboratory of Thermoplastics Mechanics, Institute of Continuous Media Mechanics UrB RAS (1, Akademik Korolev str., 614013, Perm, Russian Federation, e-mail: skul@icmm.ru). References:  1. Nikolaevskiy V.N., Basnieva K.S., Gorbunov A.T., Zotov G.A. Mekhanika nasyshchenykh poristykh sred [Saturated porous media mechanics]. Moscow: Nedra, 1970, 339 p. 2. Borenblat G.I., Entov V.M., Ryzhik V.I. Dvizhenie zhidkostei i gazov v prirodnykh plastakh [Movement of liquids and gases in natural formations]. Moscow: Nedra, 1984, 208 p. 3. El-Amin M.F., Salama A, Sun S. A Conditionally Stable Scheme for a Transient Flow of a Non-Newtonian Fluid Saturating a Porous Medium, 2012. Procedia Computer Science, vol. 9, pp. 651-660. doi: 10.1016/j.procs.2012.04.070 4. Asgari A., Bagheripour M.H., Mollazadeh M. A generalized analytical solution for a nonlinear infiltration equation using the exp-function method. Scientia Iranica, 2011. vol. 18, iss. 1, pp. 28-35. doi: 10.1016/j.scient.2011.03.004 5. Meretukov Z.A., Kosachev V.S., Koshevoi E.P. Reshenie zadachi nelineinoi naporoprovodnosti pri otzhime [Nonlinear pressure conductivity problem solution under extraction conditions]. Izvestiia vysshikh uchebnykh zavedenii. Pishchevaia tekhnologiia, 2011, vol. 323-324, no. 5-6, pp. 62-64. 6. Meretukov Z.A., Koshevoi E.P., Kosachev V.S. Reshenie differentsial'nogo uravneniia otzhima [Extraction differential equation solution]. Novye tekhnologii, 2011, no. 4, pp. 54-57. 7. Helmig R., Flemisch B., Wolff M., Ebigbo A., Class H. Model coupling for multiphase flow in porous media. Advances in Water Resources, 2013, vol. 51, pp. 52-66. doi: 10.1016/j.advwatres.2012.07.003 8. Nikolaevskiy V.N. Geomekhanika i fliuidodinamika [Geo-mechanics and fluid-dynamics]. Moscow: Nedra, 1996, 446 p. 
 9. Kosterin A.V., Berezinskii D.A. Nasyshchenno-nenasyshchennye sostoianiia deformiruemykh poristykh sred [Saturated-unsaturated state of deformable porous media]. Doklady Rossiiskoi akademii nauk, 1998, vol. 358, no. 3, pp. 343‑345. 10. Kondaurov V.I. A non-equilibrium model of a porous medium saturated with immiscible fluids. Journal of Applied Mathematics and Mechanics, 2009, vol. 73, iss. 1, pp. 88-102. doi: 10.1016/j.jappmathmech.2009.03.004 11. Petrov I.A., Slavnov E.V. Modelirovanie shnek–pressovogo otzhima kak sovokupnosti protsessov techeniia viazkoi neszhimaemoi smesi i fil'tratsii zhidkosti skvoz' poristuiu sredu [Simulation of screw–press oil extraction as a set of two processes: incompressible viscous mixture flow and fluid filtration in porous medium]. Computational continuum mechanics, 2013, vol. 6, no. 3, pp. 277-285. doi: 10.7242/1999-6691/2013.6.3.31 12. Aptukov V.N. Model' uprugo-viazkoplasticheskogo poristogo tela [The model of the elasto-viscoplastic porous body]. Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika, 2008, no. 4, pp. 77-81. 13. Rohan E., Shaw S., Wheeler M.F., Whiteman J.R. Mixed and Galerkin finite element approximation of flow in a linear viscoelastic porous medium. Computer Methods in Applied Mechanics and Engineering, 2013, vol. 260, pp. 78-91. doi: 10.1016/j.cma.2013.03.003 14. Barmin A.A., Mel'nik O.E., Skul'skii O.I. Model' statsionarnogo neizotermicheskogo techeniia magmy v kanale vulkana s uchetom skol'zheniia na granitse [Model of steady non-isothermal magma flow in volcano channel with slip on the boundary]. Computational continuum mechanic, 2012, vol. 5, no. 3, pp. 354-358. 15. Tadmor Z., Gogos K. Teoreticheskie osnovy pererabotki polimerov [Theoretical bases of polymer processing]. Moscow: Khimiia, 1984, 628 p. 16. Iakovlev D.A. Teoreticheskie issledovaniia protsessa otzhima soka shnekovym rabochim organom s dopolnitel'nym dreniruiushchim konturom [Theoretical investigation of Juice extrusive extraction process with an additional drain circuit]. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta, 2011, vol. 11, no. 7, pp. 997-1004. 17. Iakovlev D.A. Ratsionalizatsiia shnekovogo rabochego organa dlia otzhima soka iz zelenykh rastenii [Rationalization of the screw-working body for extraction of juice from green plants]. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta, 2010, vol. 10, no. 4, pp. 556-559. 18. Beloborodov V.V. Osnovnye protsessy proizvodstva rastitel'nykh masel [Basic processes of vegetable oil production]. Moscow: Pishchevaia promyshlennost', 1966, 240 p. 19. Rauvendal' K. Ekstruziia polimerov [Polymer extrusion]. Saint Petersburg: Professiia, 2006, 768 p. 20. Skul’skiy O.I. Chislennoe modelirovanie odnocherviachnykh ekstruderov [Numerical modeling of single-screw extruders]. International Polymer Science and Technology, 1998, vol. 25, no. 4, pp. 91-95. 21. Savenkova O.V., Skul'skiy O.I, Slavnov Ye.V. Thermal modes existing in screw extruder for thermoplastic materials. Fluid Mechenics-Soviet Research, 1987, vol. 16, no. 3, pp. 128-133. 22. Skulsky O.I. Numerical solution problems of highly concentrated rod-like macromolecules. Inter J. Polymeric Mater., 1994, no. 27, pp. 67-75. 23. Skulskiy O.I., Slavnov Ye.V. Diffuziia vlagi pri ekstruzionnoi pererabotke uvlazhnennogo zerna [Diffusion of moisture during extrusion processing of wet grain]. Computational continuum mechanics, 2008, vol. 1, no. 2, pp. 74-81. 24. Anferov S.D., Skulskiy O. I., Slavnov Ye.V. Matematicheskaia model' techeniia viazkoi poristoi sredy v prilozhenii k protsessu ekstruzionnogo otzhima maslichnykh kul'tur [Mathematical model of viscous porous medium flow in application to the oilseed extrusive extraction]. Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika, 2011, no. 3, pp. 55-64. 25. Anferov S.D., Skulskiy O. I., Slavnov E.V. Mathematical model of rape oil extrusion extraction. Journal of International Scientific Publications: Ecology & Safety, 2012, vol. 6, part 2, pp. 81-87. 26. Liu J., Mu L., Ye X., A Comparative Study of Locally Conservative Numerical Methods for Darcy's Flows. Procedia Computer Science, 2011, vol. 4. pp. 974-983. doi: 10.1016/j.procs.2011.04.103 27. Fučík R., Mikyška J. Discontinous Galerkin and Mixed-Hybrid Finite Element Approach to Two-Phase Flow in Heterogeneous Porous Media with Different Capillary Pressure. Procedia Computer Science, 2011, vol. 4, pp. 908-917. doi: 10.1016/j.procs.2011.04.096 28. Torner R.V. Teoreticheskie osnovy pererabotki polimerov [Theoretical principles of polymer processing]. Moscow: Khimiya, 1977, 464 p. 29. Sun S., Salama A., El-Amin M.F. An Equation-Type Approach for the Numerical Solution of the Partial Differential Equations Governing Transport Phenomena in Porous Media. Procedia Computer Science, 2012, vol. 9, pp. 661-669. doi: 10.1016/j.procs.2012.04.071 30. Choquet C. On a fully coupled nonlinear parabolic problem modelling miscible compressible displacement in porous media. Journal of Mathematical Analysis and Applications, 2008, vol. 339, iss. 2, pp. 1112-1133. doi: 10.1016/j.jmaa.2007.07.037 31. Slavnov E.V., Petrov I.A., Anferov S.D. Izmenenie viazkosti ekstrudata rapsa v protsesse otzhima masla (vliianie davleniia) [Rape cake viscosity variation during oilseeds extraction (pressure influence)]. Agrarnyi vestnik Urala, 2011, no.10, pp. 16‑18. 32. Slavnov E.V. Izmenenie pronitsaemosti maslichnykh kul'tur v protsesse otzhima masla na primere ekstrudata rapsa [Oilseeds permeability variation during rape oil extraction]. Doklady Rossiiskoi akademii sel'skokhoziaistvennykh nauk, 2013, no. 3, pp. 58-60. Optimization of parameters of layered plates during dynamic hard indenter penetration with friction and weakining effect of free surfaces Aptukov V.N., Khasanov A.R. Received: 24.03.2014 Published: 30.06.2014  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  The problem of optimal braking hard indenter of the inhomogeneous plate during the impact of the normal was first formulated in 1978 (Aptukov V.N.). Results published later, based on the Pontryagin maximum principle was derived criteria for the optimal structure of inhomogeneous plate a minimum weight for different projectile shapes. At the present time this problem in a similar or different formulations studied by various researchers, some examples are presented in this paper. Variant of the viscous crater formation is implemented for medium velocity of the impact of the little-deformed sharp indenter into plastic target with a medium hardness. For this condition known empiric dependence of the penetration resistance is widely using. The dependence is applied under certain limitations on velocity, thicknesses of the target, shape of the indenter, mechanical characteristics, this fact is confirmed by numerous experiments that is carried out in the Stepanov V.A. laboratory in the Ioffe LPTI (at present Ioffe Physical-Technical Institute of the Russian Academy of Sciences in the St. Petersburg). We used numerical algorithm and we attempt to refine the problem of optimization taking into account the effect of free surfaces of the plate and friction on resistance to penetration in this paper. Gradual increase of complexity of the model by including new factors helps to approach a more realistic description of the penetration process. This improvement allows to further study the problem in a new improved model. Method of acicular variations is used to solve the problem. We received final solution of the problem and we formulated criteria for the optimal structure of the target in some cases. We have not received of the analytical solution in other cases, but we presented the results of the numerical calculation. We showed that the inclusion of additional effect theoretically lead to a qualitatively new type of solution compared to previously known solutions in some cases. We derived the algorithm for determining the optimal structure of the slab to the problem of the impact of the cone with n materials. Keywords: optimal braking; inhomogeneous plate, friction, effect of free surfaces of the plates, method of acicular variations. Authors:  Valery N. Aptukov (Perm, Russian Federation) – Doctor of Technical Sciences, Professor, Head of Department of Fundamental Mathematics, Perm State National Research University (15, Bukireva st., 614990, Perm, Russian Federation, e-mail: aptukov@psu.ru) Artur R. Khasanov (Perm, Russian Federation) – Undergraduate Student of Department of Fundamental Mathematics, Perm State National Research University (15, Bukireva st., 614990, Perm, Russian Federation, References:  1. Vitman F.F., Stepanov V.A. Vlijanie skorosti deformirovanija na soprotivlenie deformirovaniju metallov pri skorostjah udara 100-1000 m/s [Effect of the Strain Rate on the Resistance of Metals to Deformation at Impact Velocities of 100-1000 m/s]. Nekotoryje Problemy Prochnosty Tvjordogo Tela. Moscow-Leningrad, 1959, pp. 207-221. 2. Ballisticheskije ustanovki i ikh primenenie v experimental’nykh issledovanijakh [Ballistic units and their use in experimental investigations]. Moscow: Nauka, 1974. 344 p. 3. Forrestal M.J. [et.al] An empirical equation for penetration depth of ogive-nose projectiles into concrete targets. International Journal of Impact Engineering, 1994, vol. 15 (4), pp. 395-405. 4. Forrestal M.J. Tzou D.Y. A spherical cavity-expansion penetration model for concrete targets. International Journal of Solids and Structures, 1997, vol. 34 (31-32), pp. 4127-4146. 5. Sagomonyan A.Ya. Probivanie pliti tonkim tverdim snarjadom [Penetration of a slab by a thin hard shell]. Vestnik Moskovskogo Universiteta. Mathematika i Mekhanika, 1975, no. 5, pp. 104-110. 6. Banichuk N.V., Ivaniva S.Y. Îïòèìèçàöèÿ ôîðìû æåñòêîãî òåëà, âíåäðÿþùåãîñÿ â ñïëîøíóþ ñðåäó [Shape optimization of rigid body penetrating into continuous medium]. Problemy prochnosti i plastichnosti, 2007, no. 69, pp. 47-58. 7. Banichuk N.V., Ivanova S.Y., Makeyev V.Y. O pronikanii v uprugoplasticheskuyu sredu zhestkih neosesimmetrichnih tel [On penetration of rigid non-axisymmetric bodies into elastic-plastic medium]. Problemy prochnosti i plastichnosti, 2008, no. 70, pp. 131-139. 8. Ben-Dor G., Dubinsky A., Elperin T. Shape optimization of high-speed peneprators: a review. Central European Journal of Engeineering, 2012, vol. 2 (4), pp. 473-482. 9. Honda K., Takamae G., Watanabe T. On the measurement of the resistance of shield plates to penetration by a rifle bullet. Tohoku Imperial University. 1st Series, 1930, vol. 19, pp. 703-725. 10. Marom I., Bodner S.R. Projectile perforation of multi-layered beams. International Journal of Mechanical Science, 1979, vol. 21(8), pp. 489-504. 11. Almohandes A.A., Abdel-Kader M.S., Eleiche A.M. Experimental investigation of the ballistic resistance of steel-fiberglass reinforced polyester laminated plates. Composites. Part B, 1996, vol. 27(5), pp. 447-458. 12. Weidemaier P., Senf H., Rothenhausler H., Filbey G.L., Gooch W.A. On the ballistic resistance of laminated steel targets: experiments and numerical calculations. 14th International Symposium on Ballistics, Quebec, Canada, 26-29 Sent. 1993, pp. 681-690. 13. Zukas J.A., Scheffler D.R. Impact effects in multilayered plates. International Journal of Solids and Structures, 2001, vol. 38(19), pp. 3321-3328. 14. Radchenko A.V., Radchenko P.A. Vlijanie oriantacii mekhanicheskikh svoistv kompozicionnykh materialov na dinamicheskoe rasrushenie monolitnykh i raznesennykh pregrad [Influence of orientation of mechanical properties of composite materials on dynamic fracture of monolithic and spaced targets]. Vichislitel’naya mekhanika sploshnih sred, 2011, vol. 4, no. 4, pp. 97-106. 15. Ben-Dor G., Dubinsky A., Elperin T. Effect of air-gaps on the ballistic resistance of ductile shields perforated by nonconical impactors. Journal of Mechanics of Materials and Structures, 2006, vol. 1, no. 2, pp. 279-299. 16. Ben-Dor G., Dubinsky A., Elperin T. The optimum arrangement of the plates in a multi-layered shield. International Journal of Solids and Structures, 2000, vol. 37, pp. 687-696. 17. Ben-Dor G., Dubinsky A., Elperin T. Effect of the order of plates on the ballistic resistance of ductile shields perforated by nonconical impactors. Journal of Mechanics of Materials and Structures, 2006, vol. 1, no. 7, pp. 1161-1177. 18. Ben-Dor G., Dubinsky A., Elperin T. Optimization of multi-layered metallic shield. Nuclear Engineering and Design, 2011. 19. Banichuk N.V., Ivanova S.Y., Makeyev V.Y., Turutko A.I. Nekotorie analiticheskie i chislennie ocenki parametrov optimal’noi strukturi zashitnoi pliti [Some analytical and computational estimates of parameters of optimal protective plate structure]. Problemy prochnosti i plastichnosti. Nizhegorodskiy gosudarstvennyi universitet, 2013, vol. 75 (3), pp. 206-214. 20. Banichuk N.V., Ivanova S.Y., Makeyev V.Y. Pronikanie zhestkih udarnikov v sloistie plastini i nekotorie zadachi global’noi mnogocelevoi strukturnoi optimizacii [Penetration of rigid striker in layered plates and some problems of global multipurpose structural optimization]. Problemy prochnosti i plastichnosti. Nizhegorodskiy gosudarstvennyi universitet, 2012, vol. 74, pp. 124-133. 21. Aptukov V.N. Soprotivlenie plastin dinamicheskomu vnedreniyu zhestkih udarnikov [Resistance of plates to dynamic penetration of the rigid strikers]. Absrtact of the thesis of the candidate technical sciences. Permskii politekhnicheskii institut, 1979. 16 p. 22. Aptukov V.N., Petruhin G.I., Pozdeev A.A. Optimal'noe tormozhenie tverdogo tela neodnorodnoi plastinoi pri udare po normali [Optimal braking of a rigid indenter by an inhomogeneous plate at normal impact]. Mekhanika tverdogo tela, 1985, vol. 20 (1), pp. 165-170. 23. Aptukov V.N. Optimal’naja structura neodnorodnoi plastini s neprerivnim raspredeleniem svoistv po tolchine [Optimal Structure of Inhomogeneous Plate with Continuous Distribution of Properties over the Thickness]. Mekhanika tverdogo tela, 1985, vol. 20 (3), pp. 149-152. 24. Aptukov V.N., Belousov V.L., Kanibolotskii M.A. Optimizacija strukturi sloistoi pliti pri pronikanii zhestkogo udarnika [Optimization of the structure of a layered slab with the penetration of a rigid striker]. Mekhanika kompozitnih materialov, 1986, no. 2, pp. 252-257. 25. Fedorenko R.P. Priblizhennoe reshenie zadach optimal'nogo upravlenija [Approximate Solution of Optimum Control Problems]. Moscow: Nauka, 1978. 488 p. 26. Aptukov V.N., Gladkovskii V.A., Lesnichenko Y.Y. Vzaimodejstvie udarnika s pregradoi konechnoi tolchini [Interaction striker with barrier of finite thickness]. Uprugoe i vjizkouprugoe povedenie materialov i konstruktcii. Sverdlovsk, 1981, pp. 68-73. Investigation of influence of stress state parameters of fault zones on peculiarities of their mechanical response under shear loading Astafurov S.V., Shilko E.V., Psakhie S.G. Received: 29.04.2014 Published: 30.06.2014  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  The paper is devoted to theoretical investigation of the influence of stress state parameters of healed fault zones fragments on the characteristics of their mechanical response under shear deformation in the conditions of nonequiaxial compression. Investigation was based on computer-aided simulation by the movable cellular automaton method. Dimensionless parameter, named the degree of nonequiaxiality of compression was used as the basic parameter of stress state of the medium. This parameter characterizes the ratio of lateral and normal stresses in the plane of deformation. The main objective of the paper was to analyze the dependences of the shear strength, ultimate shear strain and value of volume changing (dilatancy) on the degree of compression nonequiaxiality at the initial stage of activization of the fault zone fragment. It is shown that the degree of compression nonequiaxiality of the medium is an important factor affecting the conditions under which healed fault zone could be activated. Here, the value of the shear stresses acting in a fragment of the medium, as well as corresponding ultimate values of shear strain and dilatancy, at which the fault zone could be activated, are essentially dependent on the ratio and dynamics of change of the local values of some stress tensor invariants. Among them are pressure and stress intensity (von Mises stress). This is due to the fact that these parameters determine the ability to operate in the geological medium of one of a key deformation mechanism that is associated with the formation and evolution of damages at the interface of the structural elements in the block structure medium. In particular, the decrease in the pressure in the medium fragment at relatively low levels of stress intensity can lead to an increase in ultimate shear strain and dilatancy at the beginning stages of activization of the fault zone. At the same time a significant increase in the stress intensity while decreasing the pressure could lead to a decrease in the shear strength of the geomedium. Keywords: geological medium, fault zone, nonequiaxial compression, shear loading, stress state, stress tensor invariants, shear strength, ultimate strain, dilatancy, slip, computer-aided simulation. Authors:  Sergey V. Astafurov (Tomsk, Russian Federation) – Ph.D. in Physical and Mathematical Sciences, Scientific Associate of Laboratory of Computer-Aided Design of Materials, Institute of Strength Physics and Materials Science SB, RAS (2/4, Akademicheskii av., 634055, Tomsk, Russian Federation, e-mail: svastafurov@gmail.com), Scientific Associate of Laboratory of Multiscale Dynamical Analysis of Materials and Constructions, National Research Tomsk State University (36, Lenina av., 634050, Tomsk, Russian Federation,). Evgeny V. Shilko (Tomsk, Russian Federation) – Doctor of Physical and Mathematical Sciences, Leading Researcher of Laboratory of Computer-Aided Design of Materials, Institute of Strength Physics and Materials Science SB, RAS (2/4, Akademicheskii av., 634055, Tomsk, Russian Federation, e-mail: shilko@ispms.tsc.ru), Professor of Physics of Metals Department of National Research Tomsk State University (36, Lenina av., 634050, Tomsk, Russian Federation,). Sergey G. Psakhie (Tomsk, Russian Federation) – Corresponding Member of RAS, Doctor of Physical and Mathematical Sciences, Professor, Director of Institute of Strength Physics and Materials Science SB, RAS (2/4, Akademicheskii av., 634055, Tomsk, Russian Federation, e-mail: shilko@ispms.tsc.ru). References:  1. Kocharyan G.G., Pavlov D.V. Narushenie i zalechivanie zon lokalizatsii deformatsii v massive gornykh porod [Violation and healing of strain localization zones in the rock massifs]. Fizicheskaya mezomekhanika, 2007. vol. 10, no. 1, pp. 5-18. 2. Kocharyan G.G., Spivak A.A. Dinamika deformirovaniia blochnykh massivov gornykh porod [Dynamics of deformation of block-structured rock massifs]. Moscow: Akademkniga, 2003. 423 p. 3. Goldin S.V. Makro- i mezostruktury ochagovoi oblasti zemletriaseniia [Macro- and mesostructure earthquake focus]. Fizicheskaia mezomekhanika, 2005, vol. 8, no. 1, pp. 5–14. 4. Adushkin V.V., Tsvetkov V.M. Napriazhennoe sostoianie i ego sviaz' so strukturoi gornogo massiva [Stress state and its connection with the structure of rock massif]. Fizicheskie protsessy v geosferakh pri sil'nykh vozmushcheniiakh; Rossiyskaya akademiya nauk. Moscow, 1996. P. 111–116. 5. Nikolaevskiy V.N. Fractured structure of the crust as its genetic feature. Russ. Geol. Geophys., 2006, vol. 47(5), pp. 646-656. 6. Astafurov S.V., Shilko E.V., Psakhie S.G. Influence of constrained conditions on the character of deformation and fracture of block media under shear loads, 2010, Phys. Mesomech., vol. 13(3-4), pp. 164-172. doi: 10.1016/j.physme.2010.07.008 7. Astafurov S.V., Shilko E.V., Andreev A.V., Psakhie S.G. Effect of compression nonequiaxiality on shear-induced dilatation in a block-structured medium, 2012, Phys. Mesomech., vol. 15(1-2), pp. 80-87. doi: 10.1134/S1029959912010080. 8. Rebetsky Yu.L. Napriazhennoe sostoianie sloia pri prodol'nom gorizontal'nom sdvige blokov ego fundamenta [Stress state of layer at longitudinal horizontal shear of blocks of its foundation]. Polia napriazhenii i deformatsii v zemnoi kore. Moscow: Nauka, 1987. P. 41-57. 9. Revuzhenko A.F. Mekhanika uprugo-plasticheskikh sred i nestandartnyi analiz [Mechanics of elastic-plastic media and non-standard analysis]. Novosibirskiy gosudarstvennyi universitet, 2000. 428 p. 10. Kosykh V.P. Shear deformation peculiarities for granular materials under constrained conditions, 2006, J. Min. Sci., vol. 42(6), pp. 578-582. doi: 10.1007/s10913-006-0102-z. 
 11. Bishop A.W. Shear Strength Parameters for Undisturbed and Remoulded Soil Specimens, in Proc. Roscoe Memorial Symp. Cambridge, 1971. 12. Makarov P.V., Smolin I.Yu., Stefanov Yu.P. [et al.] Nelineinaia mekhanika geomaterialov i geosred [Nonlinear mechanics of geomaterials and geomedia]. Novosibirsk: Geo, 2007. 235 p. 13. Makarov P.V., Eremin M.O. Fracture model of brittle and quasibrittle materials and geomedia, 2013, Phys. Mesomech., vol. 16(3), pp. 207-226. doi: 10.1134/S1029959913030041 14. Stefanov Yu.P., Bakeev R.A., Smolin I.Yu. O zakonomernostiakh lokalizatsii deformatsii v gorizontal'nykh sloiakh sredy pri razryvnom sdvigovom smeshchenii osnovaniia [On the regularities of strain localization in horizontal layers of the medium at breaking shear displacement of foundation]. Fizicheskaia mezomekhanika, 2009, vol. 12, no. 1, pp. 83-88. 15. Stefanov Yu.P., Bakeev R.A., Repetsky Yu.L., Kontorovich V.A. Struktura i stadii formirovaniia razlomnoi zony v sloe geosredy pri razryvnom gorizontal'nom sdvige osnovaniia [Structure and formation stage of the fault zone in the layer of geomedium at breaking the horizontal shift of foundation]. Fizicheskaia mezomekhanika, 2013, vol. 16, no. 5, pp. 41-52. 16. Psakhie S., Shilko E., Smolin A., Astafurov S. Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials, 2013. Fracture and Structural Integrity, no. 24, pp. 26-59. doi:10.3221/IGF-ESIS.24.04 17. Psakhie S.G., Shilko E.V., Smolin A.Yu. [et al.] Approach to simulation of deformation and fracture of hierarchically organized heterogeneous media, including contrast media, Phys. Mesomech., 2011, vol. 14(5-6), pp. 224-248. doi: 10.1016/j.physme.2011.12.003. 18. Rabotnov Yu.N. Mekhanika deformiruemogo tverdogo tela [Mechanics of strained rigid body]. Moscow: Nauka, 1988. 712 p. 19. Aleksandrov A.V., Potapov V.D. Osnovy teorii uprugosti i plastichnosti [Fundamentals of the elasticity and plasticity theory]. Moscow: Vysshaia shkola, 2002. 400 p. 20. Ben-Zion Y., Sammis C.G. Characterization of fault zones. Pure and Appl. Geophys., 2003, vol. 160(3-4), pp. 677-715. doi: 10.1007/PL00012554 21. Sherman S.I. Tektonofizicheskii analiz seismicheskogo protsessa v zonakh aktivnykh razlomov litosfery i problema srednesrochnogo prognoza zemletriasenii [Tectonophysical analysis of seismic process in active fault zones of the lithosphere and the problem of mid-term earthquake prediction]. Geofizicheskii zhurnal, 2005, vol. 27, no. 1, pp. 20-38. 22. Wibberley C.A.J., Yielding G., Toro G. Recent advances in the understanding of fault zone internal structure: a review. The internal structure of fault zones: implications for mechanical and fluid-flow properties. Eds C.A.J. Wibberley, W. Kurz, J. Imber, R.E. Holdsworth, C. Collettini. London, Geological Society, Special Publications, 2008, pp. 5-33. doi:10.1144/SP299.2 23. Bell F.G. Engineering properties of soils and rocks. 4th ed. Wiley-Blackwell, 2000. 482 p. 24. Aadnoy B., Looyeh R. Petroleum rock mechanics: drilling operations and well design. Oxford: Gulf Professional Publishing, 2011. 376 p. 25. Kahraman S., Alber M. Triaxial strength of a fault breccia of weak rocks in a strong matrix, Bull. Eng. Geol. Environ., 2008, vol. 67(3), pp. 435-441. doi:10.1007/s10064-008-0152-3 26. Panin V.E., Grinyaev Yu.V., Psakhie S.G. Fizicheskaia mezomekhanika: dostizheniia za dva desiatiletiia razvitiia, problemy i perspektivy [Physical Mesomechanics: achievements over two decades of development, problems and prospects]. Fizicheskaia Mezomekhanika, 2004, vol. 7. Special issue 1, pp. I-25-I40. 27. Panin V.E., Grinyaev Yu.V., Egorushkin V.E. Foundations of physical mesomechanics of structurally inhomogeneous media, Mech. Solids, 2010, vol. 45(4), pp. 501-518. doi: 10.3103/S0025654410040023 28. Sobolev S.V., Petrunin A., Garfunkel Z., Babeyko A.Y. Thermo-mechanical model of the Dead Sea Transform, Earth and Planet. Sci. Let., 2005, vol. 238, pp. 78-95. doi:10.1016/j.epsl.2005.06.058 29. Gerya T.V., Yuen D.A. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems, Phys. Earth and Planet. Interiors, 2007, vol. 163, pp. 83-105. doi:10.1016/j.pepi.2007.04.015 30. Oparin V.N., Annin B.D., Chuguy Yu.V., etc. Metody i izmeritel'nye pribory dlia modelirovaniia i naturnykh issledovanii nelineinykh deformatsionno-volnovykh protsessov v blochnykh massivakh gornykh porod [Methods and measuring equipment for modeling and natural studies of nonlinear deformation-wave processes in a block-structure rock massifs]. Novosibirsk. Sibirskoe otdelenie RAN, 2007. 320 p. 31. Sadovsky M.A. O estestvennoi kuskovatosti gornykh porod [On the natural block-structure of rocks]. Doklady Akademii nauk SSSR, 1979, vol. 247, no. 4, pp. 829-831. 32. Mas D., Chemenda A.I. Dilatancy factor constrained from the experimental data for rocks and rock-type material, Int. J. Rock Mech. Min. Sci., 2014, vol. 67, pp. 136-144. doi: 10.1016/j.ijrmms.2013.12.014. 33. Rebetsky Yu.L. Dilatansiia, porovoe davlenie fliuida i novye dannye o prochnosti gornykh massivov v estestvennom zaleganii [Dilatancy, pore fluid pressure, and new data on the strength of rock massifs in natural stratification]. Fliuid i Geodinamika. Moscow: Nauka, 2006, pp. 120-146. 34. Onasch C.M., Farver J.R., Dunne W.M. The role of dilation and cementation in the formation of cataclasite in low temperature deformation of well cemented quartz-rich rocks, J. Struct. Geol., 2010, vol. 32(12), pp. 1912-1922. doi: 10.1016/j.jsg.2010.04.013. 35. Rebetsky Yu.L. Tektonicheskie napriazheniia i prochnost' prirodnykh massivov [Tectonic stress and strength of natural massifs]. Moscow: Akademkniga, 2007. 406 p. 36. Rebetsky Yu.L., Marinin A.V., Kuchai O.A. Stress state and deformation of the Earth's crust in the altai-sayan mountain region, Russ. Geol. Geophys., 2013, vol. 54(2), pp. 206-222. doi: 10.1016/j.rgg.2013.01.011 37. Schmitt D.R., Currie C.A., Zhang L. Crustal stress determination from boreholes and rock cores: Fundamental principles, Tectonophysics, 2012, vol. 580, pp. 1-26. doi: 10.1016/j.tecto.2012.08.029. 38. Zang A., Stephansson O. Stress Field of the Earth's Crust. London: Springer, 2010. 322 p. Mathematical modelling of stratified flow of polymer melts in an axisymmetric formulation Bachurina M.V., Kazakov A.V., Trufanova N.M. Received: 13.03.2014 Published: 30.06.2014  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  This study is about definition of rational geometry of the cable die, which effectively distributes polymer melt flows in channels; estimation of stability boundary flows of materials with different physical and rheological properties for the technological range of modes of processing; calculation and construction of the velocity fields, pressures, temperatures inside the channels of cable die; experimental determination of the dependence of the thickness of imposed layers of insulation and semiconducting materials from the linear velocity of pulling wires and expenses for each channel. In the modeling of the processes was used the cable die for joint overlay three layers of the polymer coating (layer semiconductive conductor screen, insulation, outer semiconductive screen) used in the production of modern electric cables of medium and high voltage. To analyze the processes of heat and mass in terms of stratified flows in channels of cable die real physical processes have been replaced by a mathematical model, which is a system of nonlinear differential equations, reflecting the basic conservation laws. The system was supplemented of boundary conditions and physical and rheological properties of the materials processed. In order to simplify the model offers a number of assumptions that allowed us, in particular, go to the axisymmetric formulation of the problem. To solve the formulated mathematical model the numerical method was applied, namely the finite element method, implemented through the Ansys set of software. Basing on the received results was made more effective geometry of the cable die, eliminating the effects of twist the polymer streams is developed; velocity, pressure and temperature distribution in the channels of the cable die were obtained; possible overheating of the material inside the channels is presented; the effect of certain parameters of overlay multilayer polymeric insulation process on layer thickness was assessed. Keywords: stratified flow, mathematical modeling, extrusion, rheology, polymers, abnormally viscous liquids, cable die, numerical solution, interface, axisymmetric, laminar. Authors:  Maria V. Bachurina (Perm, Russian Federation) – graduate student of Design and Technology in Electrical Engineering, Perm National Research Polytechnic University (29, Komsomolsky av., 614990, Perm, Russian Federation, e-mail: ktei@pstu.ru). Alexey V. Kazakov (Perm, Russian Federation) – Ph.D. in Technical Sciences, Assistant Professor of Design and Technology in Electrical Engineering, Perm National Research Polytechnic University (29, Komsomolsky av., 614990, Perm, Russian Federation, e-mail: ktei@pstu.ru). Natalia M. Trufanova (Perm, Russian Federation) – Doctor of Technical Sciences, Professor, Head of Design and Technology in Electrical Engineering Department, Perm National Research Polytechnic University (29, Komsomolsky av., 614990, Perm, Russian Federation, e-mail: ktei@pstu.ru). References:  1. Zhang M., Huang C., Sun S., Jia Y. The Finite Element Simulation of Polymer Coextrusion Based on the Slip Boundary. Polymer-Plastics Technology and Engineering, 2009, no. 48, pp. 754-759. 2. Martyn M.T., Gough T., Spares R., Coates P.D., Zatloukal M. Visualisation and Analysis of LDPE Melt Flows in Coextrusion Geometry. SPE ANTEC, 2002, no. 60, pp. 937-941. 3. Martyn M.T., Gough T., Spares R., Coates P.D., Zatloukal M. Experimental Observations of LDPE Melt Flow in Coextrusion Geometries. SPE ANTEC, 2004, vol. 62, pp. 205-209. 4. Zatloukal M., Kopytko W., Lengalova A., Vlcek J. Theoretical and experimental instabilities in coextrusion analysis of interfacial flows. J. Appl. Polym. Sci., 2005, no. 98 (1), pp. 153-162. 5. Martyn M.T., Coates P.D., Zatlouka M. Visualisation and Analysis of Polyethylene Coextrusion Melt Flow. AIP Conference Proceedings, 7/24/2009, 2009, vol. 1152, iss. 1, pp. 96-109. 6. Martyn M.T., Spares R., Coates P.D., Zatloukal M. Imaging and analysis of wave type interfacial instability in the coextrusion of low-density polyethylene melts. Journal of Non-Newtonian Fluid Mechanics, 2009, no. 156, pp. 150-164. 7. Mitsoulis E., Heng F.L. Numerical simulation of coextrusion from a circular die. J. Appl. Polym. Sci., 1987, no. 34 (4), pp. 1713-1725. 8. Rauvendal' K. Ekstruziia polimerov [Polymer extrusion]. St. Petersburg: Professiia, 2008. 786 p. 9. Khan A.A., Han C.D. Trans. Soc. Rheol., 1976, vol. 20, no. 4, pp. 595-621. 10 Yurygin P.P. [et al.] Matematicheskoe modelirovanie soekstruzii dlinnomernykh kol'tsevykh izdelii iz rezinovykh smesei [Mathematical modeling of long annular coextrusion products from rubber compounds]. Nauchno-tekhnicheskii vestnik Povolzh'ia, 2013, no. 3, pp. 35-37. 11. Yankov V.I., Trufanova N.M., Shcherbinin A.G. Nonisothermal flow of polymer solutions and melts in channels of constant cross section. Theoretical Foundations of Chemical Engineering, 2004, vol. 38, no. 2, pp. 179-188. 12. Zhao R., Macosko W. Slip at molten polymer–polymer interfaces. MRS Symp., 2000, p. 629. 13. Kazakov A.V., Savchenko V.G., Trufanova N.M. Raschet vliianiia geometrii kanalov tekhnologicheskogo instrumenta kabel'noi golovki na vozniknovenie vikhrevykh potokov pri nalozhenii izoliatsii [The calculation of the geometry of the channel process tool cable head on the occurrence of eddy currents when applied insulation]. Kabeli i provoda, 2010, no. 2 (321), pp. 11-13. 14. Tanner R.I. Some Experiences Using Finite Element Methods in Polymer Processing and Rheology. Proceedings of the Seventh International Congress on Rheology. Gothenburg, Sweden, 1975. P. 140. 15. Kazakov A.V., Savchenko V.G., Trufanova N.M. Modelirovanie protcessov teplomassoperenosa polimera v golovke ekstrudera s uchetom i bez ucheta zavisimosti viazkosti ot temperatury [Simulation of heat and mass transfer processes in polymer extrusion head with and without temperature dependence of viscosity]. Intellektual’nye sistemy v proizvodstve, 2010, no. 1, pp. 130-134. 16. Kazakov A.V., Trufanova N.M. Chislennye issledovaniya rezhimov stratifitsirovannogo techeniya i metodika upravleniya protsessom ekstruzionnogo nalozheniya mnogosloinoi izolyatsii [Numerical studies of stratified flow regimes and governance process extrusion multilayer insulation overlay]. Izvestiia Tomskogo politekhnicheskogo universiteta, 2012, vol. 320, no. 4, pp. 167-171. 17. Kazakov A.V., Trufanova N.M. A system for adaptive monitoring of the process of polymer insulation production. Russian Electrical Engineering, 2012, vol. 83, iss. 11, pp. 640-643. Mathematical modelling of deformation and damage accumulation under cyclic loading Bondar V.S., Danshin V.V., Makarov D.A. Received: 14.04.2014 Published: 30.06.2014  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  In order to construct a theory that adequately describes the effects of cyclic loadings, it is initially necessary to analyze the experimental plastic loop of a hysteresis stainless steel SS304; and three types of backstresses responsible for the displacement of the center of the surface of loading are specified on this steel. For each type of backstresses we have formulated evolutionary equations on basis of the equations of the theory of plastic flow in the combined hardening. We have allocated the material functions which close the theory,. We have also formulated the basic experiment and method of the material functions identification. Evaluating the work of different types of backstresses on the field of plastic deformations under cyclic loadings with various magnitude of the deformation up to the experimental values of the number of cycles before failure, it has been obtained that the work of backstresses second type is a universal characteristic of the material. This result made it possible to formulate the kinetic equation of damage accumulation, based on which we have considered the nonlinear processes of damage accumulation. To determine the material functions responsible for the destruction, we have formulated the basic experiment and identification method. The authors have given material functions for stainless steel SS304. We have investigated the processes of elastic-plastic deformation of stainless steel SS304 with non-stationary hard cyclic loading under block changes of amplitude and mean deformation of the cycle. Also the processes of soft non-stationary and non-symmetric cyclic loading (ratcheting) under block changes of amplitude and mean stress cycle have been examined. The results of calculations are compared with the experimental results. Computational research of nonlinear processes of damage accumulation and low cycle fatigue of stainless steel SS304 are conducted under symmetric hard cyclic loading both at the constant amplitude of strain and block change of the amplitude of strain. The calculation results show that the scope of deformation reduction leads to increase of the nonlinearity of damage accumulation, while the increase of the deformation scale results in the fact that the accumulation of damages tends to be linear. There is a significant deviation from the rule of linear summation of damages under a satisfactory conformity of calculation results with the experiments. The paper presents such new results as: - specifying three types of backstresses responsible for kinematic hardening analyzing the experimental loops of plastic hysteresis; - establishing the work universality of the second type backstresses under low-cycle and high-cycle fatigue on basis of experimental results analysis; - constructing the theory of plastic flow under combined hardening and kinetic equations of damage accumulation on the basis of the evolution equations for three types of backstresses; - identifying the material parameters and verifying the proposed theory. Keywords: plastic deformation, backstresses, damage accumulation, cyclic loading, low-cycle durability, nonlinear summation of damages. Authors:  Valentin S. Bondar (Moscow, Russian Federation) – Doctor of Physical and Mathematical Sciences, Professor, Honored Worker of Science of RF, Head of Department of Theoretical Mechanics, Moscow State University of Mechanical Engineering (MAMI) (38, B.Semenovskaya st., 107023, Moscow, Russian Federation, e-mail: bondar@mami.ru). Vladimir V. Danshin (Moscow, Russian Federation) – Ph. D. in Physical and Mathematical Sciences, Ass. Professor, Professor of Department of Theoretical Mechanics, Moscow State University of Mechanical Engineering (MAMI) (38, B.Semenovskaya st., 107023, Moscow, Russian Federation, e-mail: tm@mami.ru) Dmitry A. Makarov (Moscow, Russian Federation) – Ph. D. in Physical and Mathematical Sciences, Àss. Professor, Department of Informational Systems and Distance Technology, Moscow State University of Mechanical Engineering (MAMI) (38, B.Semenovskaya st., 107023, Moscow, Russian Federation, e-mail: makarovda@yandex.ru). References:  1. Bondar V.S. Neuprugost'. Varianty teorii [Inelasticity. Variants of the theory]. Moscow: Fizmatlit, 2004. 144 p. 2. Bondar V.S., Danshin V.V. Plastichnost'. Proporcional'nye i neproporcional'nye nagruzhenija [Plasticity. Proportional and disproportionate loading]. Moscow: Fizmatlit, 2008. 176 p. 3. Bondar V.S. Inelasticity. Variants of the theory. New York: Begell House, 2013. 194 p. 4. Volkov I.A., Korotkih Ju.G. Uravnenija sostojanija vjazkouprugoplasticheskih sred s povrezhdenijami [The equation of state viscous elastoplastic media with injuries]. Moscow: Fizmatlit, 2008. 424 p. 5. Bari S., Hassan T. An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation. International Journal of Plasticity, 2002, vol. 18, pp. 873-894. 6. Kang G., Liu Y., Ding J., Gao Q. Uniaxial ratcheting and fatigue failure of tempered 42CrMo steel: Damage evolution and damage-coupled viscoplastic constitutive model. Int. J. of Plasticity, 2009, vol. 25, pp. 838-860. 7. Kan Q., Kang G. Constitutive model for uniaxial transformation ratcheting of super-elastic NiTi shape memory alloy at room temperature. Int. J. of Plasticity, 2009. doi:10.1016/j.ijplas.2009.08.005. 8. Chaboche J.-L. A review of some plasticity and viscoplasticity constitutive theories. Int. J. of Plasticity, 2008, vol. 24, pp. 1642-1692. 9. Rahman S.M., Hassan T., Corona E. Evaluation of cyclic plasticity models in ratcheting simulation of straight pipes under cyclic bending and steady internal pressure. Int. J. of Plasticity, 2008, vol. 24, pp. 1756-1791. 10. Abdel-Karim M. Modified kinematic hardening rules for simulations of ratchetting. Int. J. of Plasticity, 2009, vol. 25, pp. 1560-1587. 11. Abdel-Karim M. An evaluation for several kinematic hardening rules on prediction of multiaxial stress-controlled ratchetting. Int. J. of Plasticity, 2010, vol. 26,pp. 711-730. 12. Dafalias Y.F., Feigenbaum H.P. Biaxial ratchetting with novel variations of kinematic hardening. Int. J. of Plasticity, 2011, vol. 27, pp. 479-491. 13. Chaboche J.-L., Kanouté P., Azzouz F. Cyclic inelastic constitutive equations and their impact on the fatigue life predictions. Int. J. of Plasticity, 2012, vol. 35, pp. 44-66. 14. Novozhilov V.V. O slozhnom nagruzhenii i perspektivah fenomenologicheskogo podhoda k issledovaniju mikronaprjazhenij [About complex loading and prospects of the phenomenological approach to the study of microstresses]. PMM, 1964, vol. 28 (3), pp. 393-400. 15. Chaboche J.L., Dang-Van K., Cordier G. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. Proceedings of the 5th International Conference on SMiRT. Div L, Berlin, 1979, paper no. L. 11/3. 16. Ishlinskij A.Ju. Obshhaja teorija plastichnosti s linejnym uprochneniem [General theory of plasticity with linear hardening]. Ukrainian mathematical journal, 1954, vol. 6 (3), pp. 314-324 17. Prager W. The theory of plasticity: A. Survey of Recent Achievements. Proc. Inst. Mech. Engrs. London, 1955, 169.41. 18. Amstrong P.J., Frederick C.O. A mathematical represention of the multiaxial bauscinger effect, CEGB Report No. RD/B/N/ 731, 1966. 19. Kadashevich Ju.I. O razlichnyh tenzorno-linejnyh sootnoshenijah v teorii plastichnosti [About the different tensor-linear correlations in the theory of plasticity]. Issledovanija po uprugosti i plastichnosti. Leningradskiy gosudarstvennyi universitet, 1967, vol. 6, pp. 39-45. 20. Ohno N., Wang J.-D. Kinematic hardening rules with critical state of dynamic recovery, part 1: formulations and basic features for ratcheting behavior. International Journal of Plasticity, 1993, vol. 9, pp. 375-390. 21. Bondar V.S., Burchakov S.V., Danshin V.V. Matematicheskoe modelirovanie processov uprugoplasticheskogo deformirovanija i razrushenija materialov pri ciklicheskih nagruzhenijah [Mathematical modeling of the elastic-plastic deformation and fracture of materials under cyclic loading]. Mezhvuzovskij sbornik «Problemy prochnosti i plastichnosti», Nizhegorodskiy gosudarstvennyi universitet, 2010, vol. 72, pp. 18-27. 22. Novozhilov V.V., Rybakina O.G. O perspektivah postroenija kriterija prochnosti pri slozhnom nagruzhenii [About the prospects of building the strength criterion under complex loading]. Prochnost' pri malom chisle nagruzhenija. Moscow: Nauka, 1969, pp. 71-80. 23. Romanov A.N. Jenergeticheskie kriterii razrushenija pri malociklovom nagruzhenii [Energy criteria destruction at low-cycle loading]. Problemy prochnosti, 1974, no. 1, pp. 3-10. 24. Bondar V.S., Gorohov V.B., Sannikov V.M. Issledovanie malociklovoj prochnosti obolochek vrashhenija pri slozhnom teplosilovom nagruzhenii [Study of low-cycle strength of shells of revolution with complicated thermal loading]. Vsesojuznyi mezhvuzovskiy sbornik «Prikladnye problemy prochnosti i plastichnosti. Mehanika deformiruemyh sistem». Gorkovskiy universitet, 1979, vol. 12, pp. 120-126. 25. Guozheng Kang, Qing Gao, Lixun Cai, Yafang Sun. Experimental study on uniaxial and nonproportionally multiaxial ratcheting of SS304 stainless steel at room and high temperatures. Nuclear Engineering and Design, 2002, vol. 216, pp. 13-26. 26. Guozheng Kang, Qing Gao, Xianjie Yang. Uniaxial cyclic ratcheting and plastic flow properties of SS304 stainless steel at room and elevated temperatures. Mechanics of Materials, 2002, vol. 34, pp. 145-159. 27. Bondar V.S. Nekotorye novye rezul'taty issledovanija plastichnosti materialov pri slozhnom nagruzhenii [Some new results plastic materials under complex loading]. Uprugost' i neuprugost'. Moscow: LENAND, 2006, pp. 94-109. 28. Gusenkov A.P. Prochnost' pri izotermicheskom i neizotermicheskom malociklovom nagruzhenii [Strength in isothermal and non-isothermal low-cycle loading]. Moscow: Nauka, 1979, 295 p. 29. Kapustin S.A., Gorohov V.A., Vilenskij O.Ju., Kajdalov V.B., Ruin A.A. Sootnoshenija modeli povrezhdennoj sredy dlja materialov, podvergajushhihsja termoradiacionnym vozdejstvijam [The model may be damaged environment for the materials under thermoradiation effects]. Problemy prochnosti i plastichnosti, 2012, iss. 74, pp. 5-15. 30. Volkov I.A., Kazakov D.A., Korotkih Ju.G. Jeksperimental'no-teoreticheskie opredelenija parametrov uravnenij mehaniki povrezhdennoj sredy pri ustalosti i polzuchesti [Theoretical and experimental determination of the parameters of the equations of mechanics of damaged environment with fatigue and creep]. PNRPU Mechanics Bulletin, 2012, no. 2, pp. 50-78. 31. Bondar V.S., Danshin V.V., Semenov P.V. Nelinejnye processy nakoplenija povrezhdenij pri nestacionarnyh ciklicheskih nagruzhenijah [Nonlinear processes of damage accumulation in unsteady cyclic loadings]. Problemy prochnosti i plastichnosti, 2012, iss. 75, part 2, pp. 96-104. 32. Bernard-Konnoli, B'ju Kuok, Biron. Ustalost' korrozionnostojkoj stali 304 pri ispytanijah v uslovijah mnogostupenchatoj kontroliruemoj deformacii [Fatigue stainless steel 304 during tests in the conditions of multi-controlled deformation]. Teoreticheskie osnovy inzhenernykh raschetov, 1983, no. 3, pp. 47-53. 33. Vasin R.A. Jeksperimental'no-teoreticheskoe issledovanie opredeljajushhih sootnoshenij v teorii uprugoplasticheskih processov [Experimental and theoretical study of relations in the theory of elasto-plastic processes]. Thesis of doctors degree dissertation. Moscovskiy gosudarstvennyi universitet, 1987. 387 p. Seasonal changes in eigenfrequencies of structures supported on pile foundations Korepanov V.V., Tsvetkov R.V. Received: 03.04.2014 Published: 30.06.2014  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  The paper is concerned with studying the dynamic characteristics of constructions and their response to vibrations initiated by weak natural environmental actions (microseismic, wind and other impacts). Such investigations require special equipment capable of recording the development of dynamic processes. Since the structures are constantly exposed to natural impacts of winds and seismic noises, it is reasonable to conduct continued observations or monitoring. The study focuses on the dynamic behavior of structures supported on pile foundations under natural outside impacts, among which the wind action and microseismic actions of different mechanisms, for example, cars are most common to urban environment. The investigation is based on the analysis of eigenfrequency, which is one of the most informative dynamic parameters for estimating the current state of constructions. Thus, a variation in the spectrum of eigenvalues is indicative of a change in the stiffness properties of the structure elements due to damage accumulation and also suggests the appearance of changes in the soil and contact pressure between the soil and foundation. In this paper, a continuous monitoring technique is used to analyze the frequency spectrum of the structure, to determine its eigenfrequencies and their seasonal changes and to perform numerical simulations allowing an adequate description of seasonal impacts on the structure frequency. The lowest eigenfreqiencies of the structure have been determined from the numerical experiment on natural frequencies of the structure-pile foundation-soil system, in which coupled springs are used to model the interactions between the pile foundation and soil. It has been found that seasonal changes in eigenfrequencies of structures supported on pile foundations are caused by frost penetration into the soil, which affects the stiffness properties of the soil-pile foundation-structure system. Keywords: structural health monitoring, eigenfrequency, velocimeter, wavelet spectrum, Fourier spectrum, numerical simulation, pile foundation. Authors:  Valeriy V. Korepanov (Perm, Russian Federation) – Ph. D. in Physical and Mathematical Sciences, Research associate, Department of Complex Problems of Mechanics of Deformable Bodies, Institute of Continuous Media Mechanics, Ural Branch of RAS (1, Akademik Korolev st., 614013, Perm, Russian Federation, e-mail: kvv@icmm.ru). Roman V. Tsvetkov (Perm, Russian Federation) – Ph. D. in Technical Sciences, Research associate, Department of Complex Problems of Mechanics of Deformable Bodies, Institute of Continuous Media Mechanics, Ural Branch of RAS (1, Akademik Korolev st., 614013, Perm, Russian Federation, e-mail: flower@icmm.ru). References:  1. Korchinsky I.L. Kolebaniia vysotnykh zdanii [Vibrations of high-rise buildings]. Tsentralnyi Institut Promyshlennykh Sooruzheniy. Moscow, 1953, vol. 11. 44 p. 2. Shapiro G.A., Simon Yu.A., Ashkinadze G.N. [et al.] Vibratsionnyi metod ispytaniia zhilykh i obshchestvennykh zdanii [Vibrational method for testing residential and public buildings]. Moscow: Nauka, 1972. 160 p. 3. Esenina N.A., Larionov V.I., Shakhramanian M.A., Nigmetov G.M. [et al.] Sposob dinamicheskikh ispytanii zdanii i sooruzhenii i ustroistvo dlia ego osushchestvleniia [A method for dynamic testing of buildings and constructions and a set-up for its implementation]. Patent RF ¹ 2141635. 1999. 4. Apparatura i metodika seismicheskikh nabliudenii v SSSR [Equipment and methods of seismic observations in USSR], ed. by of Z.I. Aranovich. Moscow: Nauka, 1975. P. 243. 5. Dalgleish W.A., Rainer J.H. Measurements of wind induced displacements and accelerations of a 57-storey building in Toronto, Canada. Proc. 3rd Colloquium Onindustrial Aerodynamics, Aachen, 14–16 June 1978, vol. 2, pp. 67-78. 6. Kapustian N.R., Dykhovichnaya N.A. Seismicheskii monitoring vetrovykh kolebanii vysotnykh zdanii [Seismic monitoring of wind-driven vibrations of high-rise buildings]. Monitoring nebezopasnykh geologicheskikh protsessov i ekologicheskogo sostoianiia sredy; UB of RAS. Ekaterinburg-Perm, 2005. P. 225. 7. Yudakhin F.N., Kapustian N.K., Antonovskaya G.N. Inzhenerno-seismicheskie issledovaniia geologicheskoi sredy i stroitel'nykh konstruktsii s ispol'zovaniem vetrovykh kolebanii zdanii [Technical-seismic investigations of geological environment and constructions based on the data of wind-driven structure vibrations]. Institut ekologicheskikh problem Severa Uralskogo otdeleniya RAN, Ekaterinburg, 2007. P. 156. 8. Tsvetkov R.V., Shardakov I.N. Avtomatizirovannaia sistema izmereniia neravnomernosti osadok sooruzheniia [Automated system for measurement of structure settlement non-uniformity]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitelnogo universiteta. Stroitelstvo i arkhitektura, 2008, vol. 10 (29), pp. 128-134. 9. Sharadakov I.N., Matveenko V.P., Tsvetkov R.V, Golotina L.A. Sistema monitoringa zdaniia, nakhodiashchegosia pod deistviem vozmushchenii ot ego fundamenta [System for monitoring the construction under the action of foundation oscillations]. Patent RF no. 2378457 2010. 10. Tsvetkov R.V., Shardakov I.N. Modelirovanie deformatsionnykh protsessov v sisteme «gruntovoe-osnovanie-fundament-zdanie» pri nalichii karstovykh iavlenii [Modeling of deformation processes in the soil-foundation construction system under karstic conditions]. Computational continuum mechanics, 2010, vol. 3, no. 3, pp. 102-116. 11. Salawu O.S. Detection of structural damage through changes in frequency: a review. Enginering Structures, 1997, vol. 19 (9), pp. 718-723. 12. Clinton J.F., Bradford C.S., Heaton T.H., Favela J. The observed wander of the natural frequencies in a structure. Bullåtin of Seismological Society of America, 2006, vol. 96(1), pp. 237-257. 13. Martins N., Caetano E., Diord S., Magalhaes F., Cunha A. Dynamic monitoring of a stadium suspension roof: Wind and temperature influence on modal parameters and structural response. Engineering Structures, 2014, vol. 59, pp. 80-94. 14. Yuen K.V., Kuok S.C. Ambient interference in long-term monitoring of buildings. Engineering Structures, 2010, vol. 32, pp. 2379-2386. 15. Tsvetkov R.V., Shardakov I.N. Otsenka vibratsionnykh protsessov v sisteme «gruntovoe osnovanie-fundament-zdanie» pri monitoringe konstruktsii zdaniia [Estimation of vibrational processes in the soil-foundation- construction system during monitoring of the construction state] // XVII Zimniaia shkola po mekhanike sploshnykh sred (XVII Winter School on continuum mechanics), Perm, February 28 – March 3, 2011. Perm-Ekaterinburg, 2011. P. 326. 16. Matveenko V.P., Fedorova V.A., Shardakov I.N. Theoretical Justification of the Possibility of Constructing a Fiber-Optic Earth Surface Deformation Monitoring System. Mechanics of Solids, 2013, vol. 48, no. 5, pp. 520-524. The numerical algorithm for solving nonlinear boundary problem of thin rod′s dynamic deformations Pustovoy N.V., Levin V.E., Krasnorutskiy D.A. Received: 04.04.2014 Published: 30.06.2014  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  At this paper the algorithm of the subprogram for solving a two-point boundary value problem for system of the nonlinear differential equations of the first order is presented. The new algorithm of the subprogram named KLPALG united in itself the main ideas of the subprograms BVPFD (DD14AD, PASVA3) and PASSIN realizing the technique of continuation of solution by parameter. Besides, the generalized results of works of authors in a problem of nonlinear dynamic deformation of a thin spatial curvilinear rod calculated by its differential model are presented. The unknown functions in the equations of motion are calculated at discrete mesh points. The methods of direct integration allow us to express time derivatives by the current coordinates and coordinates and velocities calculated in the previous time steps. The first derivative of coordinate is replaced by finite difference; boundary conditions are added. The obtained system of nonlinear algebraic equations is solved by Newton method with the step length control of the convergence conditions. The Jacobi matrix of this system is of the block-tridiagonal structure which lends itself to efficient LU-decomposition. This decoupling of the Jacobi matrix allows you to quickly solve the corresponding system of linear algebraic equations of the big sizes. If the condition of convergence of Newton's method gives too small step, then used the technique of continuation of the solution on the parameter a (pseudo arc-length). As soon as the system of nonlinear equations is solved, to refine the nodal values of the calculated functions we use the deferred correction method. This method subtracts from the received solution the mistakes made by the approximation derived by the method of finite differences in the initial phase of the numerical solution. Thus obtained numerical solution is of accuracy appointed by user. This method is implemented in KLPALG subroutine which algorithm is presented in this paper. Keywords: nonlinear boundary value problem, thin curvilinear rod, differential model, numerical solution, KLPALG, BVPFD, DD14AD, PASVA3, PASSIN. Authors:  Nikolay V. Pustovoy (Novosibirsk, Russian Federation) – Doctor of Technical Sciences, Professor, Head of the Department of Aircraft Strength, rector of Novosibirsk State Technical University (20, K. Marks av., 630073, Novosibirsk, Russian Federation, e-mail: rector@nstu.ru). Vladimir E. Levin (Novosibirsk, Russian Federation) – Doctor of Technical Sciences, Professor, Deputy head of the Department of Aircraft Strength of Novosibirsk State Technical University (20, K. Marks av., 630073, Novosibirsk, Russian Federation, e-mail: levin@craft.nstu.ru). Dmitry A. Krasnorutskiy (Novosibirsk, Russian Federation) – Ph. D. in Technical Sciences, Associate Professor of the Department of Aircraft Strength of Novosibirsk State Technical University (20, K. Marks av., 630073, Novosibirsk, Russian Federation, e-mail: krasnorutskiy@corp.nstu.ru). References:  1. Svetlitskii V.A. Mekhanika sterzhnei [Mechanics of rods]. Statika. Moscow: Vysshaia shkola, 1987. 320 p. 2. Zhilin P.A. Prikladnaia mekhanika. Teoriia tonkikh uprugikh sterzhnei: uchebnoe posobie [Applied mechanics. The theory of thin elastic rods]. Sankt-Peterburgskiy politekhnicheskiy universitet, 2007. 101 p. 3. Svetlitskii V.A. Stroitelnaya mekhanika mashin. Mekhanika sterzhnei [Construction mechanics of machines. Mechanics of rods]. Dinamika. Moscow: Fizmatlit, 2009. 383 p. 4. Kirchhoff G.R. Ueber das Gleichgewicht und die Bewegung einer elastischen Staben [About the equilibrium and motion of an elastic rods]. Crelle Journal fuer die reine und angewandte Mathematik, 1858, Bd. 56, pp. 285-313. 5. Kirkhgof G. Mekhanika [Mechanics]. Akademiia nauk SSSR. Moscow, 1962. 402 p. 6. Liav A. Matematicheskaia teoriia uprugosti [A treatise on the mathematical theory of elasticity]. Moscow; Leningrad: Otdelenie nauchno-tekhnicheskikh izdatelstv, 1935. 674 p. 7. Pustovoy N.V., Levin V.E., Krasnorutskiy D.A. Primenenie geometricheski nelineinykh uravnenii sterzhnia k raschetu statiki i dinamiki trosov. Chast 1 [Applying of geometrically nonlinear equations of a rod to calculate statics and dynamics of cables. Part 1]. NSTU Scientific Bulletin, 2012, no. 1 (46), pp. 83-92. 8. Pustovoy N.V., Levin V.E., Krasnorutskiy D.A. Metodika vychisleniia parametrov bol'shikh povorotov poperechnykh sechenii gibkogo sterzhnia pri raschetakh v ramkakh ego differentsial'noi modeli. Chast 1 [The method of calculation of parameters of big rotations of cross-sections of a flexible rod using its differential model. Part 1]. NSTU Scientific Bulletin, 2013, no. 2 (51), pp. 155-164. 9. Krasnorutskiy D.A., Levin V.E., Pustovoy N.V. Nelineinaia dinamika tonkikh uprugikh sterzhnei [Nonlinear dynamics of thin elastic rods]. Nelineinye kolebaniya mekhanicheskikh sistem: trudy IX Vserossiyskoy nauchnoi konferentsii (Nizhniy Novgorod, 24–29 sentyabrya 2012 g.). N. Novgorod: Nash dom, 2012, pp. 557-565. 10. Pustovoy N.V., Levin V.E., Krasnorutskiy D.A. Metodika vychisleniia parametrov bolshikh povorotov poperechnykh sechenii gibkogo sterzhnia pri raschetakh v ramkakh ego differentsial'noi modeli. Chast 2. [The method of calculation of parameters of big rotations of cross-sections of a flexible rod using its differential model. Part 2]. NSTU Scientific Bulletin, 2013, no. 3(52), pp. 146-159. 11. Sorokin F.D. Priamoe tenzornoe predstavlenie uravnenii bol'shikh peremeshchenii gibkogo sterzhnia s ispol'zovaniem vektora konechnogo povorota [Direct tensor representation of the equations large displacements of an elastic rod with using the vector of finite rotation]. MTT, 1994, no. 1, pp. 164-168. 12. Du H., Xiong W., Wang H., Wang Z., Yuan B. Nonlinear dynamic deformation simulation for helical rod like objects. Engineering Review, 2013, vol. 33, iss. 3, pp. 233-238. 13. Bathe K.J. Finite Element Procedures. Englewood Cliffs. NY: Prentice Hall, 1996. 1037 p. 14. Newmark N.M. A Method of Computation for Structural Dynamics. Journal of Engineering Mechanics Division, ASCE, July 1959, vol. 85, no. EM3, pp. 67-94. 15. Park K.S. An improved stiffly stable method for direct integration of nonlinear structural dynamic equations. Journal of Applied Mechanics, ASME, June 1975, vol. 42, iss. 2, pp. 464-470. 16. Shampine L.F., Muir P.H., Xu H. A User-Friendly Fortran BVP Solver. Journal of Numerical Analysis, Industrial and Applied Mathematics (JNAIAM), 2006, vol. 1, no. 2, pp. 201-217. 17. IMSL [electronic resource]: Fortran Numerical Library. User’s Guide. Math Library. Version. 7.0, available at: http://www.roguewave.com/documents.aspx?entryid=519&command=core_download. 18. Pereyra V. Pasva3: An adaptive finite difference fortran program for first order nonlinear, ordinary boundary problems. Lecture Notes in Computer Science, 1979, vol. 76, pp 67-88. 19. Rashidinia J. Finite difference methods for a class of two-point boundary value problems. IUST International Journal of Engineering Science, 2008, vol. 19, no. 5-2, pp. 67-72. 20. Vainberg A.M. Matematicheskoe modelirovanie protsessov perenosa. Reshenie nelineinykh kraevykh zadach [Computer-aided simulation of transfer processes. Solving of a nonlinear boundary-value problems]. Moskow-Jerusalaem, 2009. 209 p. 21. Dinkar Sharma, Ram Jiwari, Sheo Kumar. Numerical Solution of Two Point Boundary Value Problems Using Galerkin-Finite Element Method. International Journal of Nonlinear Science, 2012, vol. 13, no. 2, pp. 204-210. 22. Lentini M. Boundary Value Problems over Semi-Infinite Intervals: Ph.D. Thesis, Cal. Inst, of Technology, 1978, 123 p. 23. Keller H.B. Constructive Methods for Bifurcation and Nonlinear Eigenvalue Problems. Lecture Notes in Mathematics, 704. Springer-Verlag Berlin Heidelberg, New York, 1979, pp. 241-251. 24. Pereyra V., Keller H.B. Finite Difference Solution of Two-Point Boundary Value Problems: Preprint 69. Dept. Math., Univ. Southern California, Los Angeles, 1976, 130 p. 25. Pereyra V. High Order Finite Difference Solution of Differential Equations, Stanford Univ. Comp. Sci. Report STAN-CS-73-348, 1973, 86 p. 26. Lentini M., Pereyra V. An adaptive finite difference solver for nonlinear two point boundary problems with mild boundary layers. SIAM J. Numer. Anal, 1977, vol. 14, no. 1, pp. 91-111. 27. Krasnorutskiy D.A. Razvitie modeli tonkogo uprugogo sterzhnia dlia rascheta izgibno-krutil'nykh kolebanii aviatsionnykh lopastei [Development of a thin elastic rod model for the calculation of flexural-torsional vibration of aircraft blades]. Trudy 13 Vserosiiskoi nauchno-tekhnicheskoi konferentsii “Nauka. Promyshlennost. Oborona”. Novosibirskiy gosudarstvennyi tekhnicheskiy universitet, 2012, pp. 328-332. 28. Pustovoy N.V., Levin V.E., Krasnorutskiy D.A. Matematicheskoe modelirovanie kontaktnogo vzaimodeistviia vitkov gibkogo sterzhnia pri petleobrazovanii. [Mathematical modeling of self-contact at a looping process of flexible rod]. Materialy 21 mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Prikladnye zadachi matematiki” (Sevastopol', 16–20 Sent. 2013 g.). Sevastopolskiy natsionalnyi tekhnicheskiy universitet, 2013, pp. 47-51. 29. Argiris Dzh. Sovremennye dostizheniia v metodakh rascheta konstruktsii s primeneniem matrits [Recent developments in the methods of calculation of structures using matrixes]. Moscow: Izdatelstvo literatury po stroitelstvu, 1968. 242 p. 30. Argyris J.H. An excursion into large rotations. Comp. Meth. Appl. Mech. Eng, 1982, vol. 32, no. 1, pp. 85-155. 31. Björck A., Pereyra V. Solution of Vandermonde Systems of Equations. Mathematics of computation, 1970, vol. 24, no. 112, pp. 893-903 32. Pustovoy N.V., Levin V.E., Krasnorutskiy D.A. Primenenie geometricheski nelineinykh uravnenii sterzhnia k raschetu statiki i dinamiki trosov. Chast 2 [Applying of geometrically nonlinear equations of a rod to calculate statics and dynamics of cables. Part 2]. NSTU Scientific Bulletin, 2012, no. 2, pp. 106-116. 33. Ortega J.M. and Rheinboldt W.C. Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press, 1970. 572 p. 34. Deuflhard P. A Stepsize Control for Continuation Methods and its Special Application to Multiple Shooting Techniques. Mathematik, 1979, pp. 115-146 Mechanical properties of technical plasticine under static and dynamic loadings Sapozhnikov S.B., Ignatova A.V. Received: 24.04.2014 Published: 30.06.2014  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  This paper presents experimental studies of the mechanical properties of technical plasticine – which is a composite material consisting of a matrix (a mixture of wax and oils) and particulate filler (talc, clay, pigments) – under tension, compression, shear and penetration of a spherical indenter. At a constant strain rate (tension, compression) “stress – strain” diagrams have been obtained and characterized by a small elastic zone and yield strains up to 15–20 %. On the basis of experimental data power law for dependence of yield strength vs the strain rate in the range of 0.0004 ... 80 s–1 have been obtained. Thus, the deformation of technical plasticine can be described by viscoelastic Norton-type model with a serial connection of elastic and viscous elements. Under the tensile and shear strain of the technical plasticine over 3…5 % it begins to rapidly accumulate scattered microdamages, which does not allow using shear test as a test for determination of the yield stress like in the known methods related to metals. The yield stresses under tension and compression are close at the same strain rates. A linear diagram “force – penetration depth” down to a depth of 3 mm are obtained at penetration of a spherical indenter with a diameter of 43 mm in a plasticine block of 75 mm thick. Thus, the plasticine hardness is constant at a certain strain rate. The authors have managed to get dynamic hardness as the energy of a falling body, divided by the volume of cavity in the plasticine. Static and dynamic penetration is a promising method for the study of plastic properties of materials because of its simplicity. However it is necessary to establish the correlation coefficient relating hardness and yield stress. For the considered material such ratio is 0.24 at the frictionless condition. Keywords: technical plasticine, plasticity, viscosity, tension, compression, shear, strain rate, diagram of deformation, yield stress, hardness. Authors:  Sergey B. Sapozhnikov (Chelyabinsk, Russian Federation) – Doctor of Technical Sciences, Professor, Department of Applied Mechanics, Dynamics and Strength of Machines, South Ural State University (76, Lenin av., Chelyabinsk, Russian Federation, 454080, e-mail: ssb@susu.ac.ru). Anastasia V. Ignatova (Chelyabinsk, Russian Federation) – Ph.D. student, Department of Applied Mechanics, Dynamics and Strength of Machines, South Ural State University (76, Lenin av., Chelyabinsk, Russian Federation, 454080, e-mail: ign.nastya@gmail.com). References:  1. NIJ Standard–0101.04. Ballistic Resistance of Personal Body Armor. USA, National Institute of Justice Office of Science and Technology, 2000, 67 p. 2. NIJ Standard–0115.00. Stab Resistance of Personal Body Armor. USA, National Institute of Justice Office of Science and Technology, 2000, 46 p. 3. Park J.-J. Finite-element analysis of cylindrical-void closure by flat-die forging. ISIJ International, 2013, vol. 53, no. 8, pp. 1420-1426. 4. Segawa A., Kawanami T. Rolling-deformation characteristics of clad materials determined by model experiment and numerical simulation: experimental rolling tests using plasticine. Journal of Materials Processing Technology, 1995, vol. 47, pp. 375-384. 5. Zulauf J., Zulauf G. Rheology of plasticine used as rock analogue: the impact of temperature, composition and strain. Journal of Structural Geology, 2004, vol. 26, pp. 725-737. 6. Gratecap F., Girard M., Marya S., Racineux G. Exploring material flow in friction stir welding: Tool eccentricity and formation of banded structures. International Journal of Material Forming, 2012, vol. 5, pp. 99-107. 7. Pathak K.K., Soni A.K., Sharma M., Sahu M.M. An inverse technique for evaluation of flow parameters of modeling materials using extrusion. Experimental Techniques, 2013, vol. 37, no. 2, pp. 16-22. 8. Sofuoglu H., Rasty J. Flow behavior of Plasticine used in physical modeling of metal forming processes. Tribology International, 2000, vol. 33, pp. 523-529. 9. Bhattacharjee D., Kumar A., Biswas I. Energy absorption and dynamic deformation of backing material for ballistic evaluation of body armour. Defence Science Journal, 2013, vol. 63, no. 5, pp. 462-466. 10. Johnson W., Sengupta A.K., Ghosh S.K. Plasticine modelled high velocity oblique impact and ricochet of long rods. International Journal of Mechanical Sciences, 1982, vol. 24, no. 7, pp. 437-455. 11. Dolganina N.Yu. Otsenka ballisticheskogo predela i progiba mnogosloynykh tkanevykh plastin pri udare indentorom [Evaluation of ballistic limit and multilayer fabric plate deflection under indenter impact]. Bulletin of the SUSU. Mechanical engineering industry, 2010, vol. 15, no. 10 (186), pp. 17-23. 12. Bivin Yu.K. Strain and Fracture of Circular Plates under Static and Dynamical Loading by a Spherical Body. Mechanics of Solids, 2008, vol. 43, no. 5, pp. 798-807. 13. Bivin Yu.K. Mechanics of Dynamic Penetration into Soil Medium. Mechanics of solids, 2010, vol. 45, no. 6, pp. 892-920. 14. Karahan M., Kus A., Eren R. An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics. International Journal of Impact Engineering, 2008, vol. 35, no. 6, pp. 499-510. 15. Cork C.R., Foster P.W. The ballistic performance of narrow fabrics. International Journal of Impact Engineering, 2007, vol. 34, no. 3, pp. 495-508. 16. Lyapunova E.A., Sokovikov M.A., Chudinov V.V., Uvarov S.V., Naimark O.B. Issledovanie zakonomernostei lokalizatsii plasticheskoi deformatsii pri vysokoskorostnom probivanii obraztsov iz splava A6061 [Investigation of regularities of plastic deformation localization at dynamic loading of À6061 alloy – samples]. PNRPU Mechanics Bulletin, 2010, no. 2, pp. 79-86. 17. Zhang P., Li S.X., Zhang Z.F. General relationship between strength and hardness. Materials Science and Engineering: A, 2011, vol. 529, pp. 62-73. 18. Stoev P.I., Moschenok V.I. Opredelenie mekhanicheskikh svoistv metallov i splavov po tverdosti [Definition of mechanical properties of metals and alloys on hardness]. Bulletin of V. N. Karazin Kharkiv National University, 2003, vol. 601, no. 2(22), pp. 106-112. 19. Markovets M.P. Opredelenie mekhanicheskikh svoistv metallov po tverdosti [Determination of the Mechanical Properties of Metals on the Basis of Hardness]. Moscow: Mashinostroenie, 1979, 191 p. 20. Lurie A.I. Teoriia uprugosti [Theory of Elasticity]. Moscow: Nauka, 1970, 940 p. 21. Filonenko-Borodach M.M. Teoriia uprugosti [Theory of Elasticity]. Moscow: Gosudarstvennoe izdatel'stvo fiziko-matematicheskoi literatury, 1959, 364 p. 22. Boldenkov V.V., Drokin P.A. Method of determining dynamical hardness of materials. RU patent 2258211, Int. Cl.7 G 01 N 3/48. Proprietor(s) Minatom RF (RU), FGUP "RFJaTs-VNIIEF" (RU). Appl. No. 2004109856/28. Filed 31.03.2004 and issued 10.08.2004 Bull. 22. 23. Goryk A., Kovalchuk S., Shulyansky D.G. Opredelenie uprugoplasticheskogo koeffitsienta udarnogo vzaimodeistviia sfericheskogo indentora s deformiruemym poluprostranstvom [Determination of elastoplastic coefficient of shock interaction of spherical indenter with deformable halfspace]. Eastern-european journal of enterprise technologies, 2013, vol. 1, no. 7 (61), pp. 56-59. 24. Hazella P.J., Appleby-Thomas G.J., Herlaar K., Painter J. Inelastic deformation and failure of tungsten carbide under ballistic-loading conditions. Materials Science and Engineering: A, 2010, vol. 527, no. 29-30, pp. 7638-7645. 25. Sundararajan G., Tirupataiah Y. The localization of plastic flow under dynamic indentation conditions: I. Experimental results. Acta Materialia, 2006, vol. 54, pp. 565-575. On assymetric measures of stress-strain state and Hooke’s law Trusov P.V. Received: 20.04.2014 Published: 30.06.2014  PDF | 
	Abstract | 
	Authors | 
	References | Abstract:  Hooke’s law (in a modern tensor form considering different types of material anisotropy, finite or velocity formulation) is widely used in solid mechanics including physical and/or geometrical nonlinear problems. In the recent decades it has also been used in the majority of multilevel models oriented on describing inelastic deformation in mono- and polycrystalline materials. As a rule, in this case Hooke’s law is written using symmetrical measures of stress and strain state that are determined in terms of actual, intermediate (unloaded) or reference configuration. For a material that is elastic according to Green, the elastic potential presence naturally leads to the symmetry of elastic four-valent tensor Ï in the first and second pare of indices, Ïijkl = Ïklij. However tensor symmetry in the first and second pair of indices is explained only due to the accepted and established agreement in solid mechanics related to symmetry of stresses and strains tensors. It is worth mentioning that the initial Hooke’s law written for uniaxial loading obviously had nothing to do with the symmetry of properties. The specified agreement made it possible to reduce the number of experiments necessary to find tensor elastic properties; and it is especially important for materials studies with an a priory low or unknown symmetry. Stress tensor symmetry results from law of conservation of angular momentum without distributed volume and surface moments. The neglection of the distributed surface moments is based on a hypothesis that two parts of the body interact with distributed forces, which can be put in to the stresses vector on each surface element. This hypothesis again is based on an idea that there is no correlation of distributed surface loadings on any material area element. It is worth stating that already in 1887 V. Voigt suggested to abandon this idea and put the distributed effects of one body part on the other one on any surface element into stresses vector and distributed moments vector. The specified suggestion is in a full compliance with the method related to putting a random system of forces into the principal vector and principal moment (this method is used in theoretical (classical) mechanics). The problem of a simple shear shows that Hooke’s (symmetrical) law leads to the incompliance of the stress state (found with the law in its conventional formulation) and part of boundary conditions. We have considered Hooke’s law which is oriented on application of asymmetrical measures of stresses and strains and elastic properties tensor with symmetry only in a pair of indices. Asymmetrical Cauchy tensor is used as a stress measure, gradient of displacement velocity (displacement velocities with respect to a stiff moving coordinates which is in charge for a rigid displacement of volume element) – as strain velocity measure; all of them do not depend on the reference coordinate. A type of tensor of elastic properties in Hooke’s law oriented on asymmetric measures is proposed. Keywords: asymmetric tensors of stresses and strains, modified Hooke’s law. Authors:  Peter V. Trusov (Perm, Russian Federation) – Doctor of Physical and Mathematical Sciences, Professor, Head of Department of Mathematical Modelling of Systems and Processes, Perm National Research Polytechnic University (29, Komsomolsky av., 614990, Perm, Russian Federation, References:  1. Sedov L.I. Vvedenie v mechaniku sploshnyh sred [Introduction in continuum mechanics]. Moscow: Phizmatgiz, 1962. 284 p. 2. Truesdell C. Pervonachalnyi kurs rational’noi mechaniki sploshnyh sred [A first course in rational continuum mechanics]. Moscow: Mir, 1975. 592 p. 3. Pozdeev À.À., Trusov P.V., Nyashin Yu.I. Bolshie uprugo-plasticheskie deformatsii: teoriya, algoritmy, prilozheniya [Large elastic-plastic deformation: theory, algorithms and applications]. Moscow: Nauka, 1986. 232 p. 4. Trusov P.V., Ashichmin V.N., Shveykin A.I. Dvuhurovnevaya model uprugoplasticheskogo deformirovania policristallicheskih materialov [Two-level elasto-plastic deformation model of polycrystals]. Mekhanika kompozitsionnykh materialov i konstruktsiy, 2009, vol. 15, no. 3, pp. 327-344. 5. Kolarov D., Baltov A., Boncheva N. Mehanika plasticheskih sred [Mechanics of plastic solids]. Moscow: Mir, 1975. 302 p. 6. Chaboche J.L. A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plasticity, 2008, vol. 24, pp. 1642-1693. 7. Shutov A.V., Kreisig R. Finite strain viscoplasticity with nonlinear kinematic hardening: Phenomenological modeling and time integration. Comput. Methods Appl. Mech. Engrg., 2008, vol. 197, pp. 2015-2029. 8. Habraken A.M. Modelling the plastic anisotropy of metals. Arch. Comput. Meth. Engng., 2004, vol. 11, no. 1, pð. 3-96. 9. McDowell D.L. A perspective on trends in multiscale plasticity. Int. J. Plasticity, 2010. doi:10.1016/ j.ijplas.2010. 02.008. 30 ð. 10. Trusov P.V., Shveykin A.I. Mnogourovnevye fizicheskie modeli mono- i polikristallov. Statisticheskie modeli [Multilevel physical models of single- and polycrystals. Statistical models]. Fizicheskaya mezomekhanika, 2011, vol. 14, no. 4, pp. 17-28. 11. Trusov P.V., Shveykin A.I. Mnogourovnevye fizicheskie modeli mono- i polikristallov. Statisticheskie modeli [Multilevel physical models of single- and polycrystals. Direct models]. Fizicheskaya mezomekhanika, 2011, vol. 14, no. 5, pp. 5-30. 12. Trusov P.V., Nechaeva E.S., Shveykin A.I. Primenenie nesimmetrichnykh mer napryazhennogo i deformirovannogo sostoyaniya pri postroenii mnogourovnevykh konstitutivnyh modelei materialov [Non-symmetric stress-strain measures using when construct multilevel constitutive material models]. Fizicheskaya mezomekhanika, 2013, vol. 16, no. 2, pp. 15-31. 13. Lurie À.I. Nelineinaya teoriya uprugosti [Nonlinear theory of elasticity]. Moscow: Nauka, 1980. 512 p. 14. Prager W. Vvedenie v mechaniku sploshnyh sred [Introduction in continuum mechanics]. Moscow: Izdatelstvo inostrannoy literatury, 1963. 312 p. 15. Sedov L.I. Mekhanika sploshnykh sred. Tom 1 [Ñontinuum mechanics. Vol. 1]. Moscow: Nauka, 1972. 492 p. 16. Trusov P.V. Nekotorye voprosy nelineinoy mekhaniki deformiruemogo tverdogo tela [Some issues of nonlinear solids mechanics]. Vestnik Permskogo gosudarstvennogo tekhnicheskogo universiteta. Matematicheskoe modelirovanie sistem i protsessov, 2009, no. 17, pp. 85-95. 17. Voight W. Lehrbuch der Krystallphysik. Leipzig und Berlin: Teubner, 1928. 978 s. 18. Cosserat E., Cosserat F. Theorie des corps deformables. Paris: A.Hermann et fils, 1909. 226 p. 19. Mindlin R.D. Mikrostruktura v lineinoi uprugosti [Microstructure in linear elasticity]. Mekhanika. Sbornik perevodov, 1964, no. 4 (86), pp. 129-160. 20. Mindlin R.D., Tirsten G.F. Effekty momentnykh napryazheniy v lineinoi teorii uprugosti [Momentum stress effects in linear elasticity]. Mekhanika. Sbornik perevodov, 1964, no. 1 (86), pp. 80-114. 21. Eringen A.C. Microcontinuum field theories. I. Foundation and solids. Springer, 1998. 325 pp. 22. Novacky W. Teoriya uprugosti [Theory of elasticity]. Moscow: Mir, 1975. 872 p. 23. Rybin V.V. Bolshie plasticheskie deformazii i razrushenie metallov [Large plastic deformation and fracture of metals]. Moscow: Metallurgija, 1986. 224 p. 24. Lurie À.I. Teoriya uprugosti [Theory of elasticity]. Moscow: Nauka, 1970. 940 p. 
 | ||