 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |
Development of Zone Forecast Probability Models for Oil and Gas Potential in the Central Part of the Permian Uplift by Structural and Capacity CriteriaKoshkin K.A., Tatarinov I.A. Received: 14.07.2020 Accepted: 02.11.2020 Published: 11.01.2021 http://dx.doi.org/10.15593/2712-8008/2021.1.1
PDF |
Abstract |
Authors |
References |
Abstract: The task to which this article is devoted has not received due attention in recent years, since the preparation of structures for deep drilling is carried out using seismic exploration. At the same time, there is a huge array of data on structured drilling, unfortunately, it has not been fully used. Thus, the goal of the study is to use data on structured drilling to solve not only structural problems for marking surfaces, but also more complex ones related to zonal oil and gas potential of territories.
The forecast of oil and gas content for marking and oil and gas horizons was carried out in three zones of oil and gas geological zoning. Using the data on these territories, studies were carried out to build probabilistic models for the zonal forecast of oil and gas content. To substantiate the joint use of data on marking surfaces and data on the tops of oil-bearing horizons, materials pertaining to 447 deep wells were studied.
Probabilistic models of zonal forecast of oil and gas content of the central part of the Permian uplift were developed according to structural and capacity criteria. The complex use of data on the absolute marks of deep and structured wells made it possible to rank the territory of the central part of the Permian uplift by the degree of zonal oil and gas content.
The Severokamskoye (0.73), Krasnokamskoye (0.67), Baklanovskoye (0.67), Polaznenskoye (0.67), Rassvetnoye (0.64) and Mezhevskoye (0.63) fields were characterized by the maximum values of PCOM. For the Kozubaevskoye field, the PCOM was 0.57. The Gorskoye, Lobanovskoye, Talitskoye, Zorinskoye and Shemetinskoye fields were characterized by the minimum values of PCOM, varying in the range of 0.51–0.53. This scheme can be used when designing prospecting and exploration works in this area.
Keywords: oil and gas geological zoning, probabilistic and statistical criteria for oil and gas content, non-localized oil resources, Visean terrigenous oil and gas complex, structural and capacity criteria, correlation coefficient, probability, oil, prospecting and exploration work, structural wells, marking surfaces, zones demarcation, statistical analysis, seismic exploration, absolute mark..
Authors: Konstantin A. Koshkin
Uraloil LLC
koshkin@uraloil.com
4 Sibirskaya st., Perm, 614990, Russian Federation
Ilya A. Tatarinov
NAST-M LLC
i_tatainov@mail.ru
Office 1, 12a Makarenko st., Perm, 614107, Russian Federation
References: 1. Galkin V.I., Rastegaev A.V., Galkin S.V. Veroiatnostno-statisticheskaia otsenka neftegazonosnosti lokal'nykh struktur [Probabilistic-statistical assessment of oil and gas content of local structures]. Ekaterinburg: Ural'skoe otdelenie Rossiiskoi akademii nauk, 2001, 277 p.
2. Kozlova I.A., Galkin V.I., Vantseva I.V. K otsenke perspektiv neftegazonosnosti Solikamskoi depressii s pomoshch'iu geologo-geokhimicheskikh kharakteristik neftegazomaterinskikh porod [Evaluation of petroleum potential of Solikamsk depression based on geological and geochemical characteristics of oil and gas source rocks]. Neftepromyslovoe delo, 2010, no. 7, pp. 20-23.
3. Krivoshchekov S.N., Galkin V.I., Nosov M.A. Otsenka nelokalizovannykh resursov nefti territorii Permskogo kraia pri pomoshchi sistemy elementarnykh uchastkov [Evaluation of non-localized oil resources in Perm region by a system of elementary sections]. Neftianoe khoziaistvo, 2014, no. 6, pp. 9-11.
4. Krivoshchekov S.N., Kozlova I.A., Sannikov I.V. Otsenka perspektiv neftegazonosnosti zapadnoi chasti Solikamskoi depressii na osnove geokhimicheskikh i geodinamicheskikh dannykh [Estimate of the petroleum potential of the western Solikamsk depression based on geochemical and geodynamic data]. Neftianoe khoziaistvo, 2014, no. 6, pp. 12-15.
5. Galkin V.I., Kozlova I.A., Melkishev O.A., Shadrina M.A. Geokhimicheskie pokazateli ROV porod kak kriterii otsenki perspektiv neftegazonosnosti [Geochemical indicators of dispersed organic matter (DOM) of rocks as criteria of hydrocarbon potential evaluation]. Neftepromyslovoe delo, 2013, no. 9, pp. 28-31.
6. Kozlova I.A., Melkishev O.A. Prognoznaia otsenka raspredeleniia nelokalizovannykh resursov nefti v devonskom terrigennom komplekse na territorii Permskogo kraia [Predictive estimation of non-localized oil resources distribution in the Devonian terrigenous complex in Perm region]. Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii, 2017, no. 2, pp. 4-8.
7. Galkin V.I., Kozlova I.A. Razrabotka veroiatnostno-statisticheskikh regional'no-zonal'nykh modelei prognoza neftegazonosnosti po dannym geokhimicheskikh issledovanii verkhnedevonskikh karbonatnykh otlozhenii [Development of probabilistic-statistical regional-zoning models of oil and gas potential prediction based on the data of geochemical studies of the Upper Devonian carbonate deposits]. Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii, 2016, no. 6, pp. 40-45.
8. Galkin V.I., Kozlova I.A., Krivoshchekov S.N., Nosov M.A., Koltyrina N.S. Otsenka perspektiv neftegazonosnosti iuga Permskogo kraia po organo-geokhimicheskim dannym [Estimation of petroleum potential prospects in the south of Perm territory on the basis of organic-geochemical data]. Neftepromyslovoe delo, 2015, no. 7, pp. 32-35.
9. Galkin V.I., Kozlova I.A., Krivoshchekov S.N., Nosov M.A. Reshenie regional'nykh zadach prognozirovaniia neftenosnosti po dannym geologo-geokhimicheskogo analiza rasseiannogo organicheskogo veshchestva porod domanikovogo tipa [Solutions to regional problems of forecasting oil bearing according to geological and geochemical analysis of dispersed organic matter of Domanic type rocks]. Neftianoe khoziaistvo, 2015, no. 1, pp. 21-23.
10. Galkin V.I., Kozlova I.A., Krivoshchekov S.N., Melkishev O.A. K obosnovaniiu postroeniia modelei zonal'nogo prognoza neftegazonosnosti dlia nizhne-srednevizeiskogo kompleksa Permskogo kraia [On the justification of the construction of models for oil and gas potential area forecast Visean deposits of Perm region]. Neftianoe khoziaistvo, 2015, no. 8, pp. 32-35.
11. Galkin V.I., Zhukov Iu.A., Shishkin M.A. Primenenie veroiatnostnykh modelei dlia lokal'nogo prognoza neftegazonosnosti [Application of probabilistic models for local forecast of oil and gas content]. Ekaterinburg: Ural'skoe otdelenie Rossiiskoi akademii nauk, 1990, 108 p.
12. Galkin V.I., Shaikhutdinov A.N. O vozmozhnosti prognoza neftegazonosnosti iurskikh otlozhenii veroiatnostno-statisticheskimi metodami (na primere territorii deiatel'nosti TPP “Kogalymneftegaz”) [About possibility to forecast the oil-and-gas content of Jurassic sediments based on probable and statistical methods (case study of the territorial industrial enterprise "Kogalymneftegas")]. Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii. Moscow: VNIIOENG, 2009, no. 6, pp. 11-14.
13. Galkin V.I., Shaikhutdinov A.N. Postroenie statisticheskikh modelei dlia prognoza debitov nefti po verkhneiurskim otlozheniiam Kogalymskogo regiona [Development of statistical models for predicting the oil flow rates by example Jurassic deposits of Kogalym region territory]. Neftianoe khoziaistvo, 2010, no. 1, pp. 52-54.
14. Galkin V.I., Krivoshchekov S.N. Postroenie matritsy elementarnykh iacheek pri prognoze neftegazonosnosti veroiatnostno-statisticheskimi metodami na territorii Permskogo kraia [Construction of a matrix of elementary cells in predicting oil and gas content by probabilistic and statistical methods in the Perm Territory]. Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii. Moscow: VNIIOENG, 2008, no. 8, pp. 20-23.
15. Galkin V.I., Krivoshchekov S.N. Obosnovanie napravlenii poiskov mestorozhdenii nefti i gaza v Permskom krae [Justification of the directions of prospecting for oil and gas deposits in the Perm Territory]. Nauchnye issledovaniia i innovatsii. Perm', 2009, vol. 3, no. 4, pp. 3-7.
16. Galkin V.I., Rastegaev A.V., Kozlova I.A., Vantseva I.V., Krivoshchekov S.N., Voevodkin V.L. Prognoznaia otsenka neftegazonosnosti struktur na territorii Solikamskoi depressii [Probable estimation of oil content of structures in territory of Solikamsk depression]. Neftepromyslovoe delo. Moscow: VNIIOENG, 2010, no. 7, pp. 4-7.
17. Belokon' T.V., Galkin V.I., Kozlova I.A., Pashkova S.E. Dodevonskie otlozheniia Permskogo Prikam'ia kak odno iz perspektivnykh napravlenii geologo-razvedochnykh rabot [Pre-Devonian deposits of the Perm Kama region as one of the promising areas of geological exploration]. Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii. Moscow: VNIIOENG, 2005, no. 9, pp. 24-28.
18. Putilov I.S. Razrabotka tekhnologii kompleksnogo izucheniia geologicheskogo stroeniia i razmeshcheniia mestorozhdenii nefti i gaza [Development of technologies for a comprehensive study of the geological structure and location of oil and gas fields]. Perm': Permskii natsional'nyi issledovatel'skii politekhnicheskii universitet, 2014, 285 p.
19. Galkin V.I., Kozlova I.A., Krivoshchekov S.N., Piatunina E.V., Pestova S.N. O vozmozhnosti prognozirovaniia neftegazonosnosti famenskikh otlozhenii s pomoshch'iu postroeniia veroiatnostno-statisticheskikh modelei [On the possibility of predicting the oil and gas content of the Famennian deposits using the construction of probabilistic and statistical models]. Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii. Moscow: VNIIOENG, 2007, no. 10, pp. 22-27.
20. Galkin V.I., Solov'ev S.I. Raionirovanie territorii Permskogo kraia po stepeni perspektivnosti priobreteniia neftianykh uchastkov nedr [Classification of Perm krai areas according to prospectivity for oil fields acquisition]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo, 2015, no. 16, pp. 14-24.
21. Sosnin N.E. Razrabotka statisticheskikh modelei dlia prognoza neftegazonosnosti (na primere terrigennykh devonskikh otlozhenii Severo-Tatarskogo svoda) [Development of statistical models for predicting oil-and-gas content (on the example of terrigenous devonian sediments of North Tatar arch)]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo, 2012, no. 5, pp. 16-25.
22. Galkin V.I., Sosnin N.E. Razrabotka geologo-matematicheskikh modelei dlia prognoza neftegazonosnosti slozhnopostroennykh struktur v devonskikh terrigennykh otlozheniiakh [Geological development of mathematical models for the prediction of oil and gas complex-built structures in the Devonian clastic sediments]. Neftianoe khoziaistvo, 2013, no. 4, pp. 28-31.
23. Dement'ev L.F. Matematicheskie metody i EVM v neftegazovoi geologii [Mathematical methods and computers in oil and gas geology]. Moscow: Nedra, 1987, 264 p.
24. Davydenko A.Iu. Veroiatnostno-statisticheskie metody v geologo-geofizicheskikh prilozheniiakh [Probabilistic and statistical methods in geological and geophysical applications]. Irkutsk, 2007, 29 p.
25. Mikhalevich I.M. Primenenie matematicheskikh metodov pri analize geologicheskoi informatsii (s ispol'zovaniem komp'iuternykh tekhnologii) [Application of mathematical methods in the analysis of geological information (using computer technology)]. Irkutsk, 2006, 115 p.
26. Andreiko S.S. Razrabotka matematicheskoi modeli metoda prognozirovaniia gazodinamicheskikh iavlenii po geologicheskim dannym dlia uslovii Verkhnekamskogo mestorozhdeniia kaliinykh solei [Development of mathematical model of gas-dynamic phenomena forecasting method according to geological data in conditions of Verkhnekamskoie potash salt deposit]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo, 2016, no. 21, pp. 345-353. DOI: 10.15593/2224-9923/2016.21.6
27. Devis Dzh. Statistika i analiz geologicheskikh dannykh [Geological data statistics and analysis]. Moscow: Mir, 1977, 353 p.
28. Pomorskii Iu.L. Metody statisticheskogo analiza eksperimental'nykh dannykh [Methods for statistical analysis of experimental data]. Leningrad, 1960, 174 p.
29. Cherepanov S.S. Kompleksnoe izuchenie treshchinovatosti karbonatnykh zalezhei metodom Uorrena - Ruta s ispol'zovaniem dannykh seismofatsial'nogo analiza (na primere turnefamenskoi zalezhi Ozernogo mestorozhdeniia) [Integrated research of carbonate reservoir racturing by Warren – Root method using seismic facies analysis (evidence from tournaisian-famennian deposit of Ozernoe field)]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo, 2015, no. 14, pp. 6-12. DOI: 10.15593/2224-9923/2015.14.1
30. Galkin V.I., Ponomareva I.N., Cherepanov S.S. Razrabotka metodiki otsenki vozmozhnostei vydeleniia tipov kollektorov po dannym krivykh vosstanovleniia davleniia po geologo-promyslovym kharakteristikam plasta [Development of the methodology for evaluation of possibilities to determine reservoir types based on pressure build-up curves, geological and reservoir properties of the formation (case study of famen deposits of Ozernoe field)]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo, 2015, no. 17, pp. 32-40.
31. Cherepanov S.S., Martiushev D.A., Ponomareva I.N. Otsenka fil'tratsionno-emkostnykh svoistv treshchinovatykh karbonatnykh kollektorov mestorozhdenii Predural'skogo kraevogo progiba [Evaluation of filtration-capacitive properties of fractured carbonate reservoir of Predural'skogo edge deflection]. Neftianoe khoziaistvo, 2013, no. 3, pp. 62-65.
32. Galkin V.I., Kunitskikh A.A. Statisticheskoe modelirovanie rasshiriaiushchegosia tamponazhnogo sostava [Statistical modelling of expanding cement slurry]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo, 2017, vol. 16, no. 3, pp. 215-244. DOI: 10.15593/2224-9923/2017.3.2
33. Galkin V.I., Ponomareva I.N., Repina V.A. Issledovanie protsessa nefteizvlecheniia v kollektorakh razlichnogo tipa pustotnosti s ispol'zovaniem mnogomernogo statisticheskogo analiza [Study of oil recovery from reservoirs of different void types with use of multidimensional statistical analysis]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo, 2016, no. 19, pp. 145-154. DOI: 10.15593/2224-9923/2016.19.5
34. Krivoshchekov S.N., Galkin V.I. Postroenie matritsy elementarnykh iacheek pri prognoze neftegazonosnosti veroiatnostno-statisticheskimi metodami na territorii Permskogo kraia [Construction of a matrix of elementary cells in predicting oil and gas content by probabilistic and statistical methods in the Perm Territory]. Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii. Moscow: VNIIOENG, 2008, no. 8, pp. 20-23.
35. Ivanov S.A., Rastegaev A.V., Galkin V.I. Analiz rezul'tatov primeneniia GRP (na primere Povkhovskogo mestorozhdeniia nefti) [Analysis of results of applying formation hydraulic fracturing in Povkhovsky oil field]. Neftepromyslovoe delo. Moscow: VNIIOENG, 2010, no. 7, pp. 54-58.
36. Krivoshchekov S.N., Galkin V.I., Volkova A.S. Razrabotka veroiatnostno-statisticheskoi metodiki prognoza neftegazonosnosti struktur [Development of a probabilistic-statistical method for predicting the oil and gas content of structures]. Neftepromyslovoe delo. Moscow: VNIIOENG, 2010, no. 7, pp. 28-31.
37. Houze O., Viturat D., Fjaere O.S. Dinamie data analysis. Paris: Kappa Engineering, 2008, 694 p.
38. Van Golf-Racht T.D. Fundamentals of fractured reservoir engineering. Elsevier scientific publishing company. Amsterdam - Oxford - New York, 1982, 709 p.
39. Horne R.N. Modern well test analysis: A computer Aided Approach. 2nd ed. Palo Alto: Petroway Inc, 2006, 257 p.
40. Johnson N.L., Leone F.C. Statistics and experimental design. New York - London - Sydney - Toronto, 1977, 606 p.
41. Mon tgomery D.C., Peck E.A. Introduction to liner regression analysis. New York: John Wiley & Sons,1982, 504 p.
42. Darling T. Well Logging and Formation Evalution. Gardners Books, 2010, 336 p.
43. Watson G.S. Statistic on spheres. New York: John Wiley and Sons, Inc., 1983, 238 p.
44. Yarus J.M. Stochastic modeling and geostatistics. AAPG. Tulsa, Oklahoma, 1994, 231 p.
45. Koshkin K.A., Melkishev O.A. Use of derivatives to assess preservation of hydrocarbon deposits. IOP Conf. Series: Journal of Physics: Conference Series, 2018, vol. 1015, 032092 p. DOI: 10.1088/1742-6596/1015/3/032092
46. Zhuoheng Ch., Osadetz K.G. Geological risk mapping and prospect evaluation using multivariate and Bayesian statistical methods, western Sverdrup Basin of Canada. AAPG Bulletin, 2006, vol. 90, no. 6, pp. 859-872. DOI: 10.1306/01160605050
47. Ahlbrandt T.S., Charpentier R.R., Klett T.R., Schmoker J.W., Schenk C.J., Ulmishek G.F. Global resource estimates from total petroleum systems. AAPG Memoir, 2005, no. 86, pp. 1-334. DOI: 10.1306/M861061
48. Pang-Ning Tan, Michael Steinbach, Vipin Kumar. Introduction to data mining. Boston: Pearson Addison Wesley, 2005, 769 p.
49. Warren J.E., Root P.J. The behavior of naturally fractured reservoirs. Soc. Petrol. Eng. J., 1963, vol. 3, iss. 3, pp. 245-255. DOI: 10.2118/426-PA
50. Tiab D. Modern core analysis. Vol. 1. Theory, core laboratories. Houston, Texas, 1993, 200 p.
Formation of the Kaolin Structure Treated by PressureSeredin V.V., Andrianov A.V., Gaynanov S.Kh., Galkin V.I., Andreyko S.S. Received: 23.07.2020 Accepted: 02.11.2020 Published: 11.01.2021 http://dx.doi.org/10.15593/2712-8008/2021.1.2
PDF |
Abstract |
Authors |
References |
Abstract: To form the technological properties of clays, various methods of their activation have been developed, the essence of which is that when processing clays, their structure (defectiveness) changes, which forms the energy potential of clay particles, and the latter is realized in the form of "specified" physicochemical properties of clays. In this regard, the effect of stress pressure on the change in the defectiveness of structural elements of kaolin was studied.
Experimental studies showed that the pressure value P = 150 MPa was the boundary value at which different conditions for the formation of defectiveness of structural elements of kaolin were observed. High pressure has a multidirectional effect on the defectiveness formation of the kaolin structural elements: a package, a mineral, a colloid and an aggregate.
In a package of kaolinite mineral, the defectiveness increases with increasing pressure. Defects are formed due to the removal of Al, Fe, Mg, Si ions from the octahedral and tetrahedral sheets. Al ions are the most sensitive to pressure. The removal of ions entails deformation of the packet and the formation of "hole" energy centers. Pressure up to 0–150 MPa has a greater effect on the formation of defectiveness (calculated correlation coefficient rñ = 0.86) than in the range 150–800 MPa (rñ = 0.82).
In the kaolinite mineral at pressures up to 150 MPa, a decrease in defectiveness is observed due to the ordering of the structure under pressure (rñ = 0.67). At pressures above 150 MPa, an increase in the defectiveness of the kaolinite mineral (rñ = –0.72) is observed due to the destruction of hydrogen bonds between the packets, which entails the sliding and rotation of the structural packets among themselves.
In a colloid (particle), with an increase in pressure to 150 MPa, the structural defect decreases due to an increase in the colloid density (rñ = 0.67). In the pressure range of 150–800 MPa, it is rather difficult to reveal the effect of pressure on the formation of defectiveness (rñ = 0.37).
In the aggregate, with an increase in pressure to 150 MPa, the defectiveness of the structure increases due to crushing of particles, sliding and displacement of particles among themselves (rñ = 0.95). In the pressure range of 150–800 MPa, it is rather difficult to reveal the influence of pressure on the formation of defectiveness (rñ = 0.58), although the tendency increases with increasing pressure, the defectiveness of the aggregate remains.
Keywords: clay, kaolin, pressure, structure, defectiveness, chemical composition, ionic bonds, structural package defects, mineral, colloid, aggregate, technogenic processing, clay activation.
Authors: Valerii V. Seredin
Perm State National Research University
seredin@nedra.perm.ru
15 Bukireva st., Perm, 614068, Russian Federation
Andrey V. Andrianov
Perm State National Research University
Andrianov@nedra.perm.ru
15 Bukireva st., Perm, 614068, Russian Federation
Sharibzan Kh. Gaynanov
Perm State National Research University
seredin@nedra.perm.ru
15 Bukireva st., Perm, 614068, Russian Federation
Vladislav I. Galkin
Perm National Research Polytechnic University
vgalkin@pstu.ru
29 Komsomolskiy av., Perm, 614990, Russian Federation
Sergey S. Andreyko
Perm National Research Polytechnic University
rmpi@pstu.ru
29 Komsomolskiy av., Perm, 614990, Russian Federation
References: 1. Osipov V.I., Sokolov V.N., Rumiantseva N.A. Mikrostruktura glinistykh porod [Clay microstructure]. Moscow: Nedra, 1989, 211 p.
2. Osipov V.I., Sokolov V.N. Gliny i ikh svoistva [Clays and their properties]. Moscow: Geos, 2013, 576 p.
3. Kara-Sal B.K., Sapelkina T.V. Povyshenie adsorbtsionnykh svoistv glinistykh porod Tuvy v zavisimosti ot metodov aktivatsii [Increasing the adsorption properties of Tuva clay rocks depending on activation methods]. Aktual'nye problemy sovremennoi nauki, 2012, no. 5, p. 158-162.
4. Pushkareva G.I. Vliianie temperaturnoi obrabotki brusita na ego sorbtsionnye svoistva [Influence of temperature treatment of brucite on its sorption properties]. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh, 2000, no. 6, pp. 90-93.
5. Range K.J., Range A., Weiss A. Fire-clay type kaolinite or fire-clay mineral. Experimental classification of kaolinite-halloysite minerals. Proc. Int. Clay Conf. Tokyo, 1969, pp. 3-13.
6. Sapronova Zh.A., Lesovik V.S., Gomes M.Zh., Shaikhieva K.I. Sorbtsi-onnye svoistva UF-aktivirovannykh glin Angol'skikh mestorozhdenii [Sorption properties of UV-activated clays of Angola deposits]. Vestnik Kazakhskogo natsional''nogo tekhnicheskogo universiteta, 2015, vol. 18, no. 1, pp. 91-93.
7. Nichiporenko S.P., Kruglitskii N.N., Panasevich A.A., Khil'ko V.V. Fiziko-khimicheskaia mekhanika dispersnykh mineralov [Physicochemical mechanics of dispersed minerals]. Kiev: Naukova dumka, 1974, 243 p.
8. Suraj G., Iyer C.S.P., Rugmini S., Lalithambika M. The effect of micronization on kaolinites and their sorption behavior. Applied Clay Science, 1997, vol. 12, no. 1-2, pp. 111-130. DOI: 10.1016/S0169-1317(96)00044-0
9. Kossovskaia A.G., Shutov V.D., Drits V.A. Glinistye mineraly – in-dikatory glubinnogo izmeneniia terrigennykh porod [Clay minerals – indicators of deep changes in terrigenous rocks]. Geokhimiia, mineralogiia i petrografiia osadochnykh obrazovanii. Ed. akademik D.I. Shcherbakov. Moscow: Izdatel'stvo Akademii nauk SSSR, 1963, pp. 120-131.
10. Goilo E.A., Kotov N.V., Frank-Kamenetskii V.A. Eksperimental'noe issledovanie vliianiia davleniia i temperatury na kristallicheskie struktury kaolinita, illita i montmorillonita [Experimental study of the effect of pressure and temperature on the crystal structures of kaolinite, illite and montmorillonite]. Fizicheskie metody issledovaniia osadochnykh porod. Moscow: Nauka, 1966, pp. 123-129.
11. Frank-Kamenetskii V.A., Kotov N.V., Goilo E.A. Izmenenie struktury glinistykh mineralov v razlichnykh temodinamicheskikh usloviiakh [Changes in the structure of clay minerals under different temodynamic conditions]. Rentgenografiia mineral'nogo syr'ia. Moscow: Nedra, 1970, no. 7, pp. 166-174.
12. Frank-Kamenetskii V.A. Rentgenografiia osnovnykh tipov porodoobrazuiushchikh mineralov (sloistye i karkasnye silikaty) [Radiography of the main types of rock-forming minerals (layered and frame silicates)]. Leningrad: Nedra, 1983, 359 p.
13. La Iglesia A. Pressure induced disorder in kaolinite. Clay Minerals, 1993, vol. 28, no. 2, pp. 311-319. DOI: 10.1180/claymin.1993.028.2.11
14. Galan E., Aparicio P., Gonzalez Â., La Iglesia A. The effect of pressure on order/disorder in kaolinite under wet and dry conditions. Clays and Clay Minerals, 2006, vol. 54, no. 2, pp. 230-239. DOI: 10.1346/CCMN.2006.0540208
15. Fang et al. Pressure dependence of the electronic structure in kaolinite: a first-principles study. Modern Physics Letters B, 2017, vol. 31, no. 12, pp. 1-10. DOI: 10.1142/S0217984917501949
16. Welch et al. Insights into the high-pressure behavior of kaolinite from infrared spectroscopy and quantum-mechanical calculations. Physics and Chemistry of Minerals, 2012, vol. 39(2), pp. 143-151. DOI: 10.1007/s00269-011-0469-5
17. Boldyrev V.V. Mekhanokhimiia i mekhanicheskaia aktivatsiia tverdykh veshchestv [Mechanochemistry and mechanical activation of solids]. Uspekhi khimii, 2006, vol. 75, no. 3, pp. 203-216. DOI: 10.1070/RC2006v075n03ABEH001205
18. Ehrenberg S.N., Aagaard P., Wilson M.J., Fraser A.R., Duthie D.M.L. Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Minerals, 1993, vol. 28, no. 3, pp. 325-352. DOI: 10.1180/claymin.1993.028.3.01
19. Kossovskaya A.G., Shutov V.D. Facies of regional epi- and metagenesis // International Geology Review, 1965, vol. 7, no. 7, pp. 1157-1167. DOI: 10.1080/00206816509474768
20. Seredin V.V., Rastegaev A.V., Medvedeva N.A., Parshina T.Iu. Vliianie davleniia na ploshchad' aktivnoi poverkhnosti chastits glinistykh gruntov [Influence of pressure on the active surface area of clay soil particles]. Inzhenernaia geologiia, 2017, no. 3, pp. 18-27.
21. Pushcharovskii D.Iu. Rentgenografiia mineralov [Radiography of minerals]. Moscow: Geoinformmark, 2000, 288 p.
22. Tarasevich B.N. Osnovy IK spektroskopii s preobrazovaniem Fur'e. Podgotovka prob v IK-spektroskopii [Fundamentals of Fourier Transform IR Spectroscopy. Sample preparation in IR spectroscopy]. Moscow: Moskovskii gosudarstvennyi universitet imeni M.V. Lomonosova, 2012, 22 p.
23. Korovkin M.V. Infrakrasnaia spektroskopiia karbonatnykh mineralov [Infrared spectroscopy of carbonate minerals]. Tomsk: Tomskii politekhnicheskii universitet, 2012, 80 p.
24. Smit A. Prikladnaia IK-spektroskopiia [Applied IR Spectroscopy]. Moscow: Mir, 1982, 328 p.
25. Kubekova Sh.N., Tanau A. Ispol'zovanie metoda IK-spektroskopii dlia opredeleniia molekuliarnogo sostava neorganicheskikh veshchestv: metod. ukazaniia k laboratornym zaniatiiam [Using the method of IR spectroscopy to determine the molecular composition of inorganic substances: method. instructions for laboratory exercises]. Almaty: Kazakhskii natsional'nyi issledovatel'skii tekhnicheskii universitet imeni K.I. Satpaeva, 2014, 17 p.
26. Seredin V.V., Parshina T.Yu., Rastegaev A.V., Galkin V.I., Isaeva G.A. Changes of energy potential on clay particle surfaces at high pressures. Applied Clay Science, 2018, vol. 155, pp. 8-14. DOI: 10.1016/j.clay.2017.12.042
27. Kotel'nikov D.D., Koniukhov A.I. Glinistye mineraly osadochnykh porod [Clay minerals of sedimentary rocks]. Moscow: Nedra, 1986, 247 p.
28. Seredin V.V., Medvedeva N.A., Aniukhina A.V., Andrianov A.V. Za-konomernosti izmeneniia soderzhaniia sviazannoi vody v kaolinovoi gline pri ee szhatii vysokimi davleniiami [Regularities of the bound water content variation in kaolin clay under high pressure]. Vestnik Permskogo universiteta. Geologiia, 2018, vol. 17, no. 4, pp. 359-369. DOI: 10.17072/psu.geol.17.4.359
29. Medvedeva N.A., Siteva O.S., Seredin V.V. Sorbtsionnaia sposobnost' glin, podverzhennykh szhatiiu [Sorption ability of clays exposed to compression]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo, 2018, vol. 18, no. 2, pp. 118-128. DOI: 10.15593/2224-9923/2018.4.2
30. Pliusnina I.I. Infrakrasnye spektry mineralov [Infrared spectra of minerals]. Moscow: Moskovskii gosudarstvennyi universitet imeni M.V. Lomonosova, 1976, 190 p.
31. Siteva O.S., Medvedeva N.A., Seredin V.V., Ivanov D.V., Alvanian K.A. Vliianie davleniia na strukturu kaolinita v ogneupornykh glinakh Nizhne-Uvel'skogo mestorozhdeniia po dannym IK-spektroskopii [Influence of pressure on the structure of kaolinite in fire-clays of the Nizhne-Uvelskogo deposit by IR spectroscopy]. Izvestiia Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2020, vol. 331, no. 6, pp. 208-217. DOI: 10.18799/24131830/2020/6/2690
32. Uorrel U. Gliny i keramicheskoe syr'e [Clays and ceramic raw materials]. Moscow: Mir, 1978, 241 p.
33. Lazarev A.N., Mirgorodskii A.P., Ignat'ev I.S. Kolebatel'nye spektry slozhnykh okislov: silikaty i ikh analogi [Vibrational spectra of complex oxides: silicates and their analogues]. Leningrad: Nauka, Leningradskoe otdelenie, 1975, 296 p.
34. Gates W.P., Kloprogge J.T., Madejova J., Bergaya F., Gates W.P., Petit S. Infrared and Raman Spectroscopies of Clay Minerals. Elsevier, 2017, vol. 8, 620 p.
35. Plastinina M.A. et al. Nekotorye osobennosti proiavleniia nesovershenstva kaolinitov na ikh infrakrasnykh spektrakh pogloshcheniia [Some features of the manifestation of imperfection of kaolinite in their infrared absorption spectra]. Mineralogicheskii sbornik, 1979, no. 33, iss. 1, pp. 27-32.
36. Seredin V.V., Rastegayev A.V., Panova E.G., Medvedeva N.A. Changes in physical properties of clay under compression. International Journal of Engineering and Applied Sciences, 2017, vol. 4, no. 3, 22 p.
37. Zhu Xiaoyan, Zhu Zhichao, Lei Xinrong, Yan Chunjie Defects in structure as the sources of the surface charges of kaolinite. Applied Clay Science, 2016, vol. 124-125, pp. 127-136. DOI: 10.1016/j.clay.2016.01.033
38. Shlykov V.G. Rentgenostrukturnyi analiz mineral'nogo sostava dispersnogo grunta [X-ray diffraction analysis of the mineral composition of dispersed soil]. Moscow: Geos, 2006, 176 p.
39. Shlykov V.G. Ispol'zovanie strukturnykh kharakteristik glinistykh mineralov dlia otsenki fiziko-khimicheskikh svoistv dispersnykh gruntov [Using the structural characteristics of clay minerals to assess the physicochemical properties of dispersed soils]. Geoekologiia, 2000, no. 1, pp. 43-52.
40.Seredin V.V., Krasil'nikov P.A., Medvedeva N.A. Izmenenie elektrokineticheskogo potentsiala glinistykh kolloidov v vodnoi i uglevodorodnoi sredakh [Variation of electrokinetic potential of clayey colloids in aquatic and hydrocarbon media]. Geoekologiia. Inzhenernaia geologiia, gidrogeologiia, geokriologiia, 2017, no. 1, pp. 66-74.
41. Seredin V.V., Medvedeva N.A., Mal'gina Iu.O., Peshkova T.A. Izuchenie svoistv glinistykh porod pri razrabotke solianykh mestorozhdenii [Study of the properties of clay rocks in the development of salt deposits]. Sovremennye tekhnologii v stroitel'stve. Teoriia i praktika, 2016, vol. 2, pp. 451-454.
42. Tarasevich Iu.I., Ovcharenko F.D. Adsorbtsiia na glinistykh mineralakh [Adsorption on clay minerals]. Kiev: Naukova dumka, 1975, 351 p.
43. Vaculíkova L., Plevová E., Vallová S., Koutník I. Characterization and differentiation of kaolinites from selected Ñzech deposits using infrared spectroscopy and differential thermal analysis. Acta Geodynamica et Geomaterialia, 2011, vol. 8, no. 1, pp. 59-67.
44. Laita E., Bauluz B. Mineral and textural transformations in aluminium-rich clays during ceramic firing. Applied Clay Science, 2018, vol. 152, p. 284-294. DOI: 10.1016/j.clay.2017.11.025
45. Vakalova T.V., Reshetova A.A., Revva I.B., Rusinov P.G., Balamygin D.I. Effect of thermochemical activation of clay raw materials on phase formation, microstructure and properties of aluminosilicate proppants. Applied Clay Science, 2019, vol. 183, 105335 p. DOI: 10.1016/j.clay.2019.105335
Sruthi P.L., Reddy P.H. Swelling and mineralogical characteristics of alkali-transformed kaolinitic clays. Applied clay science, 2019, vol. 183, 105353 p. DOI: 10.1016/j.clay.2019.105353
Prospects for the practical value of the integrated development of poor titanium-zirconium placers and weathering crusts in KazakhstanSapargaliev E.M., Azelkhanov A.Zh., Kravchenko M.M., Suyekpayev E.S., Dyachkov B.A. Received: 28.08.2020 Accepted: 02.11.2020 Published: 11.01.2021 http://dx.doi.org/10.15593/2712-8008/2021.1.3
PDF |
Abstract |
Authors |
References |
Abstract: On the territory of the Republic of Kazakhstan there is a significant number of identified deposits related to weathering crusts and titanium-ilmenite placers, bearing industrial mineralization of rare and rare-earth elements. Deposits of placers and weathering crusts, formed as a result of bedrocks denudation in coastal and continental sedimentation conditions, form the basis of the mineral resource base of titanium-zirconium ores in the Republic of Kazakhstan. Titanium-zirconium deposits of placers and weathering crusts usually have low average contents of the main useful components (rutile, ilmenite, and zircon), while containing associated mineralization of valuable rare and rare-earth elements.
Various aspects of the complex development of poor titanium-zirconium placers, which are currently of no practical importance, are considered. Associated useful components of titanium-zirconium placers are usually represented by rare and rare-earth elements, which are of practical importance in high-tech industries. The study of associated useful components in titanium-zirconium placers will allow considering the possibility of profitable exploitation and assessing the prospects for strengthening of their mineral resource base. As a result of the review, analysis and assessment of known titanium-zirconium placers on the territory of Kazakhstan, the most promising ore occurrences have been identified, which may be of practical importance in their integrated development: Karaotkel deposit – increased contents of rare and rare earth elements in placer ores can be considered not only as a source of monomineral concentrates of ilmenite, zircon, quartz and quartzite, mica and feldspar ceramic raw materials, but also as a source of rare and rare-earth elements; The Kundybai, Zayachye and Druzhba ore occurrences have the potential for the integrated development of titanium-zirconium placers with rare and rare-earth elements. The selected objects deserve prospecting and appraisal work with technical and economic studies of the possibility of their integrated development.
Keywords: titanium, zirconium, rare earth elements, placers, weathering crust, ilmenite, ore occurrences, reserves, mineral, rutile, formation, endogenous, impurities.
Authors: Erzhan M. Sapargaliev
Altai Geological and Environmental Institute LLP
er_sapar@mail.ru
21 K. Liebknecht st., Ust-Kamenogorsk, 070004, Republic of Kazakhstan
Askhat Zh. Azelkhanov
Altai Geological and Environmental Institute LLP
azelhanovag@mail.ru
21 K. Liebknecht st., Ust-Kamenogorsk, 070004, Republic of Kazakhstan
Mikhail M. Kravchenko
Altai Geological and Environmental Institute LLP
21 K. Liebknecht st., Ust-Kamenogorsk, 070004, Republic of Kazakhstan
Yertlek S. Suiekpayev
Altai Geological and Environmental Institute LLP
suiekpaev@yandex.kz
21 K. Liebknecht st., Ust-Kamenogorsk, 070004, Republic of Kazakhstan
Boris A. Dyachkov
Altai Geological and Environmental Institute LLP
21 K. Liebknecht st., Ust-Kamenogorsk, 070004, Republic of Kazakhstan
References: 1. Andreicheva L.N. Fatsii morskikh otlozhenii pleistotsena na Evropeiskom Severo-Vostoke [Facies of Pleistocene marine sediments in the European Northeast]. Fundamental'nye problemy kvartera. Materialy V Vserossiiskogo soveshchaniia po izucheniiu chetvertichnogo perioda. Moscow: Geos, 2007, pp. 14-17.
2. Shcherba G.N. et al. Bol'shoi Altai “Geologiia i metallogeniia”. Kniga 1. Geologicheskoe stroenie [Big Altai “Geology and Metallogeny”. Book 1. Geological structure]. Almaty: NITs “Gylym”, 1998, 304 p.
3. Shcherba G.N. et al. Bol'shoi Altai “Geologiia i metallogeniia”. Kniga 2. Metallogeniia [Big Altai "Geology and Metallogeny". Book 2. Metallogeny]. Almaty: NITs “Gylym”, Almaty RIO VAK RK, 2000, 387 p.
4. Sapargaliev E.M., Kravchenko M.M., D'iachkov B.A. et al. Bol'shoi Altai (geologiia i metallogeniia). Kniga 3. Nerudnye iskopaemye [Big Altai (geology and metallogeny). Book 3. Non-metallic minerals]. Almaty: NITs “Gylym”, 2003, 304 p.
5. Burtman V.S. Geodinamika Tibeta, Tarima i Tian'-Shania v pozdnem kainozoe [Geodymanics of Tibet, Tarim, and the Tien Shan in the Late Cenozoic]. Geotektonika, 2012, no. 3, pp. 18-46.
6. Venus B.G. et al. Paleolimnologiia Zaiana [Zayan paleolimnology]. Leningrad: Nauka, 1980, 184 p.
7. Vysotskii E.A., Kutyrlo V.E. Poiski i razvedka mestorozhdenii poleznykh iskopaemykh: kurs lekcij [Search and exploration of mineral deposits. Lecture course]. Belorusskij Gosudarstvennyj Universitet, Minsk, 2006, 441 p.
8. Golovenok V.K. Vysokoglinozemistye formatsii dokembriia [High-alumina Precambrian formations]. Leningrad: Nedra, 1977, 268 p.
9. Zonenshain L.P., Kuz'min M.I., Moralev V.M. Global'naia tektonika, magmatizm i metallogeniia [Global tectonics, magmatism and metallogeny]. Moscow: Nedra, 1976, 232 p.
10. Kaliuzhnyi V.A. Geologiia novykh rossypeobrazuiushchikh formatsii [Geology of new placer-forming formations]. Moscow: Nauka, 1982, 263.
11. Korobova N.I. Il'menitsoderzhashchie metamorficheskie slantsy Taimyra [Ilmenite-bearing metamorphic shales of Taimyr]. Doklady Akademii nauk SSSR, 1965, vol. 162, no. 1, pp. 183-185.
12. Korobova N.I. Titanistye paraslantsy i ikh vozmozhnoe znachenie dlia korreliatsii dokembriia [Titanic Paraschists and Their Possible Significance for the Precambrian Correlation]. Korreliatsiia dokembriia. Moscow: Nauka, 1977, vol. 1, pp. 214-216.
13. Kochetkov O.S. Aktsessornye mineraly v drevnikh tolshchakh Timana i Kanina [Accessory minerals in the ancient strata of Timan and Kanin]. Leningrad: Nauka, 1967, 200 p.
14. Malyshev I.I. Osnovnye geneticheskie tipy mestorozhdenii titanovykh rud i promyshlennaia ikh tsennost' [Main genetic types of titanium ore deposits and their industrial value]. Razvedka i okhrana nedr, 1955, no. 1, pp. 5-14.
15. Malyshev I.I. Zakonomernosti obrazovaniia i razmeshcheniia mestorozhdenii titanovykh rud [Regularities of the formation and placement of titanium ore deposits]. Moscow: Gosgeolizdat, 1957, 272 p.
16. Makhlaev L.V. O prirode leikoksena v Iaregskom neftetitanovom mestorozhdenii (v sviazi s otsenkoi perspektiv drugikh paleorossypei Pritiman'ia) [On the nature of leucoxene in the Yarega oil-titanium field (in connection with the assessment of the prospects for other paleo placer deposits in the Pritiman region)]. Litosfera, 2008, no. 5, pp. 117-121.
17. Makhlaev L.V., Korobova N.I. Geneticheskie granitoidnye riady dokembriia Taimyra (metamorfizm, ul'trametamorfizm, granitoobrazovanie) [Genetic granitoid series of the Precambrian of Taimyr (metamorphism, ultrametamorphism, granite formation)]. Krasnoiarsk: Krasnoiarskoe knizhnoe izdatel'stvo, 1972, 158 p.
18. Makhlaev L.V., Korobova N.I. Ob istochnike il'menita v rossypnykh mestorozhdeniiakh [About the source of ilmenite in placer deposits]. Geologiia i geofizika, 1972, no. 11, pp. 41-50.
19. Melent'ev G.B., Kozlova S.I., Loskutova L.M. Izuchit' raspredelenie redkikh elementov-primesei v rudnykh kontsentratakh i produktakh ikh peredela s mestorozhdeniia Karaotkel' s sostavleniem balansov i otsenkoi perspektiv promyshlennogo ispol'zovaniia [To study the distribution of trace elements-impurities in ore concentrates and products of their processing from the Karaotkel deposit with the compilation of balances and an assessment of the prospects for industrial use]. Moscow: Rosgeolfond. IMGRE, 1987, 224 p.
20. Metodicheskie rekomendatsii po primeneniiu Klassifikatsii zapasov mestorozhdenii i prognoznykh resursov tverdykh poleznykh iskopaemykh. Rossypnye mestorozhdeniia [Methodological recommendations for the application of the Classification of reserves of deposits and predicted resources of solid minerals. Placer deposits]. Moscow. Federal''noe gosudarstvennoe uchrezhdenie "Gosudarstvennaia komissiia po zapasam poleznykh iskopaemykh", 2007, 66 p.
21. Mestorozhdeniia redkikh metallov i redkikh zemel' Kazakhstana: spravochnik [Deposits of rare metals and rare earths in Kazakhstan: a reference book]. 2nd ed. Eds. T.M. Laumulin, F.G. Gubaidulin, V.I. Sheptura, S.A. Akylbekov, A.B. Darbadaev, B.A. Baimuldin, N.Ia. Guliaeva, B.A. D'iachkov, N.L. Radenko. Almaty, 2015, 226 p.
22. Mineralogiia i geokhimiia rossypei [Mineralogy and geochemistry of placers]. Eds. N.A. Shilo, N.G. Patyk-Kara. Moscow: Nauka, 1992, 243 p.
23. Muratshin Kh.Kh., Borodastova L.A. Otchet o poiskovo-otsenochnykh rabotakh na Karaotkel'skom tsirkon-il'menit-polevoshpatovom mestorozhdenii, provedennykh v 1980-82 gg., po sostoianiiu na 01.12.1982 goda Vostkazgeologiia [Report on prospecting and appraisal works at the Karaotkelsky zircon-ilmenite-feldspar deposit, carried out in 1980-82, as of 01.12.1982 Vostkazgeologiya]. Ust'-Kamenogorsk, 1982, 225 p.
24. Olovianishnikov V.G. Verkhnii dokembrii Timana i poluostrova Kanin [Upper Precambrian Timan and Kanin Peninsula]. Yekaterinburg: Ural'skoe otdelenie Rossiiskoi akademii nauk, 1998, 163 p.
25. Akylbekov S.A., Azelgareeva R.T., Kiselev A.L. et al. Mineral'no-syr'evaia baza titanovoi promyshlennosti Kazakhstana i modelirovanie sostoianiia otrasli na period do 2030 goda [Mineral resource base of the titanium industry in Kazakhstan and modeling the state of the industry for the period up to 2030]. Almaty: Tipografiia “Kompleks”, 1999, 94 p.
26. Nurabaev B.K., Nadyrbaev A.A., Tulegenov M.K., Tansykbaev Zh.B. Mestorozhdeniia redkikh metallov i redkikh zemel' Kazakhstana: spravochnik, vtoroe izdanie [Deposits of rare metals and rare earths in Kazakhstan: reference book, second edition]. Almaty, Izdanie RGP PKhV “Informatsionno-analiticheskii tsentr geologii i mineral'nykh resursov RK” po zadaniiu GU “Komitet geologii i nedropol'zovaniia”, 2015, 226 p.
27. Abdulina A.A., Votsalevskii E.S., Miroshnichenko L.A., Daukeeva S.Zh. Mestorozhdeniia titana Kazakhstana: spravochnik, vtoroe izdanie [Titanium Deposits in Kazakhstan: Handbook, Second Edition]. Almaty: Izdanie RGP PKhV “Informatsionno-analiticheskii tsentr geologii i mineral'nykh resursov RK” po zadaniiu GU “Komitet geologii i nedropol'zovaniia”, 2014, 153 p.
28. Titano-tsirkonievye mestorozhdeniia Rossii i perspektivy ikh osvoeniia: materialy Vserossiiskogo soveshchaniia [Titanium-zirconium deposits in Russia and prospects for their development: materials of the All-Russian meeting]. Moscow: Institut geologii rudnykh mestorozhdenii, petrografii, mineralogii i geokhimii Rossiiskoi akademii nauk, 2006, 94 p.
29. Ermolaev P.V. TEO postoiannykh konditsii na rudy Karaotkel'skogo tsirkon-il'menit-polevoshpatovogo mestorozhdeniia, vypolnennoe PGO «Vostkaz-geologiia» v 1990 g. [Feasibility study of permanent conditions for the ores of the Karaotkel zircon-ilmenite-feldspar deposit, performed by Vostkaz-Geologiya PGO in 1990]. Respublika Kazakhstan, 1990, 871 p.
30. Kravchenko M.M., D'iachkov B.A., Suiekpaev E.S., Sapargaliev E.M., Azel'khanov A.Zh., Oitseva T.A. Perspektivy ukrepleniia i razvitiia syr'evoi bazy titanovogo proizvodstva v Vostochnom Kazakhstane [Prospects of strengthening and development of the titanium production resource base in Eastern Kazakhstan]. Vestnik Permskogo universiteta. Geologia, 2016, no. 1, pp. 7-86. DOI: 10.17072/psu.geol.30.78
31. Kravchenko M.M., Suiekpaev E.S., Sapargaliev E.M., D'iachkov B.A., Azel'khanov A.Zh. Perspektivy ukrepleniia mineral'no-syr'evoi bazy titanovogo proizvodstva v Vostochnom Kazakhstane [Prospects of strengthening and development of the titanium production resource base in Eastern Kazakhstan]. Materialy mezhdunarodnogo soveshchaniia po geologii rossypei i mestorozhdenii kor vyvetrivaniia, 24-28 August 2015. Perm': Permskii gosudarstvennyi natsional'nyi issledovatel'skii universitet, 2015, pp. 113-114.
32. Protokol ¹ 2458-k, zasedaniia GKZ ot 01.02.1991 g. po rassmotreniiu proekta postoiannykh konditsii dlia podscheta zapasov peskov Karaotkel'skogo tsirkon-il'menit-polevoshpatovogo mestorozhdeniia v Semipalatinskoi i Vostochno-Kazakhstanskoi oblastiakh Kazakhstana, predstavlennogo GlavKGU [The protocol number 2458-to, SRC meeting on 01.02.1991, the review of the project of constant conditions for the sands reserves calculation of the zircon, ilmenite, feldspar Karaotkelskoye deposit in Semipalatinsk and East Kazakhstan regions of Kazakhstan, represented by GlavKGU]. Almaty: Kazgeologiia, 1991, 81 p.
33. Pakharukov N.M., Kozlov M.S., Riabchenko V.Sh. et al. Karaotkel'skaia rossyp' (tsirkon, il'menit, polevoi shpat) v Vostochno-Kazakhstanskoi i Semipalatinskoi oblastiakh: otchet o rezul'tatakh detal'noi razvedki s podschetom zapasov na 30.09.1991 g. [Karaotkel placer (zircon, ilmenite, feldspar) in the East Kazakhstan and Semipalatinsk regions: a report on the results of detailed exploration with an estimate of reserves as of 30.09.1991]. Altaiskaia GGFE, Opytnoe Pole, 1991, 3334 p.
34. Protokol ¹ 43 zasedaniia GKZ ot 29.05.1992 g. po rassmotreniiu materialov podscheta zapasov Karaotkel'skogo titan-tsirkonievogo mestorozhdeniia Respubliki Kazakhstan, po sost. na 30.09.1991 g. [Karaotkel placer (zircon, ilmenite, feldspar) in the East Kazakhstan and Semipalatinsk regions: a report on the results of detailed exploration with an estimate of reserves as of 30.09.1991]. Respublika Kazakhstan, 1992, 125 p.
35. Patyk-Kara N.G. Mestorozhdeniia iskopaemykh titano-tsirkonievykh rossypei (rossypei tiazhelykh metallov) [Deposits of fossil titanium-zirconium placers (placers of heavy metals)]. Titano-tsirkonievye mestorozhdeniia Rossii i perspektitvy ikh osvoeniia. Materialy Vserossiiskogo soveshchaniia. Ìoscow: Institut geologii rudnykh mestorozhdenii, petrografii, mineralogii i geokhimii Rossiiskoi akademii nauk, 2006, pp. 71-75.
36. Lunev B.S., Naumov V.A., Naumova O.B, Osoveckij B.M. Rossypi i mestorozhdeniia kor vyvetrivaniia: izuchenie, osvoenie, ekologiia [Placers and Deposits of Weathering Crusts: Study, Development, and Ecology]. Materialy XV Mezhdunarodnogo soveshchaniia po geologii rossypei i mestorozhdenii kor vyvetrivaniia (24-28 August 2015). Perm': Permskii gosudarstvennyi natsional'nyi issledovatel'skii universitet, 2015, 270 p. DOI: 10.17072/psu.geol.28.97
37. Suiekpaev E.S., Kravchenko M.M., Sapargaliev E.M., Azel'khanov A.Zh. Ti-Zr rossypi i kory vyvetrivaniia Vostochnogo Kazakhstana [Ti-Zr placers and weathering crust of East Kazakhstan]. Materialy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, posviashchennoi 60-letiiu obrazovaniia Vostochno-Kazakhstanskogo tekhnicheskogo universiteta imeni D. Serikbaeva. “Rol' universitetov v sozdanii innovatsionnoi ekonomiki”. Ust'-Kamenogorsk: Vostochno-Kazakhstanskii tekhnicheskii universitet imeni D. Serikbaeva, 2018, pp. 300-306.
38. Suiekpaev E.S., Kravchenko M.M., Sapargaliev E.M. Prognoznaia otsenka rossypei titana Vostochnogo Kazakhstana [Predictive assessment of titanium placers in East Kazakhstan]. Mezhdunarodnaia konferentsiia po problemam geologii i osvoeniia nedr. Trudy XXII Mezhdunarodnogo simpoziuma imeni akademika M.A. Usova studentov i molodykh uchenykh, posviashchennogo 155-letiiu so dnia rozhdeniia akademika V.A. Obrucheva, 135-letiiu so dnia rozhdeniia akademika M.A. Usova, osnovatelei Sibirskoi gorno-geologicheskoi shkoly, i 110-letiiu pervogo vypuska gornykh inzhenerov v Sibiri. Tomsk: Tomskii politekhnicheskii universitet, 2018, vol. 1, pp. 193-194.
39. Suiekpaev E.S., Sapargaliev E.M., Kravchenko M.M., Azel'khanov A.Zh. Poiskovye napravleniia po vyiavleniiu titantsirkonievykh rossypei ozernogo proiskhozhdeniia na territorii Vostochnogo Kazakhstana [Search directions for the identification of titanium-zirconium placers of lacustrine origin in the territory of Eastern Kazakhstan]. Vestnik Vostochno-Kazakhstanskogo gosudarstvennogo tekhnicheskogo universiteta imeni D. Serikbaeva, 2018, no. 4, pp. 45-51.
40. Frolov N.I. Otchet o rezul'tatakh geologo-poiskovykh rabot na il'menitovyi tip v raione Satpaevskogo mestorozhdeniia v Vostochnom Kazakhstane (uchastki Vostochnyi, Bektemir) za 2002 god [Report on the results of geological prospecting for the ilmenite type in the area of the Satpayevskoye field in East Kazakhstan (Vostochny and Bektemir blocks) for 2002]. Ust'-Kamenogorsk: TOO “Geointsentr”, 2003, 94 p.
41. Suiekpayev Y., Sapargaliyev Y., Kravchenko M., Dolgopolova A., Seltmann R., Azelhanov A. Ti-Zr placers and weathering crusts of the Karaotkel and Satpaev deposits, Kazakhstan. England. Mineral Deposits Studies. Group AGM 2017-18 Sallis Benney Lecture Theatre, Grand Parade, University of Brighton 3rd to 5th January, 2018.
42. Suiekpayev Y., Sapargaliyev Y., Bekenova G., Kravchenko M., Dolgopolova A., Seltmann R. Mineralogical and geochemical features of Satpaev Ti-Zr placer deposit, East Kazakhstan. News of the Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences, 2019, vol. 1 (433), pp. 6-22. DOI: 10.32014/2019.2518-170X.1
43. Suiekpayev Y., Sapargaliyev Y., Dolgopolova A., Seltmann R., Raspopov A., Bekenova G. Predictive estimate of Ti-Zr placer deposits in mesozoic and cenozoic sediments at nw margins of the Zaysan basin, East Kazakhstan. News of the Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences, 2019, vol. 2 (434), pp. 6-14. DOI: 10.32014/2019.2518-170X.32
44. Suiekpayev Y., Sapargaliyev Y., Kravchenko M., Dolgopolova A., Seltmann R., Azelhanov A. Ti-Zr placers and weathering crusts of the Karaotkel and Satpaev deposits, Kazakhstan. Applied Earth Science. Transactions of the Institutions of Mining and Metallurgy, 2019, pp. 2572-6846, available at: https://www.tandfonline.com/loi/yaes21. https://doi.org/10.1080/25726838.2019.1607203 (accessed 15 August 2020).
45. Trikhunkov Ia.I., Bulanov S.A., Bachmanov D.M., Syromiatnikova E.V., Latyshev A.V., Sapargaliev E.M., Kravchenko M.M., Azel'khanov A.Zh. Morfostruktura iuzhnoi chasti Zaisanskoi vpadiny i ee gornogo obramleniia [The Morphostructure of the Southern Part of the Zaisan Basin and its Mountain Surroundings]. GEOMORFOLOGIIa, 2020, no. 2, pp. 85-101. DOI: 10.31857/S043542812002008X
Appearance of Capillary end Effects in Filtration StudiesPutilov I.S., Chizhov D.B., Kochergin E.A. Received: 09.04.2020 Accepted: 02.11.2020 Published: 11.01.2021 http://dx.doi.org/10.15593/2712-8008/2021.1.4
PDF |
Abstract |
Authors |
References |
Abstract: From theoretical studies and experiments on the core, the so-called capillary end effect is known, also called the effect of phases capillary entrapment. When carrying out laboratory experiments to determine the relative phase permeabilities, capillary end effects appear on the core models of the reservoir. These effects can occur as a result of capillary ruptures at the ends of the core sample, which leads to the accumulation of one phase in relation to the other, and thereby affects the movement and retention of the fluid. The region of capillary end effect, which occurs due to the rupture of capillaries at the exit from the sample, affects the change in pressure drop and saturation by a particular fluid. If the influence of capillary end effects is significant, then the experimental conditions are modeled incorrectly, which can lead to serious errors in predicting the productivity of the studied formation.
This paper presents the results of studying the porosity-permeability properties of determining the relative phase permeabilities and the analysis of the studies of the capillary end effects influence mechanism on the filtration capacity of rock samples during laboratory studies using the example of terrigenous and carbonate types of the Pavlovskoye reservoir. According to the results of the studies, the significance of capillary end effects in filtration experiments was established using the example of determining the relative phase permeabilities. Recommendations are given with the aim of minimizing the negative influence of the end effects. The capillary effects can be overcome by increasing the length of the test sample, as well as by increasing the fluid flow rate during a laboratory experiment to determine the relative phase permeabilities.
Keywords: relative phase permeabilities, capillary end effects, core, reservoir conditions, pressure drop, reservoir fluids, reservoir oil, reservoir water, fluid saturation, capillary fracture, filtration studies, terrigenous reservoirs, carbonate reservoirs, porosity, gas permeability.
Authors: Ivan S. Putilov
PermNIPIneft branch of LUKOIL-Engineering LLC in Perm
Ivan.Putilov@pnn.lukoil.com
3a Permskaya st., Perm, 614015, Russian Federation
Denis B. Chizhov
PermNIPIneft branch of LUKOIL-Engineering LLC in Perm
Denis.Chizhov@pnn.lukoil.com
3a Permskaya st., Perm, 614015, Russian Federation
Evgeniy A. Kochergin
PermNIPIneft branch of LUKOIL-Engineering LLC in Perm
Evgenij.Kochergin@pnn.lukoil.com
3a Permskaya st., Perm, 614015, Russian Federation
References: 1. Mirchink M.F., Mirzadzhanzade A.Kh., Zheltov Iu.V. et al. Fiziko-geologicheskie problemy povysheniia neftegazootdachi plastov [Physico-geological problems of enhanced oil and gas recovery]. Moscow: Nedra, 1975, 232 p.
2. Shupik N.V. Povyshenie effektivnosti ploshchadnykh sistem zavodneniia nizkopronitsaemykh plastov Zapadnoi Sibiri [Improving the efficiency of areal waterflooding systems for low-permeability formations in Western Siberia]. Moscow: IPNGRAN, 2017, pp. 24-28.
3. OST 39-235-89. Neft'. Metod opredeleniia fazovykh pronitsaemostei v laboratornykh usloviiakh pri sovmestnoi statsionarnoi fil'tratsii [OST 39-235-89. Oil. Method for determining phase permeabilities in laboratory conditions with joint stationary filtration]. Moscow, 1989, 29 p.
4. Mikhailov A.N. Vliianie kapilliarnykh kontsevykh effektov na pokazateli razrabotki [Influence of capillary trailing effects on development parameters]. Neftianoe khoziaistvo, 2003, no. 9, pp. 54-56.
5. Amiks Dzh., Bass D., Uaiting R. Fizika neftianogo plasta [Oil reservoir physics]. Moscow: Gostoptekhizdat, 1962, 572 p.
6. OST 39-195-86. Neft'. Metod opredeleniia koeffitsienta vytesneniia nefti vodoi v laboratornykh usloviiakh [OST 39-195-86. Oil. Method for determining the coefficient of oil displacement by water in laboratory conditions]. Moscow, 1986, 20 p.
7. Mikhailov N.N. Ostatochnoe neftenasyshchenie razrabatyvaemykh plastov [Residual oil saturation of developed reservoirs]. Moscow: Nedra, 1992, 270 p.
8. Barenblatt G.I., Entov V.M., Ryzhik V.M. Dvizhenie zhidkostei i gazov v prirodnykh plastakh [The movement of fluids and gases in natural formations]. Moscow: Nedra, 1984, 211 p.
9. Gumatudinov Sh.K., Shirkovskii A.I. Fizika neftenogo i gazovogo plasta [Physics of oil and gas reservoir]. Moscow: Nedra, 1982, 311 p.
10. Ivanova M.M., Mikhailov N.N., Iaremiichuk R.S. Regulirovanie fil'tratsionnykh svoistv plasta v okoloskvazhinnykh zonakh [Controlling the filtration properties of the formation in the near-wellbore zones]. Moscow: VNIIOENG, 1988.
11. Mirzadzhanzade A.Kh., Kuznetsov O.L., Basniev K.S., Aliev Z.S. Osnovy tekhnologii dobychi gaza [Gas production technology basics]. Moscow: Nedra, 2003, 880 p.
12. Pirverdian A.M. Fizika i gidravlika neftianogo plasta [Physics and Hydraulics of Oil Reservoir]. Moscow: Nedra, 1982, 192 p.
13. Romm E.S. Strukturnye modeli porovogo prostranstva gornykh porod. [Structural models of the pore space of rocks]. Leningrad: Nedra, 1985, 240 p.
14. Jodry R.L., Cinilingarian G.V., Mazzuiloand S.J., Rieke H.H. Chapter 6 Pore Geometry of Carbonate Rocks and Capillary Pressure Curves (Basic Geologic Concepts). Carbonate Reservoir Characterization: A Geologic-Engineering Analysis. Part I. Elsevier, Amsterdam, Vol. 30, 1992, P. 331-377. DOI: 10.1016/S0376-7361(09)70129-3
15. Skopec R.A. Proper Coring and Wellsite Core Handling Procedures: The First Step Toward Reliable Core Analysis. Journal of Petroleum Technology. April 1994, vol. 46, iss. 04, pp. 280-280. DOI: 10.2118/28153-PA
16. Chilingarian G.V., Mazzullo S.J., Rieke H.H. Carbonate reservoir characterization: a geologic-engineering analysis, part 2. Elsevier, 1996, 993 p.
17. Denney D. Whole Core vs. Plugs: Integrating Log and Core Data to Decrease Uncertainty in Petrophysical Interpretation and Oil-In-Place Calculations. Journal of Petroleum Technology, 2011, vol. 63, SPE. No. 0811-0058-JPT, pp. 58-60. DOI: 10.2118/0811-0058-JPT
18. Herrera R.G., Fernando S.V., Hernandez F.P. On the Petrophysics of Carbonate Reservoirs Through Whole Cole Analysis. Society of Petroleum Engineers, International Petroleum Conference and Exhibition of Mexico, 10-13 October 1994. Veracruz, Mexico. DOI: 10.2118/28675-MS
19. Johnson N.L., Leone F.C. Statistics and experimental design. New York – London – Sydney – Toronto, 1977, 606 p.
20. Montgomery D.C., Peck E.A. Introduction to liner regression analysis. New York: John Wiley & Sons, 1982, 504 p.
21. Watson G.S. Statistic on spheres. New York: John Wiley and Sons, Inc., 1983, 238 p.
22. Yarus J.M. Stochastic modeling and geostatistics. AAPG. Tulsa, Oklahoma, 1994, 231 p.
23. Indrupskii I.M., Iastrebkova K.A., Shupik N.V. Modelirovanie tekhnologicheskikh rezhimov raboty skvazhin razlichnogo tipa v nedonasyshchennykh kollektorakh Zapadnoi Sibiri s uchetom kapilliarnogo kontsevogo effekta [Modeling technological modes of operation of wells of different types at undersaturated reservoirs of Western Siberia taking into account the capillary and effect]. Mezhdunaronaia konferentsiia “Tiumen' – 2005. Glubokie gorizonty nauki i nedr”. Tiumen', 2015.
24. Indrupskii I.M. Uchet kapilliarno uderzhivaemoi vody pri modelirovanii dvukhfaznoi fil'tratsii v laboratornykh iplastovykh usloviiakh [Taking into account capillary retained water when modeling two-phase filtration in laboratory and reservoir conditions]. Avtomatizatsiia, telemekhanizatsiia i sviaz' v neftianoi promyshlennosti, 2009, no. 11, pp. 45-53.
25. Zakirov S.N., Indrupskii I.M., Zakirov E.S., Zakirov I.S. et al. Novye printsipy i tekhnologii razrabotki mestorozhdenii nefti i gaza. Chast' 2 [New principles and technologies for the development of oil and gas fields. Part 2]. Moscow, Izhevsk: Institut komp'iuternykh issledovanii, 2009, 484 p.
26. Iastrebkova K.A. Modelirovanie vliianiia kapilliarnykh effektov na nachal'nuiu obvodnennost' skvazhin v nedonasyshchennykh plastakh [Modeling the influence of capillary effects on the initial water cut of wells in undersaturated reservoirs]. Moscow: IPNG RAN, 2014.
27. Shupik N.V. Vliianie kapilliarnykh kontsevykh effektov na rabotu skvazhin razlichnogo tipa v nedonasyshchennykh kollektorakh [Capillary end effect of wells different types at undersaturated reservoirs]. Moscow: IPNG RAN, 2015.
28. Orlov D.M., Ryzhov A.E., Perunova T.A. Metodika opredeleniia otnositel'nykh fazovykh pronitsaemostei po dannym nestatsionarnoi fil'tratsii putem sovmestnogo fizicheskogo i komp'iuternogo modelirovaniia [Method for determining relative phase permeabilities from non-stationary filtration data by joint physical and computer modeling]. Prikladnaia mekhanika i tekhnicheskaia fizika, 2013, no. 5, pp. 119-128.
29. Efros D.A. Issledovanie fil'tratsii neodnorodnykh sistem [Investigation of filtration of heterogeneous systems]. Moscow: Gostoptekhizdat, 1963, 349 p.
30. Shchelkachev V.N. Osnovy podzemnoi neftianoi gidravliki [Fundamentals of underground oil hydraulics]. Moscow: Gostoptekhizdat, 1945.
31. Kheifets L.I., Neimark A.V. Mnogofaznye protsessy v poristykh sredakh [Multiphase processes in porous media]. Moscow: Khimiia, 1982. 320 p.
32. Kolesnik S.V., Trofimov A.S., Polishchuk S.T. Otnositel'naia fazovaia pronitsaemost' [Relative phase permeability]. Tiumen': Tiumenskii gosudarstvennyi neftegazovyi universitet, 2013, 96 p.
33. Kadet V.V., Khurgin Ia.I. Sovremennye veroiatnostnye podkhody pri reshenii zadach mikro- i makrourovnia v neftegazovoi otrasli [Modern probabilistic approaches to solving problems at the micro and macro levels in the oil and gas industry]. Moscow, Izhevsk: Institut komp'iuternykh issledovanii, NITs “Reguliarnaia i khaoticheskaia dinamika”, 2006, 240 p.
34. Loitsianskii L.G. Mekhanika zhidkosti i gaza [Fluid and Gas Mechanics]. Moscow, Leningrad: Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoi literatury, 1950, 678 p.
35. Masket M. Fizicheskie osnovy tekhnologii dobychi nefti [Physical foundations of oil production technology]. Moscow, Izhevsk: Institut komp'iuternykh issledovanii, 2004, 606 p.
36. Syrtlanov V.R., Fatikhov S.Z. O podkhode k remasshtabirovaniiu otnositel'nykh fazovykh pronitsaemostei i kapilliarnykh krivykh [Approach to rescaling of relative phase permeabilities and capillary curves]. Vestnik TsKR Rosnedra, 2010, no. 5, pp. 42-46.
37. Shagapov V.Sh. O fil'tratsii gazirovannoi zhidkosti [About carbonated liquid filtration]. Prikladnaia mekhanika i tekhnicheskaia fizika, 1993, no. 5, pp. 97-106.
38. Shagapov V.Sh., Syrtlanov V.R. Fil'tratsiia kipiashchei zhidkosti v poristoi srede [Filtration of boiling liquid in a porous medium]. Teplofizika vysokikh temperatur, 1994, vol. 32, no. 1, pp. 87-93.
39. Pitkevich V.T. et al. Fizicheskoe modelirovanie otnositel'nykh fazovykh pronitsaemostei na granitse oblasti trekhfaznoi nasyshchennosti [Physical modelling of relative phase permeabilities on the boundary of three-phase saturation zone]. Neftjanoe hozjajstvo, 2009, no. 5, pp. 70-71.
40. Pitkevich V.T. et al. Fizicheskoe modelirovanie dvuh variantov vodogazovogo vozdejstvija na obrazcah kerna [Physical modelling of relative phase permeabilities on the boundary of three-phase saturation zone]. Neftjanoe hozjajstvo, 2010, no. 1, pp. 62-63.
41. Gupta R. and Maloney D.R. Intercept Method – A Novel Technique to Correct Steady-State Relative Permeability Data for Capillary End Effects. SPE Reservoir Evaluation & Engineering, vol. 19, iss. 02, 2016, pp. 316-330. DOI: 10.2118/171797-PA
42. Osoba J.S., Richardson J.G., Kerver J.K., Hafford J.A., Blair P.M. Laboratory Measurements of Relative Permeability. Journal of Petroleum Technology, 1951, vol. 3, iss. 02, pp. 47-56. DOI: 10.2118/951047-G
43. Chen A.L. and Wood A.C. Rate Effects on Water-Oil Relative Permeability. Paper SCA2001-19 presented at the 2001 Symposium of the Society of Core Analysts. Edinburgh, Scotland, 2001.
44. Hinkley R.E and Davis L.A. Capillary Pressure Discontinuities and End Effects in Homogeneous Composite Cores: Effect of Flow Rate and Wettability. SPE Annual Technical Conference and Exhibition, 5-8 October, New Orleans, Louisiana, 1986. DOI: 10.2118/15596-MS
45. Grattoni C., Al-Hinai S., Guise P., Fisher Q. The Role of Interstitial Water in Hydrocarbon Flow for Tight Rocks. Paper SCA2007-14 presented at the International Symposium of the Society of Core Analysts. Calgary, Canada, 2007.
Laboratory Results of the Influence of Carbon Dioxide on the Development of the Permo-Carbonferous Reservoir of the Usinskoe DepositKalinin S.A., Morozyuk O.A., Kosterin K.S., Podoinitsyn S.P. Received: 20.07.2020 Accepted: 02.11.2020 Published: 11.01.2021 http://dx.doi.org/10.15593/2712-8008/2021.1.5
PDF |
Abstract |
Authors |
References |
Abstract: As an option for enhancing oil recovery of a high-viscosity Permo-Carboniferous reservoir associated with the Usinskoye field, the use of technology based on technogenic carbon dioxide as an injection agent is considered. In the world practice, several fields are known the parameters of which are close to those of the Permo-Carboniferous reservoir and in which CO2 injection was accepted as successful. Based on this, CO2 injection can potentially be applicable in the conditions of a Permo-Carboniferous reservoir. At present, as a result of various development technologies implementation, reservoir zones are distinguished, characterized by different thermobaric properties. Depending on reservoir conditions, when displacing oil with gases, various modes of oil displacement can be realized.
This article describes the results of studies carried out to investigate the effect of carbon dioxide concentration on the properties of high-viscosity oil in the Permo-Carboniferous Reservoir of the Usinskoye field, as well as the results of filtration experiments on slim models produced to assess the oil displacement regime under various temperature and pressure conditions of the Permo-Carboniferous Reservoir. The study of the CO2 concentration influence on oil properties was carried out using the standard PVT research technique. The displacement mode was assessed using the slim-tube technique.
Based on the performed experiments, it was established that an increase in the concentration of CO2 in high-viscosity oil led to a noticeable change in its properties; for the conditions of a Permo-Carboniferous Reservoir, the most probable mode of oil displacement by carbon dioxide was established. Difficulties associated with the preparation of the CO2-heavy oil system were described separately. Based on the literature review, it was shown that the rate of mixing of oil with carbon dioxide depended on certain conditions.
Keywords: high-viscosity oil, enhanced oil recovery, carbon dioxide, Permo-Carboniferous Reservoir of the Usinskoye field, oil displacement ratio, laboratory studies, PVT study, asphaltenes, viscosity, density, saturation pressure.
Authors: Stanislav A. Kalinin
PermNIPIneft branch of LUKOIL-Engineering LLC in Perm
stanislav.kalinin@pnn.lukoil.com
3a Permskaya st., Perm, 614015, Russian Federation
Oleg A. Morozyuk
PermNIPIneft branch of LUKOIL-Engineering LLC in Perm
oleg.morozyuk@pnn.lukoil.com
3a Permskaya st., Perm, 614015, Russian Federation
Konstantin S. Kosterin
PermNIPIneft branch of LUKOIL-Engineering LLC in Perm
konstantin.kosterin@pnn.lukoil.com
3a Permskaya st., Perm, 614015, Russian Federation
Semyon P. Podoinitsyn
PermNIPIneft branch of LUKOIL-Engineering LLC in Ukhta
Semen.Podojnitsyn@pnn.lukoil.com
11 Oktyabrskaya st., Ukhta, 169300, Russian Federation
References: 1. Ruzin L.M., Chuprov I.F., Moroziuk O.A., Durkin S.M. Tekhnologicheskie printsipy razrabotki zalezhei anomal'no viazkikh neftei i bitumov [Technological principles for the development of deposits of abnormally viscous oils and bitumen]. 2nd ed. Moscow, Izhevsk: Institut komp'iuternykh issledovanii, 2015, 480 p.
2. Kalinin S.A., Moroziuk O.A. Razrabotka mestorozhdenii vysokoviazkoi nefti v karbonatnykh kollektorakh s ispol'zovaniem dioksida ugleroda. Analiz mirovogo opyta [Using carbon dioxide to develop highly viscous oil fields in carbonate reservoirs. Global experience analysis]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo, 2019, vol. 19, no. 4, pp. 373-387. DOI: 10.15593/2224-9923/2019.4.6
3. Lake L.W. Enhanced Oil Recovery Fundamentals. Society of Petroleum Engineers, 1985.
4. Wu R.S., Batycky J.P. Evaluation Of Miscibility From Slim Tube Tests. Petroleum Society of Canada, 1990, no. 1. DOI:10.2118/90-06-06
5. Yelling W.F., Metcalfe R.S. Determination and prediction of CO2 minimum miscibility pressures. Journal of Petroleum Technology, 1980, vol. 32, no. 1, pp. 160-168. DOI: 10.2118/7477-PA
6. Klins M.A., Ali S.M.F. Heavy Oil Production By Carbon Dioxide Injection. Journal of Canadian Petroleum Technology, 1982, vol. 21(05). DOI: 10.2118/82-05-06
7. Alireza Emadi Enhanced heavy oil recovery by water and carbon dioxide flood: Submitted for the Degree of Doctoral of Philosophy in Petroleum Engineering. Edinburgh, 2012.
8. Frenkel' Ia.I. Kineticheskaia teoriia zhidkostei [Kinetic theory of liquids]. Leningrad: Nauka, 1975, 592 p.
9. Evdokimov I.N., Nanotekhnologii upravleniia svoistvami prirodnykh neftegazovykh fliuidov [Nanotechnology for controlling the properties of natural oil and gas fluids]. Moscow: “Neft' i gaz” Rossiiskii gosudarstvennyi universitet nefti i gaza imeni I.M. Gubkina, 2010, 355 p.
10. Srivastava R.K., Huang S.S., Dong M. Comparative Effectiveness of CO2, Produced Gas, and Flue Gas for Enhanced Heavy-Oil Recovery. SPE Reservoir Evaluation & Engineering, 1999, vol. 2, no. 3, pp. 238-247. DOI: 10.2118/56857-PA
11. Srivastava R.K., Huang S.S., Mourits F.M. A Laboratory Evaluation of Suitable Operating Strategies for Enhanced Heavy Oil Recovery by Gas Injection. Journal of Canadian Petroleum Technology, 1997, vol. 36, no. 2, pp. 33-41. DOI: 10.2118/97-02-02
12. Sun G., Li C., Wei G., Yang F. Characterization of the viscosity reducing efficiency of CO2 on heavy oil by a newly developed pressurized stirring-viscometric apparatus. Journal of Petroleum Science and Engineering, 2017, vol. 156, no. 7, pp. 299-306. DOI: 10.1016/j.petrol.2017.06.009
13. Hu R., Crawshaw J.P., Trusler J.P.M., Boek E.S. Rheology of diluted heavy crude oil saturated with carbon dioxide. Energy Fuel, 2014, vol. 29, no. 5, pp. 2785-2789. DOI: 10.1021/ef5020378
14. Behzadfar E., Hatzikiriakos S.G. Rheology of bitumen: Effects of temperature, pressure, CO2 concentration and shear rate. Fuel, 2014, vol. 116, no. 1, pp. 578-587. DOI: 10.1016/j.fuel.2013.08.024
15. Miller J., Jones R. A Laboratory Study To Determine Physical Characteristics of Heavy Oil After CO2 Saturation. SPE/DOE Enhanced Oil Recovery Symposium. Tulsa, Oklahoma: Society of Petroleum Engineers, 1981, pp. 259-268. DOI: 10.2118/9789-MS
16. Sayegh S.G., Rao D.N., Kokal S., Najman J. Phase Behaviour And Physical Properties Of Lindbergh Heavy Oil/CO2 Mixtures. Journal of Canadian Petroleum Technology, 1990, vol. 29, no. 6, pp. 31-33. DOI: 10.2118/90-06-02
17. Svrcek W.Y., Mehrotra A.K. Gas Solubility, Viscosity And Density Measurements For Athabasca Bitumen. Journal of Canadian Petroleum Technology, 1982, vol. 21, no. 4, pp. 31-38. DOI: 10.2118/82-04-02
18. Srivastava R.K., Huang S.S., Dong M. Asphaltene Deposition During CO2 Flooding. SPE Production & Facilities, 1999, vol. 14, no. 4, pp. 235-245. DOI: 10.2118/59092-PA
19. Cao M., Gu Y. Oil recovery mechanisms and asphaltene precipitation phenomenon in immiscible and miscible CO2 flooding processes. Fuel, 2013, vol. 109, no. 1, pp. 157-166. DOI: 10.1016/j.fuel.2013.01.018
20. Song Z., Zhu W., Wang X., Guo S. 2-D Pore-Scale Experimental Investigations of Asphaltene Deposition and Heavy Oil Recovery by CO2 Flooding. Energy & Fuels, 2018, vol. 32, no. 3, pp. 3194-3201. DOI: 10.1021/acs.energyfuels.7b03805
21. Fang T., Wang M., Li J., Liu B., Shen Y., Yan Y., Zhang J. Study on the Asphaltene Precipitation in CO2 Flooding: A Perspective from Molecular Dynamics Simulation. Industrial & Engineering Chemistry Research, 2018, vol. 57, no. 3, pp. 1071-1077. DOI: 10.1021/acs.iecr.7b03700
22. Peyman Zanganeh, Hossein Dashti and Shahab Ayatollahi. Visual investigation and modeling of asphaltene precipitation and deposition during CO2 miscible injection into oil reservoirs. Fuel, 2015, vol. 160, pp. 132-139. DOI: 10.1016/j.fuel.2015.07.063
23. Men L. Fizicheskoe modelirovanie vytesneniia nefti gazom (rastvoritelem) s ispol'zovaniem kernovykh modelei plasta i slim tube [Physical modeling of oil displacement by gas (solvent) using reservoir core models and slim tube]. Ph. D. thesis. Moscow, 2016.
24. Sharma A.K. et al. Miscible displacement of heavy West Sake crude by solvents in slim tube. SPE 18761.
25. Vasilevskii A.S. Kurs teoreticheskoi fiziki. Termodinamika i statisticheskaia fizika [A course in theoretical physics. Thermodynamics and Statistical Physics]. 2nd ed. Moscow: Drofa, 2006, 240 p.
26. Gimatudinov Sh.K. Fizika neftianogo i gazovogo plasta [Physics of oil and gas reservoir]. Moscow: Nedra, 1971, 312 p.
27. Khaznaferov A.I. Issledovanie plastovykh neftei [Study of reservoir oils]. Moscow: Nedra, 1987, 116 p.
28. Mamuna V.N., Trebin G.F., Ul'ianinskii B.V. Eksperimental'noe issledovanie plastovykh neftei [Experimental study of reservoir oils]. Moscow: GOSINTI, 1960, 143 p.
29. Srivastava R.K., Huang S.S. Laboratory Investigation of Weyburn CÎ2 Miscible Flooding. Technical Meeting. Petroleum Conference of the South Saskatchewan Section, October 19-22. Regina: Petroleum Society of Canada, 1997, pp. 1-20. DOI: 10.2118/97-154
30. Renner T.A. Measurement and Correlation of Diffusion Coefficients for CO2 and Rich-Gas Applications. SPE Reservoir Engineering, 1988, vol. 3, no. 2, pp. 517-523. DOI: 10.2118/15391-PA
31. Fadaei H., Scarff B., Sinton D. Rapid Microfluidics-Based Measurement of CO2 Diffusivity in Bitumen. Energy & Fuels, 2011, no. 10, pp. 4829-4835. DOI: 10.1021/ef2009265
32. Etminan S.R., Maini B.B., Chen Z., Hassanzadeh H. Constant-Pressure Technique for Gas Diffusivity and Solubility Measurements in Heavy Oil and Bitumen. Energy & Fuels, 2010, no. 1, pp. 533-549. DOI: 10.1021/ef9008955
33. Zhang Y.P., Hyndman C.L., Maini B.B. Measurement of gas diffusivity in heavy oils. Journal of Petroleum Science and Engineering, 2000, vol. 25, no. 1, pp. 37-47. DOI: 10.1016/S0920-4105(99)00031-5
34. Yang D., Gu Y. Determination of Diffusion Coefficients and Interface Mass-Transfer Coefficients of the Crude Oil-CO2 System by Analysis of the Dynamic and Equilibrium Interfacial Tensions. Industrial & Engineering Chemistry Research, 2008, vol 47, no. 15, pp. 5447-5455. DOI: 10.1021/ie800053d
35. Grogan A.T., Pinczewski V.W., Ruskauff G.J., Orr F.M. Diffusion of CO2 at Reservoir Conditions: Models and Measurements. SPE Reservoir Engineering, 1988, vol. 3, no. 1, pp. 93-102. DOI: 10.2118/14897-PA
36. Lobanov A.A. et al. Osobennosti vzaimodeistviia szhizhennogo uglekislogo gaza s vysokoviazkoi neft'iu. Chast' 2. Svoistva faz [Peculiarities of interaction of liquefied carbon gas with high viscous oil. Part 2. Properties of phases]. Neftepromyslovoe delo, 2018, no. 5, pp. 47-53. DOI: 10.30713/0207-2351-2018-5-47-53
37. Orr F.M., Yu A.D., Lien C.L. Phase Behavior of CO2 and Crude Oil in Low-Temperature Reservoirs. Society of Petroleum Engineers Journal, 1981, vol. 21, no. 1, pp. 480-492. DOI: 10.2118/8813-PA
38. Khlebnikov V.N., Gubanov V.B. Ispol'zovanie slim-modelei plasta dlia fizicheskogo modelirovaniia protsessov vytesneniia nefti smeshivaiushchimisia agentami. Chast' 3. Osobennosti massoperenosa pri vytesnenii nefti dvuokis'iu ugleroda [Application of formation slim-models for physical modeling of oil displacement processes by miscible agents. Part 3. Some specific features of mass-transfer while oil replacement by carbon dioxide]. Neftepromyslovoe delo, 2014, no. 9, pp. 43-47.
39. Polishchuk A.M., Khlebnikov V.N., Gubanov V.B. Ispol'zovanie slim-modelei plasta dlia fizicheskogo modelirovaniia protsessov vytesneniia nefti smeshivaiushchimisia agentami. Chast' 1. Metodologiia eksperimenta [Usage of a formation slim tubes for physical modeling of oil displacement processes by miscible agents. Part 1. Methodology of the experiment]. Neftepromyslovoe delo, 2014, no. 5, pp. 19-24.
40. Ekundayo J.M. et al. Minimum Miscibility Pressure Measurement with Slim Tube Apparatus- How Unique is the Value? SPE Reservoir Characterization and Simulation Conference and Exhibition, 16-18 September, Abu Dhabi, UAE, 2013. DOI: 10.2118/165966-MS
41. Flock D.L., Nouar A. Parametric Analysis on the Determination of the Minimum Miscibility Pressure in Slim Tube Displacements, 1984. DOI: 10.2118/84-05-12. PETSOC-84-05-12
42. Sebastian H.M., Wenger R.S., Renner T.A. Correlation of Minimum Miscibility Pressure for Impure CO2 Streams. Journal of petroleum Technology, 1985, vol. 37(11), pp. 2-76. DOI: 10.2118/12648-PA
43. Holm L.W., Josendal V.A. Mechanisms of Oil Displacement by Carbon Dioxide. Journal of petroleum Technology, 1974, vol. 26(12), pp. 1427-1438. DOI: 10.2118/4736-PA
44. OST 153-39.2-048-2003. Neft'. Tipovye issledovaniia plastovykh fliuidov i separirovannykh neftei [OST 153-39.2-048-2003. Oil. Routine studies of reservoir fluids and separated oils]. Moscow, 2003.
45. Kalinin S.A., Moroziuk O.A. Laboratornye issledovaniia karbonatnykh kollektorov mestorozhdenii vysokoviazkoi nefti s ispol'zovaniem dioksida ugleroda [Laboratory research of high-viscosity oil fields in carbonate reservoirs using carbon dioxide]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Nedropol'zovanie, 2020, vol. 20, no. 4, pp. 369-385. DOI: 10.15593/2712-8008/2020.4.6
Study of Gas Wells Operation Regimes in Complicated ConditionsPopov M.A., Petrakov D.G. Received: 12.07.2020 Accepted: 02.11.2020 Published: 11.01.2021 http://dx.doi.org/10.15593/2712-8008/2021.1.6
PDF |
Abstract |
Authors |
References |
Abstract: The influence of reservoir rock properties on sand production in wells is considered. It was concluded that the rock should be considered rather not from the point of view of its strength, but from the point of view of the type of cementitious substance and its distribution. When predicting sand production, it is necessary to take into account the internal stresses of the rocks, as well as the change in these stresses during drilling, perforation and operation of the formation due to the violation of their initial state.
Within the framework of this work, an analysis of the main causes of sand production during the operation of gas wells is presented, as well as the negative consequences of sand production for gas production equipment. It has been established that water breakthrough, formation depletion, pressure drop at the bottom of the wells due to their frequent shutdown are the main prerequisites for the removal of sand from the bottomhole formation zone. Sand production is associated with such negative consequences as plugging in wells, erosion of underground and surface equipment, collapse of the top of the bottomhole formation zone and production strings.
The main technologies for the prevention and elimination of accidents associated with the removal of mechanical particles from the reservoir are considered. Based on the research results, an algorithm was proposed for selecting technological modes of well operation in conditions of water and sand. The parameters for choosing the optimal operating mode of a gas well are substantiated, in which sand is not extracted with the subsequent disabling of downhole and wellhead equipment, the integrity of the bottomhole zone is not violated, and the well is not self-contained.
The results obtained can be applied to improve the efficiency of gas wells operation and predict their trouble-free operation.
Keywords: gas well, sand production, complicated conditions, bottomhole zone, forecasting complications, well operation, causes of sand production, sand production consequences, methods of sand control, production optimization, technological mode of well operation, final stage of field development, gas field, well bottom, well flow rate, abrasive wear.
Authors: Maksim A. Popov
Saint Petersburg Mining University
maksim_anatolyevich@mail.ru
2 21st line, Vasilyevsky island, Saint Petersburg, 199106, Russian Federation
Dmitrii G. Petrakov
Saint Petersburg Mining University
Petrakov_DG@pers.spmi.ru
2 21st line, Vasilyevsky island, Saint Petersburg, 199106, Russian Federation
References: 1. Walton I.C., Atwood D.C., Halleck P.M. et al. Perforating Unconsolidated Sands: An Experimental and Theoretical Investigation. SPE Drilling & Completion, vol. 17, iss. 03, 2002, pp. 141-150. DOI: 10.2118/79041-PA
2. Wulan R.S., Susilo R.Y., Hendra Y.S. et al. Development Strategy of Soft Friable Carbonate Gas Reservoir through Horizontal Open Hole Gravel Packed Completion: APN Field Offshore West Java. International Petroleum Technology Conference, 4-6 December, Dubai, U.A.E., 2007, 104532.
3. Xiong Y., Xu H., Wang Y., Zhou W., Liu C., Wang L. Fluid flow with compaction and sand production in unconsolidated sandstone reservoir. Petroleum, 2018, vol. 4, iss. 3, pp. 358-363. DOI: 10.1016/j.petlm.2018.05.003
4. Krumbein W.Ñ. and Sloss L.L. Stratigraphy and Sedimentation. 2" ed., W.H. Freeman and Co. San Francisco, CA, 1963.
5. Salema A.M.K., Abdel-Wahab A., McBride E.F. Diagenesis of shallowly buried cratonic sandstones, southwest Sinai, Egypt. Sediment. Geol, 1998, vol. 119(3-4), pp. 311-335. DOI: 10.1016/S0037-0738(98)00056-6
6. Al-Tahini A.M., Sondergeld C.H., Rai C.S. The Effect of Cementation on the Mechanical Properties of Sandstones. SPE Reservoir Evaluation & Engineering, 2006. vol. 9, iss. 04, pp. 308-316. DOI: 10.2118/89069-PA
7. Webster C.M., Taylor P.G. Integrating Quantitative and Qualitative Reservoir Data in Sand Prediction Studies: The Combination of Numerical and Geological Analysis. SPE Offshore Europe Oil and Gas Conference and Exhibition, 4-7 September, Aberdeen, Scotland, U.K., 2007. DOI: 10.2118/108586-MS
8. Sviridov B.C., Panenko I.A., Maslov I.I. et al. O povyshenii nefteotdachi plastov mestorozhdenii na pozdnei stadii razrabotki [Enhanced oil recovery from fields at a late stage of development]. Neftianoe khoziaistvo, 1993, no. 4, pp. 49-50.
9. Ter-Sarkisov R.M. Razrabotka mestorozhdenii prirodnykh gazov [Development of natural gas fields]. Moscow: Nedra, 1999.
10. Ploskov A.A., Shuliatikov I.V., Dikamov D.V. et al. Poteri davleniia v zone vskrytiia produktivnogo plasta skvazhin senomanskikh zalezhei v period padaiushchei dobychi [Pressure loss in the productive formation penetration zone of the wells of Cenomanian deposits during the declining production period]. Gazovaia promyshlennost', 2012, no. 5, pp. 24-28.
11. Babazade E.M. Rol' intellektual'nykh skvazhin v osushchestvlenii kontrolia nad peskoproiavleniem [The role of smart wells in sand control]. ELMt 0S0RL0R PROCEEDINGS NAUChNYE TRUDY “Razrabotka i ekspluatatsiia neftianykh i gazovykh mestorozhdenii”, 2011, no. 3, 3943 p.
12. Ploskov A.A., Shuliatikov I.V., Minlikaev V.Z. et al. Fil'tratsiia kondensatsionnoi vody v plast v rabotaiushchikh skvazhinakh senomanskikh zalezhei [Filtration of condensation water into the reservoir in working wells of Cenomanian deposits]. Gazovaia promyshlennost', 2013, no. 5, pp. 62-66.
13. Bondarev E.A., Rozhin I.I., Argunova K.K. Vlagosoderzhanie prirodnogo gaza v prizaboinoi zone plasta [Moisture content of natural gas in bottom hole zone]. Zapiski Gornogo instituta, 2018, vol. 233, pp. 492-497. DOI:10.31897/PMI.2018.5.492
14. Lavrent'ev A.V., Antoniadi D.G. Analiz prichin i posledstvii peskoproiavlenii na zavershaiushchei stadii razrabotki neftianykh i gazovykh mestorozhdenii [Analysis of the causes and consequences of sand production at the final stage of the development of oil and gas fields]. Gornyi informatsionno-analiticheskii biulleten', 2015, no. 4, spetsial'nyi vypusk no. 10 (otdel'nye stat'i), 32 p.
15. Melik-Aslanov L.S, Sapunov A.G. Issledovanie vliianiia nekotorykh geologo-ekspluatatsionnykh faktorov na peskoproiavlenie pri ekspluatatsii skvazhin [Investigation of the influence of some geological and operational factors on sand production during well operation]. Azerbaidzhanskoe neftianoe khoziaistvo, 1967, no. 9, pp. 29-31.
16. Shaidaev A.Ch. O vozmozhnosti rannego diagnostirovaniia peskoproiavleniia v skvazhinakh [On the possibility of early diagnostics of sand production in wells]. Azerbaidzhanskoe neftianoe khoziaistvo, 1987, no. 4, pp. 38-41.
17. Bizanti M., Desai S. Proper monitoring helps sand control. Petroleum Engineer International, 1990, vol. 62, no. 2, pp. 32-34.
18. Abdulin P.A. Vliianie litologicheskikh osobennostei porod produktivnogo gorizonta na vynos peska pri ekspluatatsii skvazhin [Influence of lithological features of rocks of the productive horizon on sand production during well operation]. Trudy instituta Giprotiumenneftegaz, 1971, iss. 29, pp. 50-53.
19. Abdulin P.A. et al. Usloviia vynosa peska pri mekhanizirovannoi ekspluatatsii skvazhin Trekhozernogo mestorozhdeniia [Sand production conditions during mechanized operation of wells of the Trehozernoye field]. Trudy instituta Giprotiumenneftegaz, 1971, iss. 29, pp. 42-45.
20. Rogachev M.K., Mukhametshin V.V., Kuleshova L.S. Povyshenie effektivnosti ispol'zovaniia resursnoi bazy zhidkikh uglevodorodov v iurskikh otlozheniiakh Zapadnoi Sibiri [Improving the efficiency of using resource base of liquid hydrocarbons in Jurassic deposits of Western Siberia]. Zapiski Gornogo instituta, 2019, vol. 240, pp. 711-715. DOI: 10.31897/PMI.2019.6.711
21. Shakirov E.I. Opyt primeneniia tekhnologii dobychi i peskoproiavleniia na plastakh pachki PK mestorozhdenii Barsukovskogo napravleniia [Experience in the use of production technologies and sand production in the seams of the PK pack of the Barsukovskoye field]. Inzhenernaia praktika, 2010, no. 2, pp. 58-65.
22. Gasumov R.A. et al. Analiz prichin vynosa peska pri ekspluatatsii senomanskikh gazovykh skvazhin Urengoiskogo GKM [Analysis of the causes of sand production during the operation of the Cenomanian gas wells of the Urengoyskoye gas condensate field]. Stroitel'stvo gazovykh i gazokondensatnykh skvazhin. Moscow: VNIIgaz, 1996, pp. 34-41.
23. Akhmetov A.A Kapital'nyi remont skvazhin na Urengoiskom mestorozhdenii: problemy i resheniia [Workover of wells at the Urengoyskoye field: problems and solutions]. Ufa: Ufimskii gosudarstvennyi neftianoi tekhnicheskii universitet, 2000, 209 p.
24. Zotov G.A., Vlasenko A.P., Dinkov A.V. Ekspluatatsiia skvazhin, vskryvshikh vodoplavaiushchie zalezhi, slozhennye slabostsementirovannymi kollektorami [Operation of wells that penetrated waterfowl deposits, composed of weakly cemented reservoirs]. Obzornaia informatsiia VNIIIEGAZPROMA. Razrabotka i ekspluatatsiia gazovykh i gazokondensatnykh mestorozhdenii, 1983, iss. 10, 44 p.
25. Iktisanov V.A. Opisanie ustanovivshegosia pritoka zhidkosti k skvazhinam razlichnoi konfiguratsii i razlichnym chastichnym vskrytiem [Description of steady inflow of fluid to wells with different configurations and various partial drilling-in]. Zapiski Gornogo instituta, 2020, vol. 243, pp. 305-312. DOI: 10.31897/PMI.2020.3.305.
26. Armentor R.Dzh., Uaiz M.R. et al. Predotvrashchenie vynosa peska iz dobyvaiushchikh skvazhin [Prevention of sand production from production wells]. Chevron USA Inc. Novyi Orlean, Luiziana, SShA, 2007, pp. 1-14.
27. Rekomendovannye metodiki po vyboru sposoba zakanchivaniia skvazhin v usloviiakh peskoproiavleniia [Recommended Techniques for Selecting Well Completion in Sandy Conditions]. Korporativnyi nauchno-tekhnicheskii tsentr OAO “NK Rosneft'”. Upravlenie novykh tekhnologii, 2011.
28. Basarygin Iu.M., Bulatov A.I., Proselkov Iu.M. Zakanchivanie skvazhin [Well completion]. Moscow: Nedra, 2000.
29. Gasumov R.A., Minlikaev V.Z. Povyshenie i vosstanovlenie proizvoditel'nosti gazovykh i gazokondensatnykh skvazhin [Increase and recovery of productivity of gas and gas condensate wells]. Moscow: Gazprom ekspo, 2010, 478 p.
30. McPhee C.A., Farrow C.A., McCurdy P. Challenging Convention in Sand Control: Southern North Sea Examples SPE Production & Operations, vol. 22, iss. 02, 2007. DOI: 10.2118/98110-PA
31. Aksenova A.N. Issledovanie i razrabotka tekhniki, tekhnologii zakanchivaniia skvazhin s neustoichivymi kollektorami [Research and development of equipment, technologies for well completion with unstable reservoirs]. Abstract Ph. D. thesis. Tiumen', 2004.
32. Tananykhin D.S. Obosnovanie tekhnologii krepleniia slabostsementirovannykh peschanikov v prizaboinoi zone neftianykh i gazovykh skvazhin khimicheskim sposobom [Justification of the technology of fixing weakly cemented sandstones in the bottomhole zone of oil and gas wells by chemical method]. Abstract Ph. D. thesis. Saint Petersburg, 2013.
33. Shturn L.V., Kononenko A.A., Denisov S.O. Otechestvennye fil'try dlia zakanchivaniia skvazhin [Domestic well completion filters]. Territoriia NEFTEGAZ, 2010, no. 6, pp. 57-61.
34. Kamaletdinov R.S., Lazarev A. Obzor sushchestvuiushchikh metodov bor'by s mekhprimesiami [Review of existing methods of dealing with mechanical impurities]. Inzhenernaia praktika, 2010, no. 2, pp. 6-13.
35. Zhukovskii K.A. Likvidatsiia peskoproiavlenii oborudovaniem gazovykh skvazhin protivopesochnym fil'trom s graviinoi nabivkoi [Elimination of sand by equipment of gas wells with a sand filter with gravel packing]. Abstract Ph. D. thesis. Novyi Urengoi, 2002.
36. Bondarenko V.A. Povyshenie krepleniia prizaboinoi zony plasta s tsel'iu snizheniia peskoproiavlenii (na primere mestorozhdenii Krasnodarskogo kraia) [Increasing the support of the bottomhole formation zone in order to reduce sand production (on example of the Krasnodar Territory fields)]. Abstract Ph. D. thesis. Krasnodar, 2014.
37. Syed Ali. High-Productivity Horizontal Gravel Packs: oilfield Review. Summer, 2001.
38. Bennett C.L. Sand Control Design for Open Hole Completions. SPE Distinguished Lecturer Program presentations. September 1999 to May 2000.
39. Tiffin D.L., King G.E., Larese R.E., Britt L.K. New Criteria for Gravel and Screen Selection for Sand Control. SPE Formation Damage Control Conference, 18-19 February, Lafayette, Louisiana, 1998. DOI: 10.2118/39437-MS
40. Neal Ì.R. Gravel Pack Evaluation. Journal of Petroleum Technology, 1983, vol. 35, no. 9, pp. 1611-1616. DOI: 10.2118/11232-PA
41. Iziumchenko D.V. et al. Ekspluatatsiia gazovykh skvazhin v usloviiakh aktivnogo vodo- i peskoproiavleniia [Operation of gas wells in conditions of active water and sand manifestation]. Vesti gazovoi nauki, 2018, no. 1(33), pp. 235-242.
42. Tochigin A.A., Odishariia G.E. Prikladnaia gidrodinamika gazozhidkostnykh smesei [Applied hydrodynamics of gas-liquid mixtures]. Moscow: Gazprom VNIIGAZ; Ivanovskii gosudarstvennyi energeticheskii universitet, 1998, 400 p.
43. McLaury B.S., Shirazi S.A., Shadley J.R. A particle tracking method to predict sand erosion threshold velocities in elbow and tees. The 1994 ASME Fluids Engineering Division summer meeting, Lake Tahoe. Nevada, 1994.
44. Shirazi S.A., Shadley J.R., McLaury B.S. et al. A procedure to predict solid particle erosion in elbows and tees. Codes and Standard in a Global Environment, PVP, 1993, vol. 259, pp. 159-167. DOI: 10.1115/1.2842089
45. Molchanov A.A., Ageev P.G. Vnedrenie novykh tekhnologii - nadezhnyi put' izvlecheniia ostatochnykh zapasov mestorozhdenii uglevodorodov [Implementation of new technology is a reliable method of extracting reserves remaining in hydro-carbon deposits]. Zapiski Gornogo instituta, 2017, vol. 227, pp. 530-539. DOI: 10.25515/PMI.2017.5.530
Estimation of the Influence of Associated Petroleum Gas with a High Carbon Dioxide Content on the Oil Displacement Regime in the Development of the Tolumskoye FieldMorozyuk O.A., Kalinin S.A., Kalinin S.A., Scvortsov A.S., Melekhin S.V., Stenkin A.V., Mardamshin R.R., Usachev G.A., Mett D.A. Received: 25.07.2020 Accepted: 02.11.2020 Published: 11.01.2021 http://dx.doi.org/10.15593/2712-8008/2021.1.7
PDF |
Abstract |
Authors |
References |
Abstract: Depending on reservoir conditions, composition of reservoir oil and gas agent, various modes of oil displacement by gas can be implemented in reservoir conditions. The most preferable mode from the standpoint of the completeness of oil recovery is the mode of miscible displacement of oil by gas. The main parameter indicating the achievement of the miscible displacement mode is the minimum miscibility pressure. The most popular and reliable laboratory method for determining the minimum mixing pressure is the slim-tube method.
The results are presented related to laboratory studies performed to determine the value of the minimum miscibility pressure of reservoir oil from the Tolumskoye field and associated petroleum gas of the Semividovskaya group of fields and also to determine the mode of oil displacement by associated petroleum gas. To determine the parameters of reservoir oil and change its properties at various molar concentrations, the standard PVT research technique was used. To determine the minimum miscibility pressure, the slim-tube technique was used. To assess the mechanism of miscibility process development, chromatographic analysis of the sampled gas composition and visual analysis of the phase fluids behavior by means of a visual cell were additionally performed.
Two series of filtration experiments were performed on slim models aimed at displacement of the recombined oil model of the Tolumskoye field by the model of associated petroleum gas from the Semividovskaya group of fields. According to the obtained dependence of the oil displacement coefficient on pressure, when oil from the Tolumskoye field was displaced by associated petroleum gas of the Semividovskaya group of fields, the minimum miscibility pressure would be 14.8 MPa.
Based on the criteria for determining the mixing mode, as a result of generalization and comprehensive analysis of the research results, it was found that for the conditions of the Tolumskoye field, the mode of oil displacement by associated petroleum gas of the Semividovskaya group of fields was the mode of the developed multi-contact miscible displacement (the mechanism of condensation of solvent components into the oil phase).
Keywords: experimental studies, minimum miscibility pressure, associated petroleum gas, gas, oil, slim-tube, displacement mode, miscible oil displacement.
Authors: Oleg A. Morozyuk
PermNIPIneft branch of LUKOIL-Engineering LLC in Perm
oleg.morozyuk@pnn.lukoil.com
3a Permskaya st., Perm, 614015, Russian Federation
Stanislav A. Kalinin
PermNIPIneft branch of LUKOIL-Engineering LLC in Perm
stanislav.kalinin@pnn.lukoil.com
3a Permskaya st., Perm, 614015, Russian Federation
Sergey A. Kalinin
PermNIPIneft branch of LUKOIL-Engineering LLC in Perm
Sergej.Kalinin@pnn.lukoil.com
3a Permskaya st., Perm, 614015, Russian Federation
Andrey S. Scvortsov
PermNIPIneft branch of LUKOIL-Engineering LLC in Perm
Andrej.Skvortsov@pnn.lukoil.com
3a Permskaya st., Perm, 614015, Russian Federation
Sergey V. Melekhin
PermNIPIneft branch of LUKOIL-Engineering LLC in Perm
Sergej.Melehin@pnn.lukoil.com
3a Permskaya st., Perm, 614015, Russian Federation
Andrey V. Stenkin
LUKOIL-Western Siberia LLC, TPE Urayneftegaz
Andrey.Stenkin@lukoil.com
116a Lenina st., Urai, 628285, Russian Federation
Ruslan R. Mardamshin
LUKOIL-Western Siberia LLC, TPE Urayneftegaz
Ruslan.Mardamshin@lukoil.com
116a Lenina st., Urai, 628285, Russian Federation
Gennady A. Usachev
Head office of LUKOIL-Engineering LLC
Gennadiy.Usachev@lukoil.com
Bldg. 1, 3 Pokrovsky Boulevard, Moscow, 109028, Russian Federation
Dmitry A. Mett
Head office of LUKOIL-Engineering LLC
Dmitrij.Mett@lukoil.com
Bldg. 1, 3 Pokrovsky Boulevard, Moscow, 109028, Russian Federation
References: 1. Zheltov Iu.P. Razrabotka neftianykh mestorozhdenii [Oil fields development]. Moscow: Ripol Klassik, 1986.
2. Tumasian A.B. et al. Promyslovyi opyt vytesneniia nefti karbonizirovannoi vodoi [Field experience of oil displacement with carbonated water]. Geologiia i razrabotka neftianykh mestorozhdenii vostoka Volgo-Ural'skoi provintsii, 1975, 140 p.
3. Kovalenko K.I. Uvelichenie nefteotdachi plastov putem zakachki karbonizirovannoi vody [Increased oil recovery by injection of carbonated water]. Neftianoe khoziaistvo, 1964, no. 11, 12 p.
4. Babalian G.A. Primenenie karbonizirovannoi vody dlia uvelicheniia nefteotdachi [The use of carbonated water for enhanced oil recovery]. Moscow: Nedra, 1976, 144 p.
5. Surguchev M.G. Vtorichnye i tretichnye metody uvelicheniia nefteotdachi plastov [Secondary and tertiary methods of enhanced oil recovery]. Moscow: Nedra, 1985, 308 p.
6. Christensen J.R., Stenby E.H., Skauge A. Review of WAG Field Experience. SPE Res Eval & Eng, 1998, no. 4(2), pp. 97-106. SPE-71203-PA. DOI: 10.2118/71203-PA
7. Afzali S., Rezaei N., Zendehboudi S. A comprehensive review on enhanced oil recovery by water alternating gas (WAG) injection. Fuel, 2018, vol. 227, p. 218-246. DOI: 10.1016/j.petrol.2017.07.066
8. Zatsepin V.V. Tekhnologicheskie osnovy vodogazovogo vozdeistviia na plasty s trudnoizvlekaemymi zapasami nefti v nizkopronitsaemykh kollektorakh [Technological bases of water-gas stimulation of reservoirs with hard-to-recover oil reserves in low-permeability reservoirs]. Ph. D. thesis. Kazan', 2017.
9. Zatsepin V.V., Maksutov R.A. Sovremennoe sostoianie promyshlennogo primeneniia tekhnologii vodogazovogo vozdeistviia [Review of wag process industrial application. Modern consist]. Neftepromyslovoe delo, 2009, no. 7, pp. 31-21.
10. Drozdov A.N., Drozdov N.A. Uvelichenie KIN: vodogazovoe vozdeistvie na plast Opyt ekspluatatsii nasosno-ezhektornoi sistemy i puti sovershenstvovaniia tekhnologii VGV [Increase in oil recovery factor: water-gas impact on the reservoir Experience in the operation of the pump-ejector system and ways to improve the WAG technology]. Neftegaz. RU, 2017, no. 7, pp. 70-77.
11. Mohammed-Singh L.J. et al. Screening criteria for CO2 huff'n'puff operations. SPE/DOE Symposium on Improved Oil Recovery, 22-26 April, Tulsa, Oklahoma, USA, 2006. DOI: 10.2118/100044-MS
12. Alagorni A.H., Yaacob Z.B., Nour A.H. An overview of oil production stages: enhanced oil recovery techniques and nitrogen injection. International Journal of Environmental Science and Development, 2015, vol. 6, no. 9, pp. 693-701. DOI: 10.7763/IJESD.2015.V6.682
13. Denney D. et al. Enhanced oil recovery with high-pressure nitrogen injection. Journal of petroleum technology, 2001, vol. 53, no. 01, pp. 55-56. DOI: 10.2118/62547-MS
14. Blunt M., Fayers F.J., Orr Jr F.M. Carbon dioxide in enhanced oil recovery. Energy Conversion and Management, 1993, vol. 34, no. 9-11, pp. 1197-1204. DOI: 10.1016/0196-8904(93)90069-M
15. Glazova V.M., Ryzhik V.M. Primenenie dvuokisi ugleroda dlia povysheniia nefteotdachi plastov za rubezhom [The use of carbon dioxide for enhanced oil recovery abroad]. Moscow: VNIIOENG, 1986, 45 p.
16. Shokoya O.S. et al. The mechanism of flue gas injection for enhanced light oil recovery. Journal of Energy Resources Technology, 2004, vol. 126, no. 2, pp. 119-124. DOI: 10.1115/1.1725170
17. Bender S., Akin S. Flue gas injection for EOR and sequestration: Case study. Journal of Petroleum Science and Engineering, 2017, vol. 157, pp. 1033-1045. DOI: 10.1016/j.petrol.2017.07.044
18. Lesin V.S., Korovin K.V. Povyshenie effektivnosti ispol'zovaniia poputnogo neftianogo gaza pri razrabotke neftianykh mestorozhdenii [Increasing the efficiency of associated petroleum gas use in the development of oil fields]. Akademicheskii zhurnal Zapadnoi Sibiri, 2019, vol. 15, no. 3, pp. 32-33.
19. Kalinin S.A., Moroziuk O.A. Razrabotka mestorozhdenii vysokoviazkoi nefti v karbonatnykh kollektorakh s ispol'zovaniem dioksida ugleroda. Analiz mirovogo opyta [Using carbon dioxide to develop highly viscous oil fields in carbonate reservoirs. Global experience analysis]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo, 2019, no. 4, pp. 373-387. DOI: 10.15593/2224-9923/2019.4.6
20. Moroziuk O.A., Barkovskii N.N., Kalinin S.A., Bondarenko A.V., Andreev D.V. Eksperimental'nye issledovaniia vytesneniia vysokoviazkoi nefti dioksidom ugleroda iz karbonatnykh porod [Experimental study of heavy oil displacement by carbon dioxide from carbonate rocks]. Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii, 2019, no. 6, pp. 51-56. DOI: 10.30713/2413-5011-2019-6(330)-51-56
21. Lake L.W. Enhanced Oil Recovery Fundamentals. Society of Petroleum Engineers, 1985.
22. OST 153-39.2-048-2003. Neft'. Tipovye issledovaniia plastovykh fliuidov i separirovannykh neftei [OST 153-39.2-048-2003. Oil. Routine studies of reservoir fluids and separated oils]. Moscow, 2003.
23. Stalkup L.K. RTD 2(1) Oil Recovery by Miscible Displacement. 11th World Petroleum Congress, 28 August-2 September, London, UK, 1983, January 1.
24. Helfferich F.G. et al. Theory of multicomponent, multiphase displacement in porous media. Society of Petroleum Engineers Journal, 1981, vol. 21, no. 01, pp. 51-62. DOI: 10.2118/8372-PA
25. Orr F.M. et al. Theory of gas injection processes. Copenhagen: Tie-Line Publications, 2007, vol. 5. 376 p.
26. Christiansen R.L. et al. Rapid measurement of minimum miscibility pressure with the rising-bubble apparatus. SPE Reservoir Engineering, 1987, vol. 2, no. 04, pp. 523-527. DOI: 10.2118/13114-PA
27. Rao D.N. A new technique of vanishing interfacial tension for miscibility determination. Fluid phase equilibria, 1997, vol. 139, no. 1-2, pp. 311-324. DOI: 10.1016/S0378-3812(97)00180-5
28. Rao D.N. et al. Application of a new technique to optimize injection gas composition for the Rainbow Keg River F Pool miscible flood. Journal of Canadian Petroleum Technology, 1999, vol. 38, no. 13. DOI: 10.2118/96-100
29. Adyani W.N. et al. Advanced technology for rapid minimum miscibility pressure determination (part 1). Asia Pacific Oil and Gas Conference and Exhibition, 30 October-1 November, Jakarta, Indonesia, 2007. DOI: 10.2118/110265-MS
30. Flock D.L., Nouar A. Parametric analysis on the determination of the minimum miscibility pressure in slim tube displacements. The Journal of Canadian Petroleum Technology, 1984, vol. 23, iss. 05. DOI: 10.2118/84-05-12
31. Arnold C.W., Stone H.L., Luffel D.L. Displacement of Oil by Rich-Gas Banks. Society of Petroleum Engineers, 1960, December 1. DOI: 10.2118/1490-G
32. Kuo S.S. Prediction of Miscibility for the Enriched-Gas Drive Process. SPE Annual Technical Conference and Exhibition, 22-26 September, Las Vegas, Nevada, 1985, January 1. DOI: 10.2118/14152-MS
33. Glaso O. Miscible Displacement: Recovery Tests With Nitrogen. SPE Reservoir Engineering, 1990, vol. 5, iss. 01, pp. 61-68. DOI: 10.2118/17378-PA
34. Boersma D.M., Hagoort J. Displacement Characteristics of Nitrogen Flooding vs. Methane Flooding in Volatile Oil Reservoirs. SPE Reservoir Engineering, 1994, vol. 9, iss. 04, pp. 261-265. DOI: 10.2118/20187-PA
35. Jacobson H.A. Acid Gases and Their Contribution to Miscibility. Journal of Canadian Petroleum Technology, 1972, vol. 11, iss. 02. DOI: 10.2118/72-02-03
36. Graue D.J., Zana E.T. Study of a Possible CO2 Flood in Rangely Field. Journal of Petroleum Technology, 1981, vol. 33, iss. 07, pp. 1312 - 1318. DOI: 10.2118/7060-PA
37. Frimodig J.P., Reese N.A., Williams C.A. Carbon Dioxide Flooding Evaluation of High Pour-Point, Paraffinic Red Wash Reservoir Oil. Society of Petroleum Engineers Journal, 1983, vol. 23, iss.e 04, pp. 587-594. DOI: 10.2118/10272-PA
38. Rutherford W.M. Miscibility Relationships in the Displacement of Oil by Light Hydrocarbons. Society of Petroleum Engineers Journal, 1962, vol. 2, iss. 04, pp. 340-346. DOI: 10.2118/449-PA
39. Holm L.W., Josendal V.A. Mechanisms of Oil Displacement by Carbon Dioxide. Journal of Petroleum Technology, 1974, vol. 26, iss. 12, pp. 1427-1438. DOI: 10.2118/4736-PA
40. Holm L.W., Josendal V.A. Effect of Oil Composition on Miscible-Type Displacement by Carbon Dioxide. Society of Petroleum Engineers Journal, 1982, vol. 22, iss. 01, pp. 87-98. DOI: 10.2118/8814-PA
41. Hudgins D.A., Llave F.M., Chung F.T.H. Nitrogen Miscible Displacement of Light Crude Oil: A Laboratory Study. SPE Reservoir Engineering, 1990, vol. 5, iss. 01, pp 100-106. DOI: 10.2118/17372-PA
42. Yellig W.F., Metcalfe R.S. Determination and Prediction of CO2 Minimum Miscibility Pressures. Journal of Petroleum Technology, 1980, vol. 32, iss. 01, pp. 160-168. DOI: 10.2118/7477-PA
43. Koch H.A., Hutchinson C.A. Miscible Displacements of Reservoir Oil Using Flue Gas. Transactions of the AIME, 1958, vol. 213, iss. 01, pp. 7-10. DOI: 10.2118/912-G
44. Yarborough L., Smith L.R. Solvent and Driving Gas Compositions for Miscible Slug Displacement. Society of Petroleum Engineers Journal, 1970, vol. 10, iss. 03, pp. 298-310. DOI: 10.2118/2543-PA
45. Wu R.S., Batycky J.P. Evaluation of miscibility from slim tube tests. The Journal of Canadian Petroleum Technology, 1990, vol. 29, no. 6, pp. 63-70. DOI: 10.2118/90-06-06
46. Kalinin S.A., Moroziuk O.A. Razrabotka mestorozhdenii vysokoviazkoi nefti v karbonatnykh kollektorakh s ispol'zovaniem dioksida ugleroda. Laboratorno-metodicheskii kompleks dlia vypolneniia issledovanii [Laboratory research of high-viscosity oil fields in carbonate reservoirs using carbon dioxide]. Nedropolzovanie, 2020, no. 4. pp. 369-385. DOI: 10.15593/2712-8008/2020.4.6
|
|