 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |
Connections between intermediate & shallow-focus earthquakes and tectonic faults based on data of CDP seismic survey methodYusubov N.P. Received: 24.07.2017 Accepted: 05.10.2017 Published: 01.12.2017 http://dx.doi.org/10.15593/2224-9923/2017.4.1
PDF |
Abstract |
Authors |
References |
Abstract: The territory of Azerbaijan located in the central part of the Mediterranean mobile belt is characterized by high seismicity, mud volcanism, widespread slumps and contrast character of modern vertical and horizontal movements occurring in the sedimentary part of the geological section.
The paper contains results of studies of the features of the connection of earthquakes and tectonic movements that cover the Mesozoic and Cenozoic intervals of the geological section. The work is carried out with a complex interpretation of data by the method of the common depth point (CDP) of seismic survey; well logging; vertical seismic profiling (VSP) performed on the study area and its periphery; observations of seismic for the period from 2003 to 2016. A comprehensive interpretation of the data allow to construct several seismogeological profiles in a direction perpendicular to the axis of the Caucasian mountain structures. Several profiles of a similar direction (SW–NE) were compiled along the Caspian Sea as well. The geological section is split into stratigraphic and lithologic-facies intervals based on CDP seismic data using VSP and well logging data.
Analysis of dynamic and kinematic parameters of the seismic wave field recorded on the area of interest showed that a tectonic process began in the Mesozoic (possibly Paleozoic) period, continued to the end of the Cretaceous, somewhat decreased (unloaded) at the beginning of the Cenozoic and then continued in the Quaternary period. The seismic activity of the region confirms that the process continues nowadays.
Based on the results of a joint interpretation of seismology and CDP seismic survey data it was established that shallow-focus earthquakes in the foothill regions of Azerbaijan occurred and occur under the influence of global tectonic processes that create a prolonged geodynamic tension in the upper part (to the depth of 12 km) of the sedimentary complex of deposits. Joint interpretation of CDP seismic survey data and seismology indicates the presence of a collision zone in the area of the junction of the South Caspian depression and Absheron-Pribalkhanskiy threshold, interpreted by some researchers as a subduction zone.
The analysis of geological and geophysical data accumulated during the period from 1985 to 2015 tells about the need to revise the tectonic map of the oil and gas bearing regions of the republic and its connection with the seismic map of the territory.
Key words: earthquake focus, hypocentre, epicentre, subduction, earth crust, lithospheric plates, shallow-focus earthquakes, intermediate-focus earthquakes, deep-focus earthquakes, continental crust, tectonic faults, collision zone, tectonic energy, well logging, deep seismic sounding (DSS), method of common depth point (CDP).
Authors: Namaz P. Yusubov
Azerbaijan National Academy of Sciences. Oil and Gas Institute
nyusubov@gmail.com
9 F. Amirov st., Baku, Azerbaijan, AZ1000
References: 1. Gadzhiev R.M. Glubinnoe geologicheskoe stroenie Azerbaidzhana [Deep geological structure of Azerbaijan]. Baku, Azgosizdat, 1965, 200 p.
2. Aki K., Richarde P. Kolichestvennaia seismologiia. Toriia i metody [Quantitative seismology. Theory and methods]. Moscow, Mir, 1983, vol. 1, 510 p.
3. Bullen K.E. On strain energy in Earth’s upper mantle. Transactions, American Geophysical Union, 1953, vol.34, no.1, pp.107-116. DOI: 10.1029/TR034i001p00107
4. Zonenshain L.P., Kuz'min M.I., Natalin L.M. Tektonika litosfernykh plit territorii SSSR [Tectonics of lithospheric plates of the territory of the USSR]. Moscow, Nedra, 1990, vol.2, 327 p.
5. Prichiny vozniknoveniia zemletriasenii i posledstviia. Priroda zemletriasenii [Causes of earthquakes and consequences. The nature of earthquakes], available at: fb.ru/ article/178750/prichinyi-...11.04.15] (accessed 15 May 2017).
6. Katalog seismoprognosticheskikh nabliudenii na territorii Azerbaidzhana za 2006-2010 gg. [Catalog of seismic prediction observations on the territory of Azerbaijan for 2006-2010]. Baku, ELM, 2011, 210 p.
7. Ob"emnaia seismogeodinamicheskaia model' Kaspiiskogo regiona [Volumetric seismic geodynamic model of the Caspian region], available at: http://seismos-u.ifz.ru/personal/caspiy.htm (accessed 15 May 2017).
8. Mamedov P.Z. Osobennosti stroeniia zemnoi kory IuKMV [Features of the structure of the Earth's crust YuKMV]. Geologiia Azerbaidzhana. Neft' i gaz, 2008, vol.VII, pp.9-103.
9. Knapp J.H., Diaconesccu C.C., Connor J.A., Mcbride J.H., Simmons M.D. Deep seismic exploration of the South Caspian Basin: Litospheric-scale imaging of the world’s deepest basin. AAPG’s Intern. regional conf. Abstr. Istanbul, 2000, pp.35-37. DOI:10.1306/1205831St553248
10. Morfostruktura, noveishaia tektonika i seismika na Kavkaze [Morphostructure, the latest tectonics and seismic in the Caucasus], available at: kmvline.ru/lib/kavkaz/4.php (accessed 15 May 2017).
11. Granath J.W., Soofi R.F., Baganaz O.W., Bagirov E., Gravity modeling and its implikations to the tectoniks of the South Caspian basin. Oil and gas of the Greater Caspian area: AAPG Studies in Geology. Ed. by P.O. Yilmaz, G.H. Isaksen. 2007, 55, p.43-46. DOI: 10.1306/1205832St55854
12. Model' glubinnogo stroeniia Iuzhno-Kaspiiskoi vpadiny [Model of the deep structure of the South Caspian basin], available at: wdcb.ru/sep/sedimentary_basins/Caspsea/ models/SCasp_mod.ru.html (accessed 15 May 2017).
13. Ashkhabadskoe zemletriasenie 1948 goda [Ashgabat earthquake of 1948], available at: olegyakupov.com› blogblog/?p=1232 (accessed 15 May 2017).
14. Granath J.W., Soofi l K.A., Baganz O.W., Bagirov E. Gravity modeling and its implications to the tectonics of the South Caspian Basin. AAPG’s Intern. regional conf. Turkey, 2000, pp.46-50.
15. Jackson J.A., Priestley E., Allen M. Active tectonics of the South Caspian Basin. Centr. Asia Proj. Rep., 2001, vol.17, pp.45. DOI: 10.1046/j.1365-246X.2002.01005.x
16. Priestley K., Patt on H., Schultz C. Modeling anomalous surface-wave propagation across the South Caspian Basin. Bull. Seismol. Soc. Amer., 2001, vol.91 (6), pp.1924-1929. DOI: 10.1785/0120010118
17. Iakubov A.A., Alizade A.A., Zeinalov M.M. et al. Griazevye vulkany Azerbaidzhanskoi SSR [Mud volcanoes of the Azerbaijan SSR]. Baku, ELM, 1971, 256 p.
18. Iusubov N.P., Kuliev I.S. Seismicheskaia model' griazevulkanicheskoi sistemy [Seismic model of mud volcanic system]. ANKh, 2011, no.3, pp.12-20.
19. Iusubov N.P., Guliev G.A., Borovikova A.Iu., Akhmedov R.L. Glubinnoe stroenie osadochnogo chekhla Severo-Absheronskoi zony podniatii i perspektivy ee neftegazonosnosti po dannym seismorazvedki [Deep structure of the sedimentary cover of the North Absheron uplift zone and the prospects of its oil and gas potential according to seismic data]. ANKh, 2013, no.10, pp.9-15.
20. Iusubov N.P. K voprosu o sushchestvovanii Zapadno-Kaspiiskogo razloma [To the question of existence of the West Caspian fault]. ANKh, 2017, no.4, pp.12-17.
21. Mamedli T.Ia., Rogozhin E.A. O tektonicheskom kharaktere zon sochleneniia zemnoi kory Iuzhno-Kaspiiskoi vpadiny i Skifsko-Turanskoi plity po dannym seismologii [Tectonic character of the zones of articulation of the Earth's crust of the South Caspian Depression and Scythian-Turan plate according to seismology data]. Voprosy inzhenernoi geologii, 2016, vol.43, no.2, pp.5-16.
22. Kerimov K.M., Novruzov A.K., Daneshvar S.N. Glubinnye razlomy i nekotorye osobennosti razmeshcheniia neftegazovykh mestorozhdenii v Iuzhno-Kaspiiskoi megavpadine [Deep faults and some peculiarities of location of oil and gas deposits in the South Caspian megabasin]. Bakı universitetinin xəbərləri, 2012, no.3, pp.69-78.
23. Metaksas Kh.P., Rzaev A.G., Isaeva M.I. Parametry seismicheskoi opasnosti Shamakhy-Ismaillinskoi ochagovoi zony zemletriasenii [Parameters of seismic hazard of Shamakhy-Ismayillinskoy focal zone of earthquakes]. Katalog seismoprognosticheskikh nabliudenii na territorii Azerbaidzhana, 2011, pp.314-321.
24. Agaev V.B., Guseinov G.M., Balamedov Sh.R., Amirov E.F. Kaspii: proiskhozhenie, geodinamika i stratigrafiia [Caspian: Origin, geodynamics and stratigraphy]. Bakı Universitetinin Xəbərləri, 2006, no.1, pp.86-101.
25. Glumov I.F., Malovitskii Ia.P., Novikov A.A., Senin B.V. Regional'naia geologiia i neftegazonosnost' Kaspiiskogo moria [Regional geology and petroleum potential of the Caspian Sea]. Moscow, Nedra-Biznestsentr, 2004, 342 p.
26. Iusubov N.P. Osobennosti seismichnosti neftegazovykh oblastei Azerbaidzhana [Features of seismicity of oil and gas regions of Azerbaijan]. Geofizika, 2012, no.2, pp.48-53.
27. Burmin V.Iu., Shmeleva I.B., Fleifel' L.D. et al. Predvaritel'nye rezul'taty peresmotra seismologicheskikh dannykh Kavkaza [Preliminary results of the revision of seismological data of the Caucasus], available at: ifz.ru›fileadmin/user_upload/subdivisions/506/… (accessed 15 May 2017).
28. Iakovlev F.L. Vladimir Vladimirovich Belousov i problema proiskhozhdeniia skladchatosti [Vladimir Vladimirovich Belousov and the problem of origin of folding]. Geofizicheskie issledovaniia, 2008, vol.9, no.1, pp.53-73.
29. Rastsvetaev L.M., Marinin A.V. Sootnoshenie poverkhnostnoi i glubinnoi struktury severo-zapadnogo Kavkaza [Correlation of the surface and deep structure of the northwestern Caucasus], available at: resources.krc. karelia.ru/krc/doc... (accessed 15 May 2017).
30. Daly M.C. Correlations between Nazca/Farallon Plate kinematics and forearc basin evolution in Ecuador. Tectonics, 1989, 8, no.4, pp.769-790. DOI: 10.1029/TC008i004p00769
31. Seist E.L., Childs J.R., Scholl D.W. The origin of summit basins of the Aleutian Ridge: implications for block rotation of an arc massif. Tectonics, 1988, 7, no.2, pp.327-341. DOI: 10.1029/TC007i002p00327
32. Nur A., Ron H., Scotti O. Fault mechanics and the kinematics of block rotation. Geology, 1986, 14, pp.746-749. DOI: 10.1130/0091-7613(1986)14<746:FMATKO>2.0.CO;2
33. Kadirov F.A., Floyd M., Reilinger R., Alizadeh Ak.A., Guliyev I.S., Mammadov S.G., Safarov R.T. Activegeodynamics of the Caucasus region: implications for earthquake hazard assessment in Azerbaijan. Proc. of Azerbaijan National Academy of Sciences. The Sci. of Earth, 2015, no.3, pp.3-17.
Features of geological structure and formation of oil & gas deposits in the Vuktyl thrust fault regionKuznetsova E.A., Karaseva T.V. Received: 01.09.2017 Accepted: 06.10.2017 Published: 01.12.2017 http://dx.doi.org/10.15593/2224-9923/2017.4.2
PDF |
Abstract |
Authors |
References |
Abstract: The paper is devoted to modeling of the processes of oil and gas deposits formation of the Vuktyl thrust development area, to which the largest in the Timan-Pechora oil and gas province is associated with the same oil and gas condensate deposit. Oil and gas of deeply buried formations of the autochthon of the overthrust region remains poorly studied. Therefore, application of modern methods of basin modeling is relevant for oil and gas content estimation. In order to simulate the section, Schlumberger PetroMod software package was used. The package allows to determine the history of generation of hydrocarbons on the geological time scale, migration paths, amount and type of oil and gas accumulations in both surface and reservoir conditions. Using the 1D and 2D modeling of the Vuktylskaya-58 parametric well and the overthrust region models were obtained. The models reflect the modern geological section, its evolution during the geological time. The processes of formation of oil and gas were studied. As a result, it was shown that the parent rocks of the allochthonous section part could not participate in the formation of the main gas-condensate deposit of the Vuktyl deposit because they entered only the main oil formation zone. In deeply buried deposits of the autochthon starting from the Permian and Triassic formation of the Vuktylsky gas-condensate field and possibly the deposits in poorly studied deep formations could be caused by processes of generation of gases and gas condensates. That is proved by the discovery of a large number of gas emergences beyond the 4-5 km in a section of the only well drilled beyond the 6 km such as Vuktylskaya-58. Generation and accumulation of gas hydrocarbons occurred mainly after the appearance of thrust dislocations, when the main traps were formed both at ordinary and high depths.
Key words: field, Vuktyl thrust, autochthon, reservoir, well, basin modeling, software, PetroMod, oil and gas deposits, organic matter, hydrocarbons, catagenesis, generation, deeply buried sediments, section.
Authors: Elena A. Kuznetsova
Perm State National Research University
e.lena.kuznetsova@yandex.ru
15 Bukireva st., Perm, Russian Federation, 614068
Tatyana V. Karaseva
Perm State National Research University
regional.PSU@yandex.ru
15 Bukireva st., Perm, Russian Federation, 614068
References: 1. Pankratova E.I., Iunusova L.V., Bogdanov B.P. Kompleksnyi analiz geologo-geofizicheskikh dannykh i parametrov razrabotki dlia obosnovaniia sistemy plastovykh zalezhei v allokhtone i avtokhtone Vuktyl'skogo neftegazokondensatnogo mestorozhdeniia [Comprehensive analysis of geological-geophysical data and development parameters to justify system of bedded deposits in allochthon and autochthon of vuktyl oil and gas condensate field]. Georesursy, 2016, vol.18, no.2, pp.87-93. DOI:10.18599/grs/18.2.2
2. Danilov V.N. Perspektivy vospolneniia syr'evoi bazy Vuktyl'skogo neftegazokondensatnogo mestorozhdeniia [Outlooks for supplementation of raw materials reserves at the Vuktyl oil-gas- condensate field]. Vesti gazovoi nauki, 2016, no.1 (25), pp.75-82.
3. Kuznetsova E.A., Oborin A.A. Perspektivy neftegazonosnosti avtokhtona Vuktyl'skogo nadviga [Prospects of oil and gas content of the autochthon of the Vuktyl overthrust]. Geologiia v razvivaiushchemsia mire, Perm', 2011, pp.187-189.
4. Kuznetsova E.A. Perspektivy neftegazonosnosti iuzhnoi chasti Verkhnepechorskoi depressii po dannym 1D basseinovogo modelirovaniia [Prospects of oil and gas potential in the southern part of the Upper Pechora depression according to 1D basin modeling]. Vestnik Permskogo universiteta. Geologiia, 2017, vol.16, no.2, pp.179-184. DOI: 10.17072/psu.geol.16.2.179
5. Kuznetsova E.A. Rezul'taty 1D basseinovogo modelirovaniia Timano-Pechorskoi glubokoi opornoi skvazhiny programmnym kompleksom PetroMod [Results of 1D basin modeling of the Timano-Pechora deep well with the PetroMod software package]. Geologiia i poleznye iskopaemye Zapadnogo Urala, Perm', 2017, pp.96-100.
6. Kerimov V.Iu., Khantshel T., Sokolov K., Sidorova M.S. Primenenie tekhnologii basseinovogo modelirovaniia – programmnogo paketa PetroMod v uchebnom protsesse RGU nefti i gaza im. I.M. Gubkina [Application of the technology of basin modeling – the software package PetroMod in the educational process of the RGU of oil and gas named after I.M. Gubkin]. Neft', gaz i biznes, 2011, no.4, pp.38-47.
7. Allen A.Ph., Allen J.R. Basin analysis: principles and application to petroleum play assessment. 3 ed. Wiley-Blackwell, 2013, 619 p.
8. Al-Hajeri M.M., Al Saeed M., Derks J. et al. Basin and petroleum system modeling. Oilfield Rewiew, 2009, vol.21, iss.2, pp.14-29.
9. Roeder D., Goffey G.P., Craig J. et al. Fold-thrust belts at peak oil. Hydrocarbons in contact belts. London, Geological Society, 2010, vol.348, pp.7-31. DOI: 10.1144/SP348.2 0305-8719/10/$15.00
10. Hantschel T., Kauerauf A. Fundamentals of basin and petroleum systems modeling. Berlin, Springer-Verlag, 2009, 476 p. DOI: 10.1007/978-3-540-72318-9
11. Roure F., Swennen R., Schneider F. et al. Incidence and importance of tectonics and natural fluid migration on reservoir evolution in foreland fold-and-thrust belts. Oil and Gas Science and Technology Revue de l’IFP, 2005, vol.60, no.1, pp.67-106. DOI: 10.2516/ogst: 2005006.
12. Neumaier M., Littke R., Hantschel T. et al. Integrated charge and seal assessment in the Monagas fold and thrust belt of Venezuela. AAPG Bulletin, 2014, vol.98, no.7, pp.1325-1350. DOI: 10.1306/01131412157
13. Maerten L., Maerten F. Chronologic modeling of faulted and fractured reservoirs using geomechanically based restoration. Technique and industry applications: AAPG Bulletin, vol.90, no.8, pp.1201-1226. DOI: 10.1306 /02240605116.
14. Magoon L.B., Dow W.G. The Petroleum system: from source to trap. Tulsa, Oklahoma, AAPG, 1994, 655 p. DOI: 10.1306/M60585
15. Nemcok M., Schamel S., Gayer R. Thrustbelts. Structural architecture. Thermal Regimes and Petroleum Systems, 2009, 527 p. DOI: 10.2113/gscanmin.44.6.1563
16. Schneider F. Basin modeling in complex area: examples from Eastern Venezuelan and Canadian Foothills. Oil and Gas Science and Technology, 2003, vol.58, no.2, pp.313-324. DOI: 10.2516/ogst:2003019
17. PetroMod petroleum system modeling. Schlumberger Information Solutions, 2011, no.10, 256 ð.
18. PetroMod, available at: http://sis.slb.ru/upload/ iblock/355/petromod1d2d.pdf (accessed: 13 February 2017).
19. Belokon' A.V. Modelirovanie tektonicheskoi i temperaturnoi istorii raiona bureniia Timano-Pechorskoi glubokoi opornoi skvazhiny [Modeling of tectonic and temperature history of the Timan-Pechorskaya deep well drilling area]. Vestnik Permskogo gosudarstvennogo tekhnicheskogo universiteta, 2000, no.3, pp.71-76.
20. Galkin V.I., Kozlova I.A. Vliianie istoriko-geneticheskikh faktorov na neftegazonosnost' [Influence of historical genetic factors on oil and gas potential]. Vestnik Permskogo universiteta. Geologiia, 2000, iss.4, pp.8-18.
21. Galushkin Iu.I. Modelirovanie osadochnykh basseinov i otsenka ikh neftegazonosnosti [Modelling of sedimentary basins and assessment of their oil and gas potential]. Moscow, Nauchnyi mir, 2007, 456 p.
22. Krivoshchekov S.N. Otsenka perspektivnosti Rusinovskoi podgotovlennoi struktury (iugo-vostok Verkhnepechorskoi depressii) [Estimation of the prospects of the Rusinovskaya prepared structure (southeast of the Upper Pechora depression)]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo, 2007, no.2, pp.22-25.
23. Krivoshchekov S.N., Kozlova I.A. Verkhnepechorskaia depressiia – novyi ob"ekt poiskovo-razvedochnykh rabot na neft' i gaz v Permskom krae [The Upper Pechora Depression is a new object of prospecting for oil and gas in the Perm region]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo, 2006, no.1, pp.51-58.
24. Pestereva S.A. Metodicheskie osnovy i problemy basseinovogo modelirovaniia 1D [Methodical basics and problems of basin modeling 1D]. Geologiia i neftegazonosnost' severnykh raionov Uralo-Povolzh'ia: sbornik nauchnykh trudov k 100-letiiu so dnia rozhdeniia professora P.A. Sofronitskogo. Perm', Izdatel'stvo Permskogo gosudarstvennogo universiteta, 2010, pp.231-232.
25. Pestereva S.A., Popov S.G., Belokon' A.V. Istoriko-geneticheskoe modelirovanie evoliutsii osadochnogo chekhla v raionakh razvitiia glubokopogruzhennykh otlozhenii Timano-Pechorskogo neftegazonosnogo basseina [Historical and genetic modeling of the evolution of the sedimentary cover in the areas of development of deep-seated deposits of the Timan-Pechora oil and gas basin]. Vestnik Permskogo universiteta. Geologiia, 2011, iss.2, pp.8-19.
26. Shilov G.Ia., Vasilenko E.I. Opyt primeneniia termobaricheskikh parametrov razreza dlia otsenki perspektiv neftegazonosnosti dlia otsenki neftenosnosti ploshchadei Predural'skogo progiba [Experience in applying the thermobaric parameters of the section for assessing the prospects of oil and gas potential for estimating the oil content of the areas of the Predural trough]. Karotazhnik, 2013, no.233, pp.37-46.
27. Pankratova E.I., Bogdanov B.P. Geologicheskie predposylki vyiavleniia plastovykh zalezhei v otlozheniiakh permi-karbona avtokhtona Vuktyl'skogo neftegazokondensatnogo mestorozhdeniia [Geological prerequisites for identifying reservoir deposits in Permian-Carboniferous autochton sediments of the Vuktyl oil and gas condensate field]. Neftegazovaia geologiia. Teoriia i praktika, 2015, vol.10, no.3, available at: http://www.ngtp.ru/rub/4/ 30_2015.pdf/, DOI: 10.17353/2070-5379/30_2015 (accessed: 13 February 2017).
28. Beliaeva G.L., Karaseva T.V., Kuznetsova E.A. Geologicheskoe stroenie i neftegazonosnost' glubokopogruzhennykh otlozhenii Timano-Pechorskoi NGP [Geological structure and oil and gas content of the deep burried sediments of the Timan-Pechora OGP]. Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii, 2012, no.7, pp.33-40.
29. Kochneva O.E., Karaseva T.V., Kuznetsova E.A. Perspektivy neftegazonosnosti glubokopogruzhennykh otlozhenii Verkhnepechorskoi vpadiny po dannym basseinovogo modelirovaniia [Prospects of oil and gas content of deep buried sediments of the Upper Pechora Basin according to basin modeling data]. Neftianoe khoziaistvo, 2015, no.3, pp.14-16.
30. Vassoevich N.B., Korchagina Iu.I., Lopatin N.V. et al. Glavnaia faza nefteobrazovaniia [The main phase of oil formation]. Vestnik Moskovskogo gosudarstvennogo universiteta. Seriia: Geologiia, 1969, no.6, pp.3-27.
Development of slurries and study of properties of cement mixtures to increase the quality of well completionNikolaev N.I., Usmanov R.A., Tabatabaee Moradi S.Sh., Hernandez Requena J.R. Received: 15.09.2017 Accepted: 01.10.2017 Published: 01.12.2017 http://dx.doi.org/10.15593/2224-9923/2017.4.3
PDF |
Abstract |
Authors |
References |
Abstract: Physical and mechanical properties of polymer cement slurries and cement stone are studied. The goal of the work is to improve the quality of completion of productive formations by development of polymer cement mixtures with improved structural and mechanical characteristics of a cementing slurry and cement stone. During the completion a special attention is paid to the preservation of well cement stone quality. So, there is a brittle fracture of the cement stone occur because of the dynamic loads caused by cumulative and bullet perforation, as well as the torpedoing of casing strings. Using such methods of well completion a cement stone can be destroyed both in perforation intervals and in places of bridges that separate productive layers from aquifers. The consequence of that opening is the accelerated growgh of water cut of wells. Despite the high technical level of new types of perforators, they are not widely used in drilling of oil and gas wells because of the large time and metal consumption of the work performed and, consequently, high financial costs of their use. It is known that the integrity of the cement stone is ensured at perforation during the transition of the coagulation structure of a cement suspension to crystal one. For a normal cement slurry (water/cement = 0.5) that moment occurs relatively quickly (7-15 h), which is not enough for perforation operations. In order to modify the properties of a cement mixture the compositions of cation-active surfactant (catamine) and non-ionic polymer (polyvinylpyrrolidone) were chosen. Results of experimental studies show that the input of these agents into the composition of a cement mixture leads to an increase in spreadability of a cement slurry (more than 25 cm by the cone of Azerbaijan Scientific Research Institute), time of its bondability, strength of a cement stone for compression (200 % after 28 days of hardening) and bending (250 %), adhesion of cement stone to metal (by 80 %) and time of coagulation structure setting. In addition, plastic properties of the developed cement slurry are retained for more than 19 hours. The influence of the agent (defoamer T-66) on the rate of cement stone strengthening is determined. It is shown that input of a nonionic high molecular polymer reduces the rate of the formation of crystal structure in a cementing mixture.
Key words: cementing, completion, cement slurry, cement stone, perforation, plastic strength, plasticizer, compressive strength, bend strength, adhesion, surfactants, polymers, consistency, well casing, chemical agents.
Authors: Nikolay I. Nikolaev
Saint-Petersburg Mining University
nikinik@mail.ru
2 21st Line, Vasilyevskiy island, Saint Petersburg, 199106, Russian Federation
Ruslan A. Usmanov
Almetyevsk State Oil Institute
bngs_agni@mail.ru
2 Lenina st., Almetyevsk, 423450, Russian Federation
Seyyed Sh. Tabatabaee Moradi
Saint-Petersburg Mining University
s.sh.tabatabaee@gmail.com
2 21st Line, Vasilyevskiy island, Saint Petersburg, 199106, Russian Federation
Jennifer R. Hernandez Requena
Saint-Petersburg Mining University
j.r.h.r@outlook.com
2 21st Line, Vasilyevskiy island, Saint Petersburg, 199106, Russian Federation
References: 1. Mardanov M.S. Povyshenie debitov i dolgovechnosti krepi skvazhin razrabotkoi i vnedreniem shchadiashchikh rezhimov vtorichnogo vskrytiia produktivnykh plastov [Increase in flow rates and durability of well casing by development and implementation of sparing regimes of secondary penetration of reservoirs]. Problemy razrabotki mestorozhdenii uglevodorodnykh i rudnykh poleznykh iskopaemykh, 2014, no.1, pp.480-483.
2. Sudong H., Xiao Y. Properties and application of oil-well cement enhanced with a novel composite toughening agent. Petroleum Science, 2007, vol.4, no.2, pp.52-59. DOI: 10.1007/BF03187442
3. Ivanova I.S., Pustovgar A.P., Ganiev S.R. Osobennosti sukhikh smesei dlia tsementirovaniia neftegazovykh skvazhin [Features of dry mixtures for cementing oil and gas wells]. Neftegazovoe delo. Elektronnyi nauchnyi zhurnal, 2014, no.4, pp.18-35. DOI: 10.17122/ogbus-2014-4-18-35
4. Melekhin A.A., Krysin N.I., Tret'iakov E.O. Analiz faktorov, vliiaiushchikh na dolgovechnost' tsementnogo kamnia za obsadnoi kolonnoi [Analysis of factors affecting the life time period of cement stone behind a casing string]. Neftepromyslovoe delo, 2013, no.9, pp.77-82.
5. Gaivoronskii I.N., Kostitsyn V.I., Savich A.D., Chernykh I.A., Shumilov A.V. Povyshenie effektivnosti vtorichnogo vskrytiia produktivnykh plastov [Ways of improvement of reservoir completion efficiency]. Neftianoe khoziaistvo, 2016, no.10, pp.62-65.
6. Behrmann L., Brooks J.E., Farrant S., Fayard A., Venkitaraman A., Brown A., Michel Ch., Noordermeer A., Smith Ph., Underdown D. Perforating practices that optimize productivity. Oilfield Review, 2000, vol.12, no.1, pp.52-74.
7. Ishbaev G.G., Dil'miev M.R., Ishbaev R.R., Latypov T.R. Razrabotka tamponazhnykh materialov povyshennoi udarnoi prochnosti [Development of grouting materials with high impact strength]. Burenie i neft', 2015, no.9, pp.38-41.
8. Petrov N.A., Sultanov V.G., Davydova I.N., Konesev G.V. Povyshenie kachestva pervichnogo i vtorichnogo vskrytiia neftianykh plastov [Improving the quality of primary and secondary oil stripping]. Ed. G.V. Konesev. Saint Petersburg, Nedra, 2007, 548 p.
9. Fridliander L.Ia. et al. Prostrelochno-vzryvnaia apparatura [Shooting and blasting equipment]. Moscow, Nedra, 1990, 199 p.
10. Silin M.A., Magadova L.A., Efimov M.N., Efimov N.N., Shidginov Z.N. Tamponazhnye rastvory na uglevodorodnoi osnove dlia remontno-izoliatsionnykh rabot [Oil-based grouting mortars for repair and insulation work]. Trudy rossiiskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina, 2010, no.3, pp.87-94.
11. Petrov N.A., Davydova I.N. Issledovanie nekotorykh polimernykh reagentov otechestvennogo proizvodstva [A study of some polymeric reagents domestic production]. Elektronnyi nauchnyi zhurnal neftegazovoe delo, 2016, no.4, pp.6-39. DOI: 10.17122/ogbus-2016-4-6-39
12. Broni-Bediako E., Joel O.F., Ofori-Sarpong G. Oil well cement additives: a review of the common types. Oil and Gas Research, 2016, vol.2, no.1, ðð.1–7. DOI: 10.4172/ogr.1000112.
13. Akhrimenko V.E., Pashchevskaia N.V. Ispol'zovanie melassy v kachestve plastifikatora tamponazhnykh rastvorov [Usage of molasses as plasticizer of grouting mortars]. Stroitel'stvo neftianykh i gazovykh skvazhin na sushe i na more, 2014, no.1, pp.35-37.
14. Bulatov A.I. Upravlenie fiziko-mekhanicheskimi svoistvami tamponazhnykh sistem [Management of physical and mechanical properties of oil-well systems]. Moscow, Nedra, 1976, 298 p.
15. Volzhenskii A.V., Burov Iu.S., Kolokol'nikov V.S. Mineral'nye viazhushchie veshchestva [Mineral binders]. Moscow, Stroiizdat, 1979, 476 p.
16. Nikolaev N.I., Nifontov Iu.A., Dernov D.A., Toib R.R. Pokolenie otechestvennykh polimerov dlia bureniia skvazhin [The generation of domestic polymers for drilling wells]. Promyshlennost' segodnia, 2004, no.1, pp.19-23.
17. Derkach S.R., Berestova G.I., Motyleva T.A. Ispol'zovanie PAV dlia intensifikatsii neftedobychi pri pervichnom i vtorichnom vskrytii plastov [The use of surfactants for the intensification of oil production during primary and secondary opening of seams]. Vestnik murmanskogo gosudarstvennogo tekhnicheskogo universiteta, 2010, no.4-1, pp.784-792.
18. Sherstnev N.M., Gugvich L.M., Bulina I.G. Primenenie kompozitsii PAV pri ekspluatatsii skvazhin [The use of surfactant compositions in the operation of wells]. Moscow, Nedra, 1988, 184 p.
19. Samsonenko A.V., Simoniants S.L., Samsonenko N.V. Novye tamponazhnye materialy dlia ispol'zovaniia v usloviiakh normal'nykh i umerennykh temperatur [New cementing materials for use in normal and moderate temperatures]. Stroitel'stvo neftianykh i gazovykh skvazhin na sushe i na more, 2009, no.10, pp.42-47.
20. Tabatabaee Moradi S.Sh., Nikolaev N.I. Free fluid control of oil well cements using factorial design. Journal of engineering research, 2017, vol.5, no.1, pp.220-229.
21. Tabatabaee Moradi S.Sh., Nikolaev N.I. Sedimentation stability of oil well cements in directional wells. IJE Transactions A: Basics, 2017, vol.30, no.7, pp.1105-1109. DOI: 10.5829/ije.2017.30.07a.21
22. Choolaei M., Rashidi A.M., Ardjmand M., Yadegari A., Soltanian H. The effect of nanosilica on the physical properties of oil well cement. Materials Science and Engineering: A, 2012, vol.538, pp.288-294. DOI: 10.1016/j.msea.2012.01.045
23. Bulatov A.I. Formirovanie i rabota tsementnogo kamnia v skvazhine [Formation and work of cement stone in the well]. Moscow, Nedra, 1990, 416 p.
24. Riabova L.I., Shliakhovoi D.S., Timofeeva E.V. Ob"emnye izmeneniia tsementnogo rastvora i kamnia, vliiaiushchie na kachestvo tsementirovaniia skvazhin [Volume changes in cement mortar and stone, affecting the quality of cementing wells]. Neftianoe khoziaistvo, 2008, no.2, pp.40-42.
25. Rubiandini R., Siregar S., Suhascaryo N., Efrial D. The effect of CaO and MgO as expanding additives to improve cement isolation strength under HPHT exposure. Journal of Engineering and Technological Sciences, 2005, vol.37, no.1, pp.29-48. DOI: 10.5614%2Fitbj.eng.sci.2005.37.1.3
26. Berkovich T.M. O kinetike protsessa gidratatsii tsementa [On the kinetics of cement hydration process]. DAN SSSR, 1963, no.5, pp.1127-1130.
27. Ridha S., Irawan S., Ariwahjoedi B. Strength prediction of Class G oil well cement during early ages by electrical conductivity. Journal of Petroleum Exploration and Production Technology, 2013, vol.3, no.4, pp.303-311. DOI: 10.1007/s13202-013-0075-9
28. Tabatabaee Moradi S.Sh., Nikolaev N.I. Considerations of well cementing materials in high-pressure, high-temperature conditions. IJE Transactions C: Aspects, 2016, no.9, pp.1214-1218. DOI: 10.5829/idosi.ije.2016.29.09c.05
29. Labibzadeh M., Zahabizadeh B., Khajehdezfuly A. Early-age compressive strength assessment of oil well class G cement due to borehole pressure and temperature changes. Journal of American Science, 2010, vol.6, no.7, pp.38-47. DOI:10.7537/marsjas060710.05
30. Castel A., Foster S.J. Bond strength between blended slag and Class F fly ash geopolymer concrete with steel reinforcement. Cement and Concrete Research, 2015, vol.72, pp.48-53. DOI: 10.1016/j.cemconres.2015.02.016
Study of zones of wettability distribution based on lateral logging for oil-bearing Visean reservoirs of the Solikamsk depressionKolychev I.Yu. Received: 15.09.2017 Accepted: 12.10.2017 Published: 01.12.2017 http://dx.doi.org/10.15593/2224-9923/2017.4.4
PDF |
Abstract |
Authors |
References |
Abstract: The relationship between well electrometry data and wettability of Visean clastic reservoirs of the Solikamsk depression was studied. Results of lateral logging with conventional and special core analysis are compared. Theoretical aspects of the influence of reservoir properties, characteristics of the pore space structure and wettability on electrical conductivity is considered. Theoretical calculations of the range of variation of the specific electrical resistance in the conditions of clastic reservoirs of various types are performed. The significant influence of wettability index of surface rocks on the rock resistance is substantiated.
The analysis and comparison of different methods for assessing the wettability of rocks from core data are performed. It was found that the greatest errors in rock wettability assessments are associated with hydrophilization of the surface due to core extraction. It is concluded that the X-ray core tomography as a direct method for visualization of pore space in assessing the wettability of operational objects is a perspective method.
As a result of generalization of core studies and considered analysis of the development history the geological section with anomalously high specific electrical resistances (200 Ωm and above) is interpreted as predominantly hydrophobic. A section with standard resistance values for clastic reservoirs (less than 120 Ωm) is classified as a hydrophilic type
As a result of generalization of core studies and considered analysis of the development history the geological section with anomalously high specific electric resistances (200 Ωm and above) is interpreted as predominantly hydrophobic. A section with standard resistance values for clastic reservoirs (less than 120 Ohm∙m) is classified as a hydrophilic type.
For the Visean reservoirs (Tl, Bb, Ml) of the Shershnevskoye oil field zonation on distribution of reservoirs of various wettability types is carried out on the basis of resistance values. Schemes of distribution of hydrophilic and hydrophobic reservoirs for the Visean operational reservoirs of the Solikamsk depression can be used to develop design solutions for both production and injection wells.
Key words: specific electrical resistance, lateral logging, well logging, wettability, hydrophilic reservoir, hydrophobic reservoir, core, pore space structure.
Authors: Igor Yu. Kolychev
Perm National Research Polytechnic University
igorkolychev@gmail.com
29 Komsomolskiy av., Perm, Russian Federation, 614990
References: 1. Kurchikov A.R., Borodkin V.N., Galkin S.V., Galkin V.I., Rastegaev A.V. Metodika veroiatnostnoi otsenki geologicheskikh riskov pri poiskakh neftianykh mestorozhdenii dlia territorii s vysokoi plotnost'iu promyshlennykh otkrytii [Some method of probability assessment of geological risks while prospecting for oil fields on territories with high density of commercial discoveries] Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii, 2013, no.10, pp.4-13.
2. Galkin S.V. Accounting methods of geological risks on the stage of oil fields exploration. Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2012, vol.11, no.4, pp.23-32.
3. Liadova N.A., Iakovlev Iu.A., Raspopov A.V. Geologiia i razrabotka neftianykh mestorozhdenii Permskogo kraia [Geology and development of oil deposits of the Perm region]. Moscow, VNIIOENG, 2010, 335 p.
4. Iliushin P.Iu., Rakhimzianov R.M., Solov′ev D.Iu., Kolychev I.Iu. Analysis of well intervention aimed at oil production enhancement in the Perm krai′s fields. Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2015, vol.14, no.15, pp.81-89. DOI: 10.15593/2224-9923/2015.15.9
5. Soboleva E.V., Efimov A.A., Galkin S.V. Analiz geologo-geofizicheskikh kharakteristik terrigennykh kollektorov pri prognoze priemistosti skvazhin mestorozhdenii Solikamskoi depressii [The analysis of geological and geophysical characteristics of terrigenous reservoirs at the forecast injectability of wells of Solikamskaya depression]. Neftianoe khoziaistvo, 2014, no.6, pp.20-22.
6. Iskenderov M.M. Kompleksnaia interpretatsiia rezul'tatov GIS pri izuchenii terrigennykh razrezov [Integrated interpretation of well logging results in the study of terrigeneous sections]. Nauchnye trudy NIPI Neftegaz GNKAR, 2014, no. 3, pp.4-10. DOI: 10.5510/OGP20140300204
7. Petrov A.M., Sukhorukova K.V., Nechaev O.V. Opredelenie anizotropii udel'nogo elektricheskogo soprotivleniia vysokoomnykh otlozhenii po dannym bokovogo karotazhnogo zondirovaniia [Determination of the anisotropy of the resistivity of high-resistivity deposits from lateral logging]. Interekspo Geo-Sibir', 2016, vol.2, no.1, pp.227-231.
8. Nikiforova O.G. Otsenka udel'nogo elektricheskogo soprotivleniia i kharaktera nasyshchennosti nizkoomnykh terrigennykh kollektorov po dannym GIS [Estimation of the specific electrical resistance and the nature of the saturation of low-resistance clastic reservoirs according to geophysics data]. Geofizika, 2008, no.1, pp.22-24.
9. Shilanov N.S., Khibasov B.B., Baitenov K.S. Osobennosti interpretatsii materialov karotazha po novym skvazhinam [Features of interpretation of logging materials for new wells]. Nauchnye trudy NIPI Neftegaz GNKAR, 2011, no.3, pp.16-19. DOI: 10.5510/OGP20110300073
10. Kuliapin P.S., Sokolova T.F. Ispol'zovanie statisticheskogo modelirovaniia pri interpretatsii dannykh GIS v neftematerinskikh porodakh bazhenovskoi svity Zapadno-Sibirskoi neftegazonosnoi provintsii [Use of statistical modeling in interpretation of geophysics data in the oil-bearing rocks of the Bazhenov suite of the West Siberian oil and gas province]. Tekhnologii seismorazvedki, 2013, no.3, pp.28-42.
11. Mitrofanov V.P., Ermakova M.I. Smachivaemost' produktivnykh otlozhenii iugo-vostochnoi chasti Permskogo regiona [Wetability of productive deposits of the southeastern part of the Perm Region]. Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii, 2009, no.1, pp.29-32.
12. Zlobin A.A., Iushkov I.R. O mekhanizme gidrofobizatsii poverkhnosti porod-kollektorov nefti i gaza [On the mechanism of hydrophobization of the surface of the reservoir rocks of oil and gas]. Vestnik Permskogo universiteta. Geologiia. 2014, no.3 (24), pp.68-79.
13. Nesterenko N.Iu. Vliianie smachivaemosti poverkhnosti na razdelenie nefti v porode [Influence of surface wettability on the oil separation in the rock]. Geologiia nefti i gaza, 1994, no.8, pp.28-32.
14. Anderson W.G. Wettability literature survey. Part 4: Effects of wettability capillary pressure. Journal of Petroleum Technology, 1987, vol. 39, pp.1283-1300. DOI: 10.2118/15271-PA
15. Chumakov G.N., Zotikov V.I., Kolychev I.Iu., Galkin S.V. Analiz effektivnosti primeneniia tsiklicheskoi zakachki zhidkosti na mestorozhdeniiakh s razlichnymi geologo-tekhnologicheskimi usloviiami [Analysis of the effectiveness of cyclic fluid injection at fields with different geological and technological conditions]. Neftianoe khoziaistvo, 2014, no.9, pp.96-99.
16. Mikhailov N.N., Motorova K.A., Sechina L.S. Geologicheskie faktory smachivaemosti porod-kollektorov nefti i gaza [Geological factors of wettability of reservoir rocks of oil and gas]. Neftegas.ru, 2016, no.3, pp.80-90.
17. Abdalla V., Bakli D.S., Karnegi E., Edvards D., Kherol'd B., Fordem E., Graue A., Khabashi T., Seleznev N., Sin'er K., Khusein Kh., Montaron B., Ziauddin M. Osnovy smachivaemosti [Basics of wettability]. Neftegazovoe obozrenie, 2007, vol.19, no.2, pp.54-75.
18. Kovscek A.R., Wong H., Radke C.J. A pore level scenario for the development of mixed wettability in oil reservoirs. American Institute of Chemical Engineers, 1993, 39, no.6, pp.1072-1085. DOI: 10.2118/24880-MS
19. Dixit A.B., Buckley J.S., McDougall S.R., Sorbie K.S. Empirical measures of wettability in porous media and the relationship between them derived from pore-scale modeling. Transp. Porous Media, 2000, vol.40, iss.1, pp.27-54. DOI: 10.1023/A:1006687829177
20. Nesterenko N.Iu. Smachivaemost' porod-kollektorov plastovymi fliuidami [Wetability of reservoir rocks by reservoir fluids]. Geologiia nefti i gaza, 1995, no.5.
21. OST 39-181-85. Neft'. Metod opredeleniia smachivaemosti uglevodorodsoderzhashchikh porod [Oil. Method for determination of wettability of hydrocarbonaceous rocks], available at: http://gostrf.com/ normadata/1/ 4293835/4293835425.pdf (accessed: 12 June 2017).
22. Mikhailov N.N., Sechina L.S., Gurbatova I.P. Pokazateli smachivaemosti v poristoi srede i zavisimost' mezhdu nimi [The wettability indexes in a porous medium and the relationship between them]. Aktual'nye problemy nefti i gaza, 2011, no.1 (3), p.10.
23. Gurbatova I.P., Melekhin S.V., Chizhov D.B., Fairuzova Iu.V. Features of study complex carbonate reservoir rocks` wetting using laboratory methods. Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2016, vol.15, no.20, pp.240-245. DOI: 10.15593/2224-9923/2016.20.4
24 Xizhnyak G.P., Amirov A.M., Mosheva A.M., Melexin S.V., Chizhov D.B. Influence of wettability on oil displacement efficiency. Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2013, vol.12, no.6, pp.54-63.
25. Zlobin A.A., Iushkov I.R. Opredelenie smachivaemosti poverkhnosti porovykh kanalov neekstragirovannykh porod-kollektorov [Determination of the wettability of the surface of pore channels of non-extracted reservoir rocks]. Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii, 2009, no.10, pp.29-32.
26. Allen D., Flaum C., Ramakrishnan T.S., Bedford J., Castelijns K., Fairhurst D., Gubelin G., Heaton N., Minh C.C., Norville M.A., Seim M.R., Pritchard T., Ramamoorthy R. Trends in NMR logging. Oilfield Review, 2000, 12, no.3, pp.2-19.
27. Chen J., Hirasaki G.J., Flaum M. NMR wettability indices: effect of OBM on wettability and NMR responses. Journal of Petroleum Science and Engineering, 2006, 52, no.1-4, pp.161-171. DOI: 10.1016/j.petrol.2006.03.007
28. Galkin S.V., Efimov A.A., Krivoshchekov S.N., Savitskiy Ya.V., Cherepanov S.S. X-ray tomography in petrophysical studies of core samples from oil and gas fields. Russian Geology and Geophysics, 2015, no.5, pp.782-792. DOI: 10.1016/j.rgg.2015.04.009.
29. Alemu B.L., Aker E., Soldal M., Johnsen O., Aagard P. Effect of sub-core scale heterogeneities on acoustic and electrical properties of a reservoir rock: a CO2 flooding experiment of brine saturated sandstone in a computed tomography scanner. European Association of Geoscientists & Engineers. Geophysical Prospecting, 2012, 61, pp.235-250. DOI: 10.1111/j.1365-2478.2012.01061.x
30. Efimov A.A., Galkin S.V., Savitckii Ia.V., Galkin V.I. Estimation of heterogeneity of oil & gas field carbonate reservoirs by means of computer simulation of core x-ray tomography data. Ecology, Environment and Conservation, 2015, vol.21, pp.79-85.
31. Efimov A.A., Savitskii Ia.V., Galkin S.V., Soboleva E.V., Gurbanov V.Sh. Issledovanie smachivaemosti kollektorov neftianykh mestorozhdenii metodom rentgenovskoi tomografii kerna [Investigation of wettability of reservoirs of oil deposits by the method of X-ray tomography of core]. Nauchnye trudy NIPI Neftegaz GNKAR, 2016, vol.4, no.4, pp.55-63. DOI: 10.5510/OGP20160400298
32. Itenberg S.S., Dakhkil'gov T.D. Geofizicheskie issledovaniia v skvazhinakh [Geophysical studies in wells]. Moscow, Nedra, 1982, 351 p.
33. Koskov V.N., Koskov B.V. Geofizicheskie issledovaniia skvazhin i interpretatsiia dannykh GIS [Geophysical studies of wells and interpretation of GIS data]. Perm', 2007, 317 p. Seriia Prioritetnye natsional'nye proekty “Obrazovanie”.
34. Iskenderov M.M. Nekotorye rezul'taty modelirovaniia udel'nogo elektricheskogo soprotivleniia (na primere mestorozhdenii Iuzhno-Absheronskoi akvatorial'noi zony i severnoi chasti Bakinskogo arkhipelaga) [Some Results of Modeling Electrical Resistivity (în the Example of Deposits of the South-Absheron Aquatorium Zone and the Northern Part of the Baku Archipelago)]. Nauchnye trudy NIPI Neftegaz GNKAR, 2017, vol.2, no.2, pp.4-12. DOI: 10.5510/OGP20170200310
35. Hill T., Lewicki P. Statistics: methods and applications: A comprehensive reference for science, industry, and data mining. Tulsa, OK, StatSoft, 2006. DOI: 10.1016/B978-0-323-03707-5.50024-3
36. Geologicheskoe stroenie i pereschet zapasov uglevodorodnogo syr'ia Shershnevskogo mestorozhdeniia nefti na osnove geologicheskoi modeli [Geological structure and recalculation of hydrocarbon reserves of the Shershnev oil field on the basis of a geological model]. Perm', PermNIPIneft', 2010.
37. Buriakovskii L.A., Dzhafarov I.S., Dzhevanshir R.D. Prognozirovanie fizicheskikh svoistv kollektorov i pokryshek nefti i gaza [Forecasting the physical properties of oil and gas collectors and tires]. Moscow, Nedra, 1982, 200 p.
38. Dakhnov V.N. Geofizicheskie metody opredeleniia kollektorskikh svoistv i neftegazonasyshcheniia gornykh porod [Geophysical methods for determining reservoir properties and oil and gas saturation of rocks]. Moscow, Nedra, 1985, 310 p.
39. Debrant R. Teoriia i interpretatsiia rezul'tatov geofizicheskikh metodov issledovaniia skvazhin [Theory and interpretation of the results of geophysical methods of well investigation]. Moscow, Nedra, 1972, 288 p.
40. Abasov M.T., Aliiarov R.Iu., Kondrushkin Iu.M., Musaev R.A., Gashimov A.F., Lunina V.N., Gasymov A.Sh., Adygezalova A.A. Smachivaemost' porod-kollektorov v protsesse razrabotki zalezhei nefti [Wetability of reservoir rocks during the development of oil deposits]. Neftianoe khoziaistvo, 2004, no.8, pp.69-71.
41. Montaron B. A quantitative model for the effect of wettability on the conductivity of porous rocks. 15th Middle East Oil and Gas Show and Conference, Bahrain, 2007. DOI: 10.2118/105041-MS
Relevant directions in development of polymer compositions for conditions of operated in Perm region reservoirsKetova Yu.A. Received: 12.09.2017 Accepted: 13.10.2017 Published: 01.12.2017 http://dx.doi.org/10.15593/2224-9923/2017.4.5
PDF |
Abstract |
Authors |
References |
Abstract: According to audit data about 75 % of residual oil reserves of Perm region fields are characterized by water cut of well production of more than 50 %. Development of the methods for reducing water inflow is one of the priority areas of research. The paper presents the results of an analysis of available sources for reasons of oil water cut and methods used to eliminate water inflow. A detailed classification of remedial cementing jobs is displayed. The review of chemical methods allowing to block the water inflow in the bottomhole and remote zone of the reservoir is given.
It was established during the analysis that studying of polymeric materials for remedial cementing jobs is a relevant direction. An analysis of domestic and international experience shows that the use of polymeric materials to eliminate water inflows allows to increase oil recovery up to 85-90 %. Such parameters as structure (large caverns or cracks of small diameter) and localization of water inflow, temperature, reservoir pressure and formation permeability, characteristics of reservoir fluids dictate individual requirements for the polymer composition in terms of rheology, polymerization kinetics, strength characteristics and thermal stability.
The most urgent task of waterproofing works in the Perm region is the elimination of watered intervals and redistribution of fluid flows into undeveloped less permeable sections of the geological section. In this regard, technology to reduce water inflow with the help of gels with a high penetrating power and high strength after the completion of polymerization are in demand at the deposits of the Perm region. Taking into account the analysis, the technology of polymeric blockage of water inflow using polyacrylamide (PAA) was adopted as the most suitable for conditions of reservoirs of Perm regions. Laboratory tests are carried out to study and select polymer compositions for remedial cementing jobs at the fields of the Perm regions, including the polymerization process depending on the composition pH. The change in viscosity of the polymer composition during the time with a PAA content of 0.75 % and chromium acetate of 0.02 % is studied. As a result of testing the polymer based on PAA, it was found that viscosity of a polymer composition increases with increasing temperature and concentration of the crosslinking agents.
Key words: technologies of remedial cementing, crossflows, water inflow, water cut of well production, polymer composition, crosslinked polymer, polyacrylamide, silicates.
Authors: Yuliya A. Ketova
NefteProm Servis LLC
ketovaya@npserv.ru
25 Lizy Chaykinoy st., Perm, 614022, Russian Federation
References: 1. Iliushin P.Iu., Rakhimzianov R.M., Solov′ev D.Iu., Kolychev I.Iu. Analysis of well intervention aimed at oil production enhancement in the Perm krai′s fields. Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2015, vol.14, no.15, pp.81-89. DOI: 10.15593/2224-9923/2015.15.9
2. Canbolat S., Parlaktuna M. Well selection criteria for water shut-off polymer gel injection in carbonates. Abu Dhabi International Petroleum Exhibition and Conference, SPE 158059, 2012, pp.1-11. DOI: 10.2118/158059-MS
3. Seright R.S., Lane R.H., Sydansk R.D. A strategy for attacking excess water production. SPE Production and Facilities, 2003, vol.18, no.03, pp.158-169. DOI: 10.2118/84966-PA
4. Akhlaghi Amri H.A. Evaluation of alkaline sodium silicate gel for reservoir in-depth profile modifications to enhance water sweep efficiency in sandstone reservoirs. Ph.D. thesis No. 221. University of Stavanger, 2014, p.115.
5. Eoff L., Dalrymple D., Everett D., Vasquez J. Worldwide field applications of a polymeric gel system for conformance applications. SPE Production & Operations, 2007, vol.22, no.2, pp.231-236. DOI: 10.2118/98119-PA
6. Lymar I.V. Review of new water shut-off technologies implemented on the oil fields of The Republic Belarus. Oil and Gas Business, 2011, no.5, pp.133-142, available at: http://www.ogbus.ru/eng/ (accessed: 06 September 2017).
7. Simjoo M., Sefti M.V., Koohi A.D., Hasheminasab R., Sajadian V. Polyacrylamide gel polymer as water shut-off system: preparation and investigation of physical and chemical properties in one of the Iranian oil reservoirs conditions. Iranian Journal of Chemistry and Chemical Engineering, 2007, vol.26, no.4, pp.99-108.
8. Sabhapondit A., Borthakur A., Haque I. Characterization of acrylamide polymers for enhanced oil recovery. Journal Applied Polymer Science, 2003, vol.87, no.12, pp.1869-1878. DOI: 10.1002/app.11491
9. Kurenkov V.F., Hartan H.G., Lobanov F.I. Alkaline hydrolysis of polyacrylamide. Russiand Journal of Applied Chemistry, 2001, vol.74, no.4, pp.543-554. DOI: 10.1023/A:1012786826774
10. Sengupta B., Sharma V.P., Udayabhanu G. Gelation studies of an organically cross-linked polyacrylamide water shut-off gel system at different temperatures and pH. Journal of Petroleum Science and Engineering, 2012, vol.81, pp.145-150. DOI: 10.1016/j.petrol.2011.12.016
11. Stahl G.A., Moradi-Araghi A., Doe P.H. High temperature and hardness stable copolymers of vinylpyrrolidone and acrylamide. Water-Soluble Polymers for Petroleum Recovery. Eds. G.A. Stahl, D.N. Schulz. New York, London, Plenum Press, 1988, pp.121-130. DOI: 10.1007/978-1-4757-1985-7_6
12. Malcolm A. Kelland production chemicals for the oil and gas industry. CRC Press Taylor and Francis Group, 2014, 412 p.
13. Wu Y., Wang K.-S., Hu Z., Bai B., Shuler P., Tang Y. A new method for fast screening of long-term thermal stability of water soluble polymers for reservoir conformance control. Society of Petroleum Engineers, 2009, pp.1-11. DOI: 10.2118/124257-MS
14. Borthakur A., Rahman M., Sarmah A., Subrahmanyam B. Partially hydrolyzed polyacrylamide for enhanced oil recovery. Res. Industry, 1995, 40, pp.90-94.
15. El-Karsani K.S.M., Al-Muntasheri G.A., Hussein I.A. Polymer system for water shut off and profile modification: a review over the last decade. SPE Journal, 2014, vol.19, no.01, pp.135-149. DOI: 10.2118/163100-PA
16. Jain R., McCool C.S., Green D.W., Willhite G.P., Michnick M.J. Reaction kinetics of the uptake of chromium (III) acetate by polyacrylamide. SPE Journal, 2005, vol.10, no.03, pp.247-254. DOI: 10.2118/89399-MS
17. Klaveness Th.M., Ruoff P. Kinetics of the cross linking of polyacrylamide with Cr (III). Analysis of possible mechanisms. The Journal of Physical Chemistry, 1994, vol.98, no.40, pp.10119-10123. DOI: 10.1021/j100091a029
18. Seright R., Peihui H., Dongmei W. Current colloidal dispersion gels are not superior to polymer flooding. P.G.O.D.D., 2006, no.10, pp.71-80. DOI: 1000-3754 (2006) 05-0071-10
19. Seright R. Are colloidal dispersion gels really a viable technology? New Mexico Petroleum Recovery Research Center, available at: http://www.prrc.nmt.edu/ groups/res-sweep/colloidal-gels/ (accessed: 06 September 2017).
20. Adewunmi A.A., Ismail S., Sultan A.S. Study on strength and gelation time of polyacrylamide/ polyethyleneimine composite gels reinforced with coal fly ash for water shut-off treatment. TOC, 2015, vol.132, iss.5. DOI: 10.1002/app.41392
21. Bai Y., Xiong C., Wei F., Li J., Shu Y., Liu D. Gelation study on a hydrophobically associating polymer/polyethylenimine gel system for water shut-off treatment energy fuels, 2015, vol.29, no.2, pp.447-458. DOI: 10.1021/ef502505k
22. Al-Muntasheri G.A., Nasr-El-Din H.A. A study of polyacrylamide-based gels crosslinked with polyethyleneimine. SPE Journal, SPE-105925-PA, 2009, vol.14, no.02. DOI: 10.2118/105925-PA
23. Shafian S.R.M., Hassan A.A.B., Ismail S., Teng L.K., Irawan S. Blocked isocyanate fluid system for water shut off application. IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition. Ho Chi Minh City, Vietnam, 2010. DOI: 10.2118/132813-MS
24. Nasr-El-Din H.A., Taylor K.C. Evaluation of sodium silicate/ urea gels for water shut-off treatments. Journal of Petroleum Science and Engineering, 2005, vol.48, no.3-4, pp.141-160. DOI: 10.1016/j.petrol.2005.06.010
25. Asghari K., Taabbodi L., Dong M. A new gel-foam system for water shut-off purposes in wormhole reservoirs. SPE International Thermal Operations and Heavy Oil Symposium, Calgary, Alberta, Canada, 2005. DOI: 10.2118/97765-MS
26. Cordova M., Cheng M., Trejo J. Delayed HPAM gelation via transient sequestration of chromium in polyelectrolyte complex nanoparticles. Macromolecules, 2008, vol.41, no.12, pp.4398-4404. DOI: 10.1021/ma80021d
27. Koshkin K.A., Galkin S.V. Oil recovery forecast during reevaluation of visean clastic deposits reserves of north-east Volga-Ural oil and gas province. Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2015, vol.14, no.17, pp.16-23. DOI: 10.15593/2224-9923/2015.17.2
28. Iliushin P.Iu., Galkin S.V., Poplaukhina T.B., Luzina N.G. Razrabotka metodiki opredeleniia dinamiki obvodneniia produktsii skvazhin s uchetom vliianiia geologicheskikh i tekhnologicheskikh pokazatelei [Development of the methodology for well drowning assessment with regard to geological and technological parameters]. Neftianoe khoziaistvo, 2012, no.4, pp.108-110.
29. Galkin S.V., Iliushin P.Iu. Metodika operativnoi otsenki ostatochnykh izvlekaemykh zapasov nefti na osnove analiza dinamiki obvodnennosti produktsii skvazhin [Technique of an operational assessment residual taken stocks of oil on a basis analysis of dynamics of water cutting of production of wells]. Neft', gaz i biznes, 2013, no.7, pp.69-71.
30. Efimov A.A., Savitckii Ia.V., Galkin S.V., Shapiro S. Experience of study of core from carbonate deposits by X-ray tomography. Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2016, vol.15, no.18, pp.23-32. DOI: 10.15593/2224-9923/2016.18.3
Dispersion of the G-type coal dust of the Vorgashorskoe field and its influence on the thermal destruction processRodionov V.A., Pikhkonen L.V., Zhikharev S.Ya. Received: 31.08.2017 Accepted: 12.10.2017 Published: 01.12.2017 http://dx.doi.org/10.15593/2224-9923/2017.4.6
PDF |
Abstract |
Authors |
References |
Abstract: Results of a comprehensive study of coal dust obtained from the G-type coal of Vorgashorskoe field are presented. The main research methods used in the work are granulometric, thermogravimetric and differential thermal analysis.
The granulometric sieving carried out confirmed the heterogeneity of the sample with size of 0-200 μm fraction for a technical analysis. It is established that fractions of less than 100 μm size account for more than 50 % of the total sample mass. The results obtained suggested that result can be different depending on the content of a fraction in the overall technical sample sent for an analysis. However, this is probably acceptable in a technical analysis of coal dust samples but not for determination of explosive and fire hazard indicators. In order to study the effect of the dispersion composition of dust on a pyrolysis process in the air (oxidizing) medium for each of the fractions of 0-200 μm and additionally for larger fractions studies were carried out using thermogravimetry and a differential thermal analysis.
The thermogravimetric analysis confirmed the hypothesis about the ambiguous behavior of coal dust during its pyrolysis depending on the dispersion composition. Two fractions showed the same behaviont during the thermal pyrolysis. The fraction of 63-94 μm is the boundary one between 0-45 and 45-63 μm and remaining fractions of larger than 94 μm in size. That fact indicates that during determination of the explosive fire hazard properties it is necessary to investigate dust samples of dispersive composition from 0 to 100 μm, i.å. a narrower fraction than in the technical analysis of samples from 0 to 200 μm. Express analysis of the obtained data of differential thermal analysis showed a difference in thermal degradation between the fractions of interest at the initial stage (250-330 °C). The results obtained allowed to draw a conclusion about the expediency of the study of coal dust of dispersive composition from 0-100 μm. It also showed the necessity of using methods considered in the paper for a detailed study of physical and chemical parameters of coal dust and an assessment of its explosive and fire hazard properties.
Key words: granulometric analysis, technical analysis, dispersion composition, pyrolysis of coal, explosive dust, coal dust, differential thermal analysis, thermogravimetry.
Authors: Vladimir A. Rodionov
Saint Petersburg University of State Fire Service of EMERCOM of Russia
79213258397@mail.ru
149 Moskovskiy av., Saint Petersburg, 199105, Russian Federation
Leonid V. Pikhkonen
Saint Petersburg University of State Fire Service of EMERCOM of Russia
igpsmining@list.ru
149 Moskovskiy av., Saint Petersburg, 199105, Russian Federation
Sergey Ya. Zhikharev
Mining Institute of the Ural Branch of the Russian Academy of Sciences
perevoloki55@mail.ru
78 Sibirskaya st., Building A, Perm, 614007, Russian Federation
References: 1. Chernysheva E.A. Vlaga v ugliakh kak parametr kachestva produktsii [Moisture in the coals as a parameter of product quality]. Ugol', 2016, no.8, pp.125-128.
DOI: 10.18796/0041-5790-2016-8-125-128
2. Coal dust, available at: http://monographs.iarc.fr/ ENG/Monographs/vol68/mono68-12.pdf (accessed: 20 June 2017).
3. GOST 33654-2015. Ugli burye, kamennye i antratsit. Obshchie trebovaniia k metodam analiza [Coals are brown, stone and anthracite. General requirements for analysis methods], available at: http://www.internet-law.ru/gosts/gost/61802/ (accessed: 20 June 2017).
4. GOST R 55661-2013. Toplivo tverdoe mineral'noe. Opredelenie zol'nosti [Solid mineral fuel. Determination of ash content], available at: http://www.internet-law.ru/gosts/gost/55374/ (accessed: 20 June 2017).
5. GOST R 55660-2013. Toplivo tverdoe mineral'noe. Opredelenie vykhoda letuchikh veshchestv [Solid mineral fuel. Determination of the yield of volatile substances], available at: http://www.internet-law.ru/gosts/gost/55585 (accessed: 20 June 2017).
6. GOST 33623-2015. Toplivo tverdoe mineral'noe. Metod opredeleniia ravnovesnoi vlazhnosti [Solid mineral fuel. Method for determination of equilibrium moisture], available at: http://www.internet-law.ru/gosts/gost/61798/ (accessed: 20 June 2017).
7. GOST 33503-2015. Toplivo tverdoe mineral'noe. Metody opredeleniia vlagi v analiticheskoi probe [Solid mineral fuel. Methods for determining moisture in an analytical sample], available at: http://www.internet-law.ru/gosts/gost/61865/ (accessed: 20 June 2017).
8. Korol'chenko A.Ia. Pozharovzryvoopasnost' promyshlennoi pyli [Fire and explosion hazard of industrial dust]. Moscow, Khimiia, 1986, 216 p.
9. Airuni A.T., Klebanov F.S., Smirnov O.V. Vzryvoopasnost' ugol'nykh shakht [Explosiveness of coal mines]. Moscow, Gornoe delo, Kimmeriiskii tsentr, 2011, 264 p.
10. Kaliakin S.A., Bulgakov Iu.F. Pozharovzryvoopasnost' otlozhenii ugol'noi pyli [Fire and explosion hazard of coal dust deposits]. Nauchnyi vestnik NIIGD Respirator, 2012, no. 1, pp.14-27.
11. Kaliakin S.A. Analiz pozharovzryvoopasnosti ugol'noi pyli [Analysis of fire and explosion hazard of coal dust]. Nauchnyi vestnik NIIGD Respirator, 2012, no.1, pp.27-35.
12. Tekhnicheskii reglament o trebovaniiakh pozharnoi bezopasnosti [Technical regulations on fire safety requirements]. Federal'nyi zakon ot 22 iiulia 2008 goda no. 123-FZ (s izmeneniiami na 29 iiulia 2017 goda), available at: http://www.consultant.ru/document/cons_ doc_LAW_78699/ (accessed: 20 June 2017).
13. GOST 12.1.044-89. Pozharovzryvoopasnost' veshchestv i materialov. Nomenklatura pokazatelei i metody ikh opredeleniia (s izmeneniem no.1) [Fire and explosion hazard of substances and materials. Nomenclature of indicators and methods for determining them (with the change No. 1)], available at: http://npopris.ru/wp-content/uploads/2015/03/ ÃÎÑÒ-12.1.044-89.pdf (accessed: 20 June 2017).
14. Baratov A.N., Korol'chenko A.Ia., Kravchuk G.N. et al. Pozharovzryvoopasnost' veshchestv i materialov i sredstva ikh tusheniia [Fire and explosion hazard of substances and materials and their extinguishing agents]. Moscow, Khimiia, 1990.
15. Korol'chenko A.Ia., Korol'chenko D.A. Pozharovzryvoopasnost' veshchestv i materialov i sredstva ikh tusheniia [Fire and explosion hazard of substances and materials and their extinguishing agents]. Moscow, Pozhnauka, 2004.
16. Informatsionnyi biulleten' Federal'noi sluzhby po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru [Information Bulletin of the Federal Service for Environmental, Technological and Nuclear Supervision]. Upravlenie po nadzoru v ugol'noi promyshlennosti. Ugol'naia promyshlennost', 2016, no. 4 (85), pp.1-7.
17. Tarzanov I.G. Itogi raboty ugol'noi promyshlennosti Rossii za ianvar' – dekabr' 2015 goda [Results of the work of the Russian coal industry in January-December 2015]. Ugol', 2015, no.3, pp.58-72. DOI: 10.18796/0041-5790-2015-12-58-72
18. Tarzanov I.G. Itogi raboty ugol'noi promyshlennosti za ianvar' – iiun' Rossii 2016 goda [Results of the work of the coal industry in January-June of Russia in 2016]. Ugol', 2016, no.9, pp.46-62. DOI: 10.18796/0041-5790-2016-9-46-62
19. Nosenko V.D. Kak iskliuchit' vzryvy metana v shakhte [How to exclude methane explosions in the mine]. Ugol', 2016, no.6, pp.37.
20. Babkin V.A. Razvitie ugol'noi promyshlennosti Rossiiskoi Federatsii na primere innovatsionnogo klastera Kemerovskoi oblasti “Kompleksnaia pererabotka uglia i tekhnogennykh otkhodov” [Development of the coal industry of the Russian Federation on the example of the innovative cluster of the Kemerovo region "Complex processing of coal and man-made waste"]. Ugol', 2016, no.3, pp.46-62. DOI: 10.18796/0041-5790-2016-3-50-52
21. Promyshlennaia bezopasnost' predpriiatii mineral'no-syr'evogo kompleksa v XXI veke [Industrial safety of enterprises of the mineral and raw materials complex in the 21st century]. Bezopasnost' truda v promyshlennosti, 2017, no.1, pp.82-87.
22. Zaburdiaev V.S. Tekhnologicheskie resheniia po predotvrashcheniiu obrazovaniia vzryvoopasnykh smesei v shakhtakh [Technological solutions for the prevention of the formation of explosive mixtures in mines]. Bezopasnost' truda v promyshlennosti, 2016, no.12, pp.26-31.
23. Mashintsov U.A., Kotlerevskaia L.V., Krinichnaia N.A. Tekhnologiia povysheniia bezopasnosti v ugol'noi shakhte [Technology of increasing safety in a coal mine]. Izvestiia Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2014, iss.9, part 2, pp.168-172.
24. Ordin A.A. O neobkhodimosti izmeneniia gornogo zakonodatel'stva i normativnykh aktov dlia predotvrashcheniia vzryvovo metana na ugol'nykh shakhtakh Rossii [On the need to change mining legislation and regulations to prevent explosive methane from coal mines in Russia]. Ugol', 2016, no.6, pp.38-41. DOI: 10.18796/0041-5790-2016-6-38-41
25. Zeyang Song, Claudia Kuenzer. Coal fires in China over the last decade: A comprehensive review. International Journal of Coal Geology, 2014, vol.133, 1, pp.72-99. DOI: 10.1016/j.coal.2014.09.004
26. Karaoulis M., Revil A., Mao D. Localization of a coal seam fire using combined self-potential and resistivity data. International Journal of Coal Geology, 2014, vol.128-129, pp.109-118. DOI: 10.1016/j.coal.2014.04.011
27. Boiko E.A. Kompleksnyi termicheskii analiz tverdykh organicheskikh topliv [Complex thermal analysis of solid organic fuels]. Krasnoiarsk, 2006, 407 p.
28. Sazanov Iu.N. Termicheskii analiz organicheskikh soedinenii [Thermal analysis of organic compounds]. Saint Petersburg, Izdatel'stvo Politekhnicheskogo universiteta, 2016, 368 p.
29. Brown M.E., Gallagher P.K. (Eds). The handbook of Thermal. Anal. Amsterdam, Elsev., 2008, vol.5, 827 p.
30. Maryandyshev P.A., Chernov A.A., Lyubov V.K. Thermogravimetric and kinetic investigations of peat and hydrolytic lignine. International Journal of Experimental Education, 2014, no.12, pp.20-27.
31. Xue Y., Liu J., Liang J. Correlative study of critical reactions in polyacrylonitrile based carbon fiber precursors during thermal-oxidative stabilization. Polymer Degradation and Stability, 2013, vol.98, pp.219-229. DOI: 10.1016/j.polymdegradstab.2012.10.018
32. Cherniavskii N.V., Kosiachkov A.V., Filippenko Iu.N., Rudavina E.V., Voronov A.N. Sovershenstvovanie trebovanii k pokazateliam uglei dlia pylevidnogo szhiganiia na TES i metodov ikh oprobovaniia [Improvement of requirements for coal indicators for pulverized combustion at TPPs and methods for their testing]. Tekhnicheskaia teplofizika i promyslovaia teploenergetika, 2013, iss.5, pp.137-149.
33. Uendlandt U. Thermal methods of analysis. Moscow, Mir, 1978, 526 p.
34. Dashko L.V., Dovbnia A.V., Kliuchnikov V.Iu., Plotnikova G.V. Primenenie metodov termicheskogo analiza pri proizvodstve pozharno-tekhnicheskikh ekspertiz [Application of thermal analysis methods in the production of fire-technical expertise]. Vestnik Vostochno-Sibirskogo instituta MVD Rossii, 2012, ¹ 1 (60), pp.59-64.
35. Andreeva E.D., Printseva M.Iu., Kondrat'ev S.A., Cheshko I.D. Primenenie termicheskogo analiza pri issledovanii i ekspertize pozharov: metodicheskie rekomendatsii [Application of thermal analysis in the study and examination of fires: guidelines]. Moscow, VNIIPO, 2013, 60 p.
36. Cheshko I.D. Ekspertiza pozharov (ob"ekty, metody, metodiki issledovaniia) [Examination of fires (objects, methods, research methods)]. Ed. N.A. Andreev. Saint Petersburg, SPbIPB MVD Rossii, 1997, 562 p.
37. Weiguoa Cao, Liyuana Huang, Jianxinb Zhang, Sen Xu, Shanshana Qiu, Feng Pan. Research on characteristic parameters of coal dust explosion. Procedia Engineering, 2012, vol.45, pp.442-447. DOI: 10.1016/j.proeng.2012.08.183
38. Melody S.M., Johnston F.H. Coal mine fires and human healf: What do we now? International Journal of Coal Geology, 2015, 152, pp.1-14. DOI: 10.1016/j.coal.2015.11.001
39. Tolvanen H., Kokko L., Raiko R. Fast pyrolysis of coal, peat, and torrefied wood: Mass loss study with a drop tube reactor, particle geometry analysis, and kinetics modeling. Fuel, 2013, vol.111, pp.148-165. DOI: 10.1016/j.fuel.2013.04.030.
40. Filho S., Gomes C., Milioli F.E. A thermogravimetric analysis of the combustion of a Brazilian mineral coal. Quím. Nova, 2008, vol.31, no.1, pp.98-103, available at: (accessed: 20 June 2017).
41. GOST R 56721-2015. Plastmassy. Termogravimetriia polimerov. Part 1. Obshchie printsipy [Plastics. Thermogravimetry of polymers. Part 1. General principles], available at: http:// www.internet-law.ru/gosts/gost/61681/ (accessed: 20 June 2017).
Justification on safe parameters of drilling and blasting mining of sylvinite formations of unconventional thickness together with continuous mining of conventional formations in the mines of VerkhnekAndreyko S.S., Mal′tsev V.M., Anikin V.V., Zhikharev S.Ya. Received: 21.08.2017 Accepted: 10.10.2017 Published: 01.12.2017 http://dx.doi.org/10.15593/2224-9923/2017.4.7
PDF |
Abstract |
Authors |
References |
Abstract: In the conditions of the Verkhnekamskoe field of potassium and magnesium salts unconventional in terms of thickness sylvinite seams are involved in the mining. That requires methodological support and new technological solutions. One of the possible directions in the excavation of sylvinite seams of unconventional thickness is the use of drilling and blasting. A method for calculating the safe geomechanical parameters of the chamber development pattern was developed in order to justify the possibility of drilling and blasting excavation of sylvinite seams of unconventional thickness. The paper presents theoretical calculations for determination of the parameters of a chamber development pattern taking into account the requirements of current regulatory documents. That ensures geomechanical safety during drilling and blasting mining of sylvinite seams of unconventional thickness as well as during mining of sylvinite seams of unconventional thickness in combination with mashinery mining of seams with conventional thickness. Two options of drilling and blasting mining of sylvinite layers depending on the mining and geological conditions of development, are considered in the paper. The first option considers drilling and blasting excavation by the chamber pattern of one sylvinite seam of unconventional thickness. The second option considers drilling and blasting mining of an unconventional sylvinite reservoir together with a machinery mining of adjacent sylvinite layers that have conventional thickness. Minimum allowable size of the production chamber in the drilling and blasting mining of sylvinite seams of unconventional thickness, design and actual parameters of chambers and inter-chamber blocks are justified according to the requirements of regulatory documents. The procedure for calculation of sizes of the cleaning chambers in drilling and blasting mining and inter-chamber blocks in the joint excavation of sylvinite layers of conventional and unconventional thickness. The method for determination of safe parameters of blasting operations providing the permissible value of the fracturing zone in the soil and roof of the cleaning chambers mined by the drilling and blasting method is presented. Calculations have been performed to determine the fracture radius based on the calculation of explosion pulse and dynamic strength of the salt rocks. Determination of the allowable weight of explosion is done using the value of the displacement speed of the particles in the array.
As a result of the studies performed, the safe parameters of drilling and blasting mining of one sylvinite layer with unconventional thickness by the chamber pattern and the sylvinite formation of unconventional thickness together with longwall machinery mining of conventional formation at the mines of Verkhnekamskoe field of potassium and magnesium salts.
Key words: potash mine, sylvinite formation, unconventional thickness, drilling and blasting mining, industrial safety, inter-chamber block, loading level, interlayer roof, cleaning chamber, design parameters, explosive charge, explosion pulse, seismic explosion impact, critical vibration rate, fracture radius.
Authors: Sergey S. Andreyko
Perm National Research Polytechnic University
ssa@mi-perm.ru
29 Komsomolskiy av., Perm, Russian Federation, 614990
Valentin M. Mal'tsev
Perm National Research Polytechnic University
vmmal@bk.ru
29 Komsomolskiy av., Perm, Russian Federation, 614990
Vladimir V. Anikin
Mining Institute of the Ural Branch of the Russian Academy of Sciences
anikin@mi-perm.ru
78 Sibirskaya st., Building A, Perm, 614007, Russian Federation
Sergey Ya. Zhikharev
Mining Institute of the Ural Branch of the Russian Academy of Sciences
perevoloki55@mail.ru
78 Sibirskaya st., Building A, Perm, 614007, Russian Federation
References: 1. Zil'bershmidt V.G. et al. Tekhnologiia razrabotki kaliinykh rud [Technology for the development of potash ores]. Moscow, Nedra, 1977, 287 p.
2. Chelpanova E.V., Koshurnikov N.S. O vozmozhnosti razrabotki malomoshchnykh plastov Verkhnekamskogo mestorozhdeniia kaliinykh solei [On the possibility of developing low-capacity strata of the Verkhnekamskoe potassium salt deposit]. Izvestiia vuzov. Gornyi zhurnal, 2004, no.5, pp.6-9.
3. Shvab R.G., Tsygankov S.N., Deshkovskii V.N. Perspektivy razvitiia kaliinoi promyshlennosti v Respublike Belarus' [Prospects for the development of the potash industry in the Republic of Belarus]. Gornaia mekhanika, 2005, no.3, pp.84-88.
4. Starkov L.I., Zemskov A.N., Kondrashev P.I. Razvitie mekhanizirovannoi razrabotki kaliinykh rud [Development of mechanized development of potash ores]. Perm', Izdatel'stvo Permskogo gosudarstvennogo tekhnicheskogo universiteta, 2007, 522 ð.
5. Semenov V.V., Mal'cher M.A., Petrov V.P. Rossiiskie prokhodchesko-ochistnye kombainy dlia dobychi kaliinoi rudy i kamennoi soli [Russian sink-cleaning combines for the extraction of potassium ore and rock salt]. Gliukauf, 2007, no.1, pp.31-33.
6. Novikov A. Oborudovanie firmy DBT dlia kamerno-stolbovoi sistemy razrabotki i prokhodki vyrabotok [DBT equipment for chamber-pillar development and excavation]. Gliukauf, 2007, no.1, pp.44-49.
7. Smychnik A.D., Morev A.B., Vas'ko M.V. Sistemy razrabotki kaliinykh mestorozhdenii: tekhnologicheskie skhemy, oborudovanie, effektivnost' [Systems for the development of potash deposits: technological schemes, equipment, efficiency]. Gornaia mekhanika, 2008, no.4, pp.16-28.
8. Benzen Kh. Kaliinaia promyshlennost' Germanii [The potash industry in Germany]. Gliukauf, 2009, no.1, pp.27-30.
9. Morev A.B., Smychnik A.D., Kazachenko G.V. Gornye mashiny dlia kaliinykh rudnikov [Mining machines for potash mines]. Minsk, Integralpoligraf, 2009, 544 p.
10. Metodicheskoe rukovodstvo po vedeniiu gornykh rabot na rudnikakh OAO “Sil'vinit” [Methodological guidelines for mining operations at the mines of OJSC Silvinit]. Novosibirsk, Nauka, 2011, 487 p.
11. Solov'ev V.A., Konstantinova S.A., Alymenko D.N., Spekhov L.M. Osobennosti razrabotki kraevykh chastei Verkhnekamskogo kaliinogo mestorozhdeniia [Features of the development of the marginal parts of the Verkhnekamsk potash deposit]. Gornyi zhurnal, 2011, no.12, pp.41-45.
12. Isaevich A.G. Snizhenie zapylennosti atmosfery rabochei zony pri rabote kombainovogo kompleksa s barabannym ispolnitel'nym organom [Reduction of dustiness in the atmosphere of the working area during the operation of the combine complex with a drum-type executive]. Strategiia i protsessy osvoeniia georesursov. Sbornik nauchnykh trudov. Perm', Gornyi institut Ural'skogo otdeleniia Rossiiskoi akademii nauk, 2015, iss.13, pp.264-266.
13. Isaevich A.G. Aktual'nye voprosy organizatsii provetrivaniia tupikovykh vyrabotok [Topical issues of organization of winding dead-end workings]. Strategiia i protsessy osvoeniia georesursov. Sbornik nauchnykh trudov. Perm', Gornyi institut Ural'skogo otdeleniia Rossiiskoi akademii nauk, 2016, iss.14, pp.266-268.
14. Ukazaniia po zashchite rudnikov ot zatopleniia i okhrane podrabatyvaemykh ob"ektov na Verkhnekamskogo mestorozhdeniia kaliinykh solei [Guidelines for the protection of mines from flooding and protection of work-in-process facilities at the Verkhnekamsk deposit of potassium salts]. Saint Petersbug, Perm, Berezniki, 2014, 130 p.
15. Metodicheskie rekomendatsii k “Ukazaniiam po zashchite rudnikov ot zatopleniia i okhrane podrabatyvaemykh ob"ektov na Verkhnekamskogo mestorozhdeniia kaliinykh solei” [Methodical recommendations to the “Guidelines for the protection of mines from flooding and protection of work-worn objects at the Verkhnekamsk deposit of potassium salts”]. Saint Petersbug, Perm, Berezniki, 2014, 66 p.
16. Pravila bezopasnosti pri vedenii gornykh rabot i pererabotke tverdykh poleznykh iskopaemykh [Safety rules for mining and processing of solid minerals]. Federal'nye normy i pravila v oblasti promyshlennoi bezopasnosti no.32935. Moscow, ZAO NTTs PB, 2015, iss.78, 273 p.
17. Rukovodstvo po vedeniiu vzryvnykh rabot na kaliinykh rudnikakh Verkhnekamskogo mestorozhdeniia [Guidelines for blasting operations at the potash mines of the Verkhnekamskoye deposit]. Perm', 1984, 195 p.
18. Mal'tsev V.M., Shablovskii V.P. Eksperimental'nye issledovaniia treshchinoobrazovaniia v solianykh porodakh pri vzryve odinochnogo shpurovogo zariada vzryvchatogo veshchestva na dve obnazhennye poverkhnosti [Experimental studies of crack formation in salt rocks during the explosion of a single blasting charge of an explosive on two exposed surfaces]. Razrabotka solianykh mestorozhdenii. Mezhvuzovskii sbornik nauchnykh trudov. Perm', 1983, pp.95-98.
19. Bezmaternykh V.A., Lykhin P.A., Leshchukov N.N., Mal'tsev V.M. Opredelenie parametrov komplekta shpurovykh zariadov vzryvchatykh veshchestv [Determining the parameters of a set of blasting charges of explosives]. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh, 1975, no.6, pp.69-73.
20. Bandis S.C., Lumsden A.C., Barton N.R. Fundamentals of rock joint deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, vol.20, no.6, pp.248-268. DOI: 10.1016/0148-9062(83)90595-8
21. Barton N., Bandis S., Bakhtar K. Strength, deformation and conductivity coupling of rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, vol.22, no.3, pp.121-140. DOI: 10.1016/0148-9062(85)93227-9
22. Bungum H., Mykkeltveit S., Kvaerna T. Seismic noise in Fennoscandia with emphasis on hight frequencies. Bulletin of the Seismological Society of America, 1985, vol.75, no.6, pp.1489-1513.
23. Pyrak-Nolte L.J., Myer L.R., Cook N.G.V. Transmission of seismic waves across singl natural fractures. Journal of Geophysical Research: Solid Earth, 1990, vol.95, no.Â6, pp.8617-8638. DOI: 10.1029/JB095iB06p08617
24. Gu b., Nihei K.T., Myer L.R., Pyrak-Nolte L.J. Fracture interface waves. Journal of Geophysical Research: Solid Earth, 1996, vol.191, no.1, pp.827-835. DOI: 10.1029/95JB02846
25. Kricak L. et al. Development of a fuzzy model for predicting the penetration rate of tricone rotary blasthole drilling in open pit mines. Journal of the Southern African Institute of Mining and Metallurgy, 2015, no.115(11), pp.1065-1071.
26. Hatherly P. et al. Drill monitoring results reveal geological conditions in blasthole drilling. International Journal of Rock Mechanics and Mining Sciences, 2015, no.78, pp.144-154. DOI: 10.1016/j.ijrmms.2015.05.006
27. Servet D. Variation of vertical and horizontal drilling rates depending on some rock properties in the marble quarries. International Journal of Mining Science and Technology, 2014, no.24 (2), pp.269-273. DOI: 10.1016/j.ijmst.2014.01.020
28. Gerhardt H.-P. et al. Anforderungen an die genauigkeit der Zündzeiten elektrischer sprengzünder und versuche zur ermittlung des einflusses des verzögerungsintervalls auf das sprengergebnis. Kali und Steinsalz, 2013, heft 1, pp.20-29.
29. Behnsen H., Krüger D. Kongressbericht zur 29. Bergtechnischen tagung 2013 in Hannover. Kali und Steinsalz, 2013, heft 2, pp.10-15.
30. Steinhage M., Triebel R. Arbeitsplatzgrenzwerte: gesundheitsschutz der arbeitnehmer verbessern und die wettbewerbsfähigkeit der industrie wahren. Kali und Steinsalz, 2014, heft 3, pp.6-13.
31. Lykhin P.A., Mal'tsev V.M. Normirovannyi impul's drobleniia kak pokazatel' drobimosti gornykh porod [The normalized impulse of crushing as an index of the crushing of rocks]. Fizicheskie problemy razrusheniia massivov gornykh porod. Sbornik dokladov mezhdunarodnoi konferentsii. Moscow, Rossiiskaia akademiia nauk, 1999, pp.174-176.
32. Lykhin P.A., Mal'tsev V.M. Chastnyi zakon impul'sa razrusheniia gornykh porod svobodnym udarom [Private law of the impulse of rock destruction by free impact]. Izvestiia vuzov. Gornyi zhurnal, 2001, no.1, pp.53-55.
33. Mal'tsev V.M., Andreiko S.S. Metod rascheta tsilindricheskogo vruba s uchetom velichiny koeffitsienta razrykhleniia vzryvaemoi porody [Method for calculating a cylindrical cut with allowance for the value of the coefficient of loosening of the explosive rock]. Izvestiia vuzov. Gornyi zhurnal, 2004, no.4, pp.70-72.
34. Andreiko S.S. Razrabotka parametrov burovzryvnykh rabot dlia effektivnogo initsiirovaniia vybrosov soli i gaza pri peresechenii vybrosoopasnykh geologicheskikh narushenii [Development of parameters for drilling and blasting operations for effective initiation of salt and gas emissions at the intersection of emissions-hazardous geological disturbances]. Nauka – proizvodstvu. Perm', Izdatel'stvo Permskogo tekhnicheskogo universiteta, 2005, no.1, pp.52-54.
35. Mal'tsev V.M., Solov'ev V.A. Udarno-impul'snyi metod rascheta parametrov klinovogo vruba [Shock-pulse method for calculating the parameters of a wedge cut]. Vzryvnoe delo, 2008, iss.99/56, pp.20-32.
36. Mal'tsev V.M. Raschet radiusa zony treshchinoobrazovaniia odinochnogo udlinennogo zariada vzryvchatogo veshchestva [Calculation of the radius of the cracking zone of a single elongated explosive charge]. Strategiia i protsessy osvoeniia georesursov. Sbornik nauchnykh trudov. Perm', Izdatel'stvo Gornogo instituta Ural'skogo otdeleniia Rossiiskoi akademii nauk, 2010, pp.220-223.
37. Mal'tsev V.M. Opredelenie dinamicheskoi prochnosti gornykh porod po velichine radiusa zony treshchinovatosti ot vzryva shpurovogo zariada vzryvchatogo veshchestva [Determination of the dynamic strength of rocks in terms of the radius of the zone of fracturing from the explosion of a blast charge of an explosive]. Strategiia i protsessy osvoeniia georesursov. Sbornik nauchnykh trudov. Perm', Izdatel'stvo Gornogo instituta Ural'skogo otdeleniia Rossiiskoi akademii nauk, 2011, pp.262-263.
38. Markov O.I., Beresnev S.P., Petrovskii Iu.B., Andreiko S.S., Mal'tsev V.M. Parametry burovzryvnogo initsiirovaniia vybrosov soli i gaza pri peresechenii vybrosoopasnykh geologicheskikh narushenii [Parameters of drilling and explosive initiation of emissions of salt and gas at crossing of outburst-dangerous geological disturbances]. Gornyi zhurnal, 2010, no.8, pp.75-77.
39. Pravila bezopasnosti pri vzryvnykh rabotakh. Federal'nye normy i pravila v oblasti promyshlennoi bezopasnosti [Safety rules for blasting operations. Federal rules and regulations in the field of industrial safety]. Moscow, Nauchno-tekhnicheskii tsentr issledovanii problem promyshlennoi bezopasnosti, 2015, series 13, iss.14, 332 p.
40. Spravochnik vzryvnika [Explosion Handbook]. Ed. B.N. Kutuzov. Moscow, Nedra, 1988, 511 p.
Ensuring the safety and energy efficiency of ventilation of shafts and mines that use the air recycling systemNikolaev A.V., Alymenko N.I., Chekhlar M., Janocko Yu., Alymenko D.N., Nikolaev V.A. Received: 07.08.2017 Accepted: 12.10.2017 Published: 01.12.2017 http://dx.doi.org/10.15593/2224-9923/2017.4.8
PDF |
Abstract |
Authors |
References |
Abstract: The paper describes the possible failures in the automation ventilation system with partial return use of upcast air from a shaft or mine (during recirculation). Existing ventilation systems use recirculation in the main ventilation mining, through which air is delivered from an underground mining enterprise. It is proposed to install automatic ventilation doors (AVD). They allow to change the aerodynamic resistance of the mine, i.e. control flow rate of air discharged from a mine (shaft). If an AVD is damaged the dangerous case could arise even in a normal ventilation mode due to the fact that mentioned negative control means can block the main path of air movement. In this case air from the air-supplying barrels is directed to the ventilation barrel through the recirculation loop bypassing the mining sites dedicated for ventilation. At the time of accident, when the main fan unit (MFU) is reversed, such a failure makes the situation even more dangerous due to the unpredictable path of flue gases.
In the method described it is proposed to install the AVD in the mines of the main directions and close them only during the period of the MFU reverse. When the closing AVD and forced draft fan of the main air heater work together and discharge air in the reverse mode, the time dedicated for switching of the main heater to the reverse mode is reduced. After the gradual opening of the AVD in the shaft (mine) a reversible mode of ventilation is installed.
The method proposed allows energy and resource savings for ventilation and air preparation both in normal and emergency modes while meeting the safety requirements for mining operations.
Key words: recirculation, main ventilation unit, air stream reverse, mining safety, energy saving.
Authors: Aleksandr V. Nikolaev
Perm National Research Polytechnic University
nikolaev0811@mail.ru
29 Komsomolskiy av., Perm, Russian Federation, 614990
Nikolaj I. Alymenko
Mining Institute of the Ural Branch of the Russian Academy of Sciences
nik.alymenko@yandex.ru
78 Sibirskaya st., Building A, Perm, 614007, Russian Federation
Mikhail Chekhlar
Technical University of Kosice
michal.cehlar@tuke.sk
9 Letna st., Kosice, 04200, Slovak Republic
Yurai Janocko
Technical University of Kosice
juraj.janocko@tuke.sk
9 Letna st., Kosice, 04200, Slovak Republic
Daniil N. Alymenko
Ural Research and Development Institute of halurgy JSC
mail@gallurgy.ru
94 Sibirskaya st., Perm, 614002, Russian Federation
Viktor A. Nikolaev
Perm National Research Polytechnic University
nikolaev.va.pstu@mail.ru
29 Komsomolskiy av., Perm, Russian Federation, 614990
References: 1. Starkov L.I., Zemskov A.N., Kondrashev P.I. Razvitie mekhanizirovannoi razrabotki kaliinykh rud [Development of mechanized development of potash ores]. Perm', Izdatel'stvo Permskogo gosudarstvennogo tekhnicheskogo universiteta, 2007, 522 p.
2. Mokhirev N.N. Ispol'zovanie retsirkuliatsii vozdukha pri provetrivanii kaliinykh rudnikov [Use of air recirculation in the ventilation of potash mines]. Izvestiia vuzov. Gornyi zhurnal, 1987, no.9, pp.47-51.
3. Fainburg G.Z., Fominykh V.I. O raschete provetrivaniia ventiliatsionnykh setei dobychnogo uchastka v rezhime retsirkuliatsii [On the calculation of the ventilation of the ventilation networks of the mining section in the mode of recirculation]. Razrabotka solianykh mestorozhdenii, Perm',1980, pp.60-64.
4. Krasnoshtein A.E., Fainburg G.Z. Raschet gazovoi dinamiki pri retsirkuliatsionnom provetrivanii dobychnogo uchastka [Calculation of gas dynamics during recirculation airing of a mining site]. Ventiliatsiia shakht i rudnikov, Leningrad, 1978, iss.5, pp.26-32.
5. Aldred R., Sproston J.H., Pearce R.J. Air-conditioning and recirculation of mine air in North Nottinghamshire. Mining Engineer, 1984, vol.143, no.273, pp.601-607.
6. Lawton B.R. Local cooling underground by recirculation. Transaction of the Inst. Of Mining Engineers, 1933, vol. 90, pp.63-68.
7. Morris I.N., Walker G. Changes in the approach to ventilation in recent years. The Mining Eng, 1982, vol.141, no.244, pp.401-413.
8. Robinson R., Harrison T. Controlled recirculation of air at wearmouth colliery British coal corporation. Journal of Mine Ventilation Society South Africa, 1988, no.6, pp.78-87.
9. Robinson R., Harrison T. Controlled recirculation of air at Wearmouth Colliery. Mining Engineering, 1987, vol. 146, no.308, pp.661-671.
10. Vutukuri V.S., Lama R.D. How to maximize the recirculation of used air. Tunnel and Tunneling, 1988, no.10, pp.57-59.
11. Bichall J. British start to recirculate air underground. Coal Age, 1987, vol.92, no.6, pp.44-45.
12. Nikolaev A.V., Fainburg G.Z. On energy and resource-saving of underground oil mine workings. Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2015, no.14, pp.92-98. DOI: 10.15593/2224-9923/2015.14.10
13. Nikolaev A.V., Alymenko N.I. Primenenie sistemy konditsionirovaniia vozdukha s uchetom teplovykh depressii, deistvuiushchikh mezhdu stvolami [Application of the air conditioning system taking into account thermal depressions acting between the trunks]. Gornoe oborudovanie i elektromekhanika, 2011, no.12, pp.12-15.
14. Zaitsev A.V., Kliukin Iu.A., Kiriakov A.S. Research in the process of heat and mass exchange in mine openings using the systems of partial air reuse. Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2014, no.11, pp.121-129. DOI: 10.15593/2224-9923/2014.11.12
15. Kruglov Iu.V. Teoreticheskie i tekhnologicheskie osnovy postroeniia sistem optimal'nogo upravleniia provetrivaniem podzemnykh rudnikov [Theoretical and technological foundations for constructing optimal control systems for ventilating underground mines]. Doctor’s degree dissertation. Perm', 2012, 340 p.
16. Levin L.Iu., Kruglov Iu.V. Issledovanie retsirkuliatsionnogo sposoba provetrivaniia kaliinykh rudnikov i ego ekonomicheskaia effektivnost' [Investigation of the recycling method for the ventilation of potash mines and its economic efficiency]. Gornyi informatsionno-analiticheskii biulleten', 2008, no.10, pp.39-48.
17. Golovatyi I.I., Kruglov Iu.V., Levin L.Iu. Shakhtnaia ventiliatornaia ustanovka s sistemoi avtomaticheskogo upravleniia dlia retsirkuliatsionnogo provetrivaniia kaliinykh rudnikov [Mine fan installation with automatic control system for recirculation airing of potash mines]. Gornyi zhurnal, 2010, no.8, pp.78-80.
18. Kruglov Iu.V., Levin L.Iu. Osnovy postroeniia optimal'nykh sistem avtomaticheskogo upravleniia provetrivaniem podzemnykh rudnikov [Basics of constructing optimal automatic control systems for ventilation of underground mines]. Izvestiia Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle, 2010, iss.2, pp.104-109.
19. Mokhirev N.N. Razrabotka sovremennykh metodov i sredstv obespecheniia vysokoeffektivnogo provetrivaniia rudnikov, obladaiushchikh malymi aerodinamicheskimi soprotivleniiami [Development of modern methods and means to ensure highly effective ventilation of mines with low aerodynamic drags]. Doctor’s degree dissertation. Perm', 1994, 302 p.
20. Krasnoshtein A.E., Fainburg G.Z. Upravlenie provetrivaniem shakht i rudnikov na osnove matematicheskogo modelirovaniia ventiliatsionnykh protsessov [Control of ventilation of mines and mines on the basis of mathematical modeling of ventilation processes]. Primenenie EVM i matematicheskikh metodov v gornom dele. Trudy 17 mezhdunarodnogo simpoziuma. Moscow, 1982, vol.3, pp.10-12.
21. Pravila bezopasnosti pri vedenii gornykh rabot i pererabotke tverdykh poleznykh iskopaemykh [Safety rules for mining and processing of solid minerals]. Federal'nye normy i pravila v oblasti promyshlennoi bezopasnosti. Moscow, Nauchno-tekhnicheskii tsentr issledovanii problem promyshlennoi bezopasnosti, 2014, seriia 03, iss.78, 276 p.
22. Mokhirev N.N., Rad'ko V.V. Inzhenernye raschety ventiliatsii shakht. Stroitel'stvo. Rekonstruktsiia. Ekspluatatsiia [Engineering calculations of mine ventilation. Building. Reconstruction. Exploitation]. Moscow, Nedra-Biznestsentr, 2007, 324 p.
23. Postnikova M.Iu. Vliianie vyrabotannykh prostranstv na aerogazodinamicheskie protsessy pri avariinykh rezhimakh ventiliatsii rudnikov [Influence of the developed spaces on aerogasdynamic processes in emergency modes of mine ventilation]. Ph. D. thesis. Tula, 2010, 191 p.
24. Osipov S.N., Zhadan V.M. Ventiliatsiia shakht pri podzemnykh pozharakh [Ventilation of mines in underground fires]. Moscow, Nedra, 1973, 152 p.
25. Griffin R. In-mine evaluation of underground fire and smoke detectors. Morgantown WV, University of West Virginia, 1978, 18 p.
26. Osipov S.N., Zhadan V.M. Dinamika pozhara v gorizontal'noi gornoi vyrabotke [Dynamics of fire in horizontal mining]. Ugol' Ukrainy, 1967, no.9, pp.15-17.
27. Hardcastle S.G., Kolada R.J., Stokes A.W. Studies into the wider application of controlled recirculation in Mine Ventilation. The mining Engineering (Gr. Brit.), 1984, vol.143, no.273, pp.591-598.
28. Wallace K.G., McPherson M.J., Brunner D.J., Kissel F.N. Impact of using auxiliary fans on coal mine ventilation efficiency and cost. Bur. mines US Dep. Inter., 1990, no.9307, pp.1-8.
29. Nikolaev A.V., Alymenko N.I., Nikolaev V.A. Meropriiatiia, prednaznachennye dlia zashchity gornorabochikh ot otravleniia ugarnym gazom v sluchae vozniknoveniia pozhara v konveiernom shtreke bloka kaliinogo rudnika [Measures designed to protect miners from carbon monoxide poisoning in the event of a fire in the conveyor drift of a block of potash mine]. Rudnik budushchego, 2012, no.2, pp.67-70.
30. Nikolaev A.V., Alymenko N.I., Nikolaev V.A., Alymenko D.N., Fainburg G.Z., Vavulin A.V. Sistema avtomatizatsii glavnoi ventiliatornoi ustanovki [The automation system of the main fan installation]: zaiavka na patent no.2017109327.
31. Nikolaev A.V. Upravlenie teplovymi depressiiami v sistemakh ventiliatsii kaliinykh rudnikov [Management of thermal depressions in potash mine ventilation systems]. Abstract of Ph. D. Thesis. Perm', 2012, 20 p.
32. Mokhirev N.N., Rad'ko V.V., Popov A.S. Vspomogatel'nye ventiliatornye ustanovki ezhektiruiushchego tipa [Auxiliary fan installations of ejection type]. Tekhnologiia vedeniia gornykh rabot i proizvodstvo mashin dlia gornodobyvaiushchikh predpriiatii. Sbornik trudov. Perm', 2007, iss.3, pp.153-159.
33. Alymenko D.N. Rabota ventiliatornoi ustanovki kombinirovannogo tipa v rudnichnoi ventiliatsionnoi seti [The operation of a combined-type fan plant in a mine ventilation system]. Ph. D. thesis. Perm', 1999, 159 p.
34. Alymenko N.I., Nikolaev A.V., Nikolaev V.A. Ispol'zovanie teplovykh depressii i izoliruiushchikh ustroistv s tsel'iu povysheniia energoeffektivnosti provetrivaniia blokov kaliinykh rudnikov [The use of thermal depressions and insulating devices to improve the energy efficiency of ventilation blocks of potash mines]. Rudnik budushchego, 2012, no.3(11), pp.128-131.
Analytical review of working conditions of underground personnel in the oil mines of the Yaregskoe fieldGrunskoy T.V., Perkhutkin V.P., Berdnik A.G. Received: 31.08.2017 Accepted: 11.10.2017 Published: 01.12.2017 http://dx.doi.org/10.15593/2224-9923/2017.4.9
PDF |
Abstract |
Authors |
References |
Abstract: At the present stage of production enhancement it is impossible to create absolutely safe working conditions in the oil production mines of the Yaregskoe field, but ensuring acceptable working conditions in the workplace remains one of the most important tasks in the field of labor protection. Yaregskoe is unique oil field in terms of the shaft method of heavy oil mining. An oil shaft is rather a deviation from the general ideas about the mining industry of Russia and the world. The main idea of the thermoshaft method is a decrease in viscosity and increase in oil mobility due to the heating of a formation by coolant injection. The technology used to extract heavy oil has created special working conditions.
The majority of workplaces in oil mines correspond to the 3rd class of working conditions (harmful), degrees 3.1-3.3, where the maximum permissible levels of exposure to harmful factors are exceeded in comparison with permissible values. Harmful working conditions entail a consistently high level of occupational disease. The variety of negative factors and possibility of their combined effects on the body with various combinations of the labor process determine the need for an integrated approach to assess the combined effects of negative factors.
Today, the assessment of working conditions is carried out in accordance with the Federal Law of the Russian Federation No. 426-FL "On a special assessment of working conditions" and Order No. 33n of the Ministry of Labor of Russia "On approving the methodology for conducting a special assessment of working condition classifier of harmful and (or) dangerous production factors, the form of a report on the special assessment of working conditions and instructions its filling". In a special assessment of working conditions the overall result is affected only by factors beginning with grades 3 and 4 of working conditions. The combined effect of production and labor process factors is represented only by a qualitative assessment.
The analysis performed allowed to rank the probability of the impact of factors of a certain class of working conditions on workers of the Yaregskoe oil mines by structural subdivisions.
To assess how labor conditions conform normative labor requirements and a degree of impact of deviations from normal values on human body a special point system (usually a six-point system) is used. There is a calculation of professional risks for the underground staff of the Yaregskoe oil mine made based on the "Point assessment of professional risk".
Assessment of occupational diseases shows a high risk of obtaining occupational diseases for a group of underground workers of the Yaregskoe oil mine. There is a special risk for workers at mining and oil production sites. The risk is represented in three parameters such as increased noise, vibration and physical overload. An underground miner and road worker are the safest jobs.
Key words: oil mine, special assessment of working conditions, class of working conditions, Yaregskoe field, underground personnel, thermoshaft method, workplace, probability of factor impact.
Authors: Taras V. Grunskoy
Ukhta state technical university
uxtacity@yandex.ru
13 Pervomayskaya st., Ukhta, Komi Republic, 169300, Russian Federation
Vladimir P. Perkhutkin
Ukhta state technical university
uxtacity@yandex.ru
13 Pervomayskaya st., Ukhta, Komi Republic, 169300, Russian Federation
Aleksandr G. Berdnik
Ukhta state technical university
zav_pbioos@ugtu.net
13 Pervomayskaya st., Ukhta, Komi Republic, 169300, Russian Federation
References: 1. Grunskoi T.V., Perkhutkin V.P., Berdnik A.G. Analiz i otsenka professional'nykh zabolevanii podzemnogo personala na nefteshakhtakh Iaregskogo mestorozhdeniia [Analysis and assessment of professional diseases of underground personnel on oil-stores of yaregsk place of birth]. Neftegazovoe delo, 2017, no.3, pp.128-144. DOI: 10.17122/ogbus-2017-3-128-144
2. Grunskoi T.V., Perkhutkin V.P. Upravlenie bezopasnost'iu trudovogo protsessa prokhodki gornykh vyrabotok v neftianykh shakhtakh Iaregskogo mestorozhdeniia [Management of the underground employment of safety mining in oil mines Yaregskaya field]. Resursy Evropeiskogo Severa. Tekhnologii i ekonomika osvoeniia, 2017, no.1, pp.10-22.
3. Grunskoi T.V., Perkhutkin V.P. Ustanovlenie vzaimosviazei uslovii truda s proizvodstvennymi protsessami pri intensifikatsii prokhodcheskikh rabot v neftianykh shakhtakh Iaregskogo mestorozhdeniia [Interconnection of working conditions with production processes when improving tunnel works in yaregskoye field oil mines]. Neftegazovoe delo, 2013, no.2, pp.184-193.
4. Grunskoi T.V., Perkhutkin V.P. Upravlenie bezopasnost'iu truda v usloviiakh intensifikatsii prokhodcheskikh rabot v neftianykh shakhtakh Iaregskogo mestorozhdeniia [Labour safety management in the context of intensified sinking operations at yaregskaya oil-field’s mines]. Uchenye zapiski Komsomol'skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2013, no.4, pp.101-109.
5. Grunskoi T.V., Perkhutkin V.P. Sovershenstvovanie informatsionnogo obespecheniia sistemy upravleniia bezopasnost'iu truda prokhodcheskikh rabot v nefteshakhtakh Iaregskogo mestorozhdeniia [Improvement of the information support of the work safety management system for tunnel work in the oil fields of the Yaregsky deposit]. Neftegazovoe delo, 2014, no.2, pp. 392-406. DOI: 10.17122/ogbus-2014-2-392-406
6. Grunskoi T.V., Perkhutkin V.P. Sovershenstvovanie metodologii otsenki uslovii truda pri intensifikatsii prokhodcheskikh rabot v neftianykh shakhtakh Iaregskogo mestorozhdeniia [Improvement of the methodology for assessing working conditions in the intensification of tunneling works in the oil mines of the Yaregsky deposit]. Promyshlennaia bezopasnost' mineral'no-syr'evogo kompleksa v XXI veke. Gornyi informatsionno-analiticheskii biulleten' (nauchno-tekhnicheskii zhurnal), 2015, no.2, special iss.7, 816 p.
7. Nor E.V. Prognoznaia otsenka pylegazovogo rezhima vozdukha rabochikh zon neftianykh shakht pri parateplovom vozdeistvii na plast (na primere Iaregskogo mestorozhdeniia vysokoviazkoi nefti) [Forecast estimation of dust-gas regime of air in working zones of oil mines with paratermal influence on the formation (on the example of Yaregsky field of high-viscosity oil)]. Ph. D. thesis. Ukhta, 2004, 130 p.
8. Novikov S.M. Otsenka riska dlia zdorov'ia. Algoritm rascheta doz pri otsenke riska, obuslovlennogo mnogosredovymi vozdeistviiami khimicheskikh veshchestv [Health risk assessment. The algorithm for calculating doses in assessing the risk caused by multisecret exposures of chemicals]. Moscow, 1999, 51 p.
9. Novikov S.M., Avaliani S.L., Bushtueva K.A. Otsenka riska dlia zdorov'ia. Opyt primeneniia metodologii otsenki riska v Rossii [Health risk assessment. Experience in applying the methodology of risk assessment in Russia]. Moscow, 1999, 290 p.
10. Analiz i upravlenie riskom: teoriia i praktika [Risk analysis and management: theory and practice]. Moscow, Strakhovaia gruppa “LUKOIL”, 2016, 186 p.
11. Izmerov N.F., Denisov E.I., Molodkina N.N. et al. Metodologiia otsenki professional'nogo riska v meditsine truda [Methodology for assessing occupational risk in occupational medicine]. Meditsina truda i promyshlennaia ekologiia, 2001, no.12, pp.1-7.
12. Khasanova A.A., Shur P.Z., Shliapnikov D.M. Otsenka izmenenii funktsii organizma pod vliianiem uslovii professional'noi deiatel'nosti [Assessment of changes in body functions under the influence of professional conditions]. Vestnik Permskogo universiteta, 2014, iss.2, pp.48-51.
13. Gladkova L.A., Zuev B.Iu., Istomin R.S., Loginov M.A. Analiz sovremennykh metodov i sredstv monitoringa pri podzemnoi razrabotke poleznykh iskopaemykh [Analysis of modern methods and means of monitoring for underground mining of minerals]. Gornyi informatsionno-analiticheskii biulleten', 2010, no.4, pp.19-24.
14. Khenli D., Kumamoto Kh. Nadezhnost' tekhnicheskikh sistem i otsenka riska [Reliability of technical systems and risk assessment]. Moscow, Mashinostroenie, 1984, 528 p.
15. Elokhin A.N. Analiz i upravlenie riskom: teoriia i praktika [Risk analysis and management: theory and practice]. Moscow, Strakhovaia gruppa ”LUKOIL”, 2010, 186 p.
16. Malyshev D.V. Analiz sistem upravleniia promyshlennoi bezopasnost'iu, okhranoi truda v RF i zarubezhnykh neftegazovykh kompaniiakh [Analysis of industrial safety management systems, labor protection in the Russian Federation and foreign oil and gas companies]. Aktual'nye problemy sostoianiia i razvitiia neftegazovogo kompleksa Rossii. Tezisy doklada 5 nauchno-tekhnicheskoi konferentsii. Moscow, Rossiiskii gosudarstvennyi universitet nefti i gaza im. I.M. Gubkina, 2003, p.6.
17. Gorskaia T.V. Otsenka uslovii truda v metallurgii s uchetom sochetannogo vozdeistviia vrednykh proizvodstvennykh faktorov [Assessment of working conditions in metallurgy, taking into account the combined effect of harmful production factors]. Ph. D. Thesis. Moscow, 2007, 148 p.
18. Doliatovskii V.A., Doliatovskaia V.N. Issledovanie sistem upravleniia [Research of management systems]. Ìoscow, Mart, 2003, 256 p.
19. Mukminov R.A., Galliamov M.A. Matematicheskoe modelirovanie protsessov okhrany truda [Mathematical modeling of labor protection processes]. Ufa, Ufimskii neftianoi institut, 1990, 74 p.
20. Serbinovskii B.Iu., Rudik E.V. Monitoring proizvoditel'nosti truda [Monitoring of labor productivity]. Novocherkassk, LIK, 2010, 260 p.
21. Iang S. Sistemnoe upravlenie organizatsiei [System management of the organization]. Eds. S.P. Nikonorov, S.A. Batasov. Moscow, Sovetskoe radio, 1972, 456 p.
22. Ust'iantsev S.L., Smirnov E.A. Gigienicheskaia otsenka faktorov trudovogo protsessa operatorov avtozapravochnykh stantsii [Hygienic assessment of factors in the labor process of operators of gas stations]. Gigiena i sanitariia, 2007, no.10, pp.34-38
23. R 2.2.1766-03. Rukovodstvo po otsenke professional'nogo riska dlia zdorov'ia rabotnikov. Organizatsionno-metodicheskie osnovy, printsipy i kriterii otsenki [Guidance on the assessment of occupational health risks for workers. Organizational-methodical bases, principles and criteria of evaluation]. Eds. N.F. Izmerov, E.I. Denisov. Moscow, Trovant, 2003, 448 p.
24. R 2.2.2006-05. Rukovodstvo po gigienicheskoi otsenke faktorov rabochei sredy i trudovogo protsessa. Kriterii i klassifikatsiia uslovii truda [Guidance on hygienic assessment of working environment factors and the work process. Criteria and classification of working conditions]. Eds. N.F. Izmerov et al. Moscow, Nauchno-issledovatel'skii institut meditsiny truda imeni akademika N.F. Izmerova, 2005, 130 p.
25. Timofeeva S.S. Metody i tekhnologii otsenki proizvodstvennykh riskov: prakticheskie raboty dlia magistrantov po napravleniiu 280700 “Tekhnosfernaia bezopasnost'” [Methods and technologies for assessing production risks: practical work for undergraduates in the direction 280700 "Technospheric Security"]. Irkutsk, Izdatel'stvo Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 2014, 177 p.
26. Practical tools and checklists for risk assessment. Prilozhenie 1. Instrument otsenki riskov. Evropeiskoe Agentstvo po obespecheniiu zdorov'ia i bezopasnosti rabotnikov. Bil'bao, Ispaniia, 2007.
27. Principles for the assessment of risks to human health from exposure to chemicals Environmental Health Criteria 210, Geneva, WHO, 1999, available at: http://www.inchem.org/ documents/ehc/ehc/ehc210.htm (accessed: 12 April 2017).
28. Sources, effects and risk of ionizing radiation. Report. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2000, 659 p., available at: http://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf (accessed: 12 April 2017).
29. Regulations approved code of practice, health and safety executive / Managing health and safety in construction (Design and Management), London, 2007, 452 p.
30. Reese C.D., Eidson J.V. Handbook of OSHA construction safety and health. Taylor & Francis Group, LLC, 2006, 483 p.
31. Salminen S. Have young workers more injuries than older ones? An international literature review. Journal of Safety Research, 2011, vol.35, iss.5, pp.513-521. DOI: 10.1016/j.jsr.2004.08.005
32. Kines P. Construction workers' falls through roofs: Fatal versus serious injuries. Journal of Safety Research, 2002, vol.33(2), pp.195-208. DOI: 10.1016/S0022-4375(02)00019-1
33. Holte K.A., Kjestveit K., Lipscomb H.J. Company size and differences in injury prevalence among apprentices in building and construction in Norway. Safety Science, 2015, vol.71, part C, pp.205-212. DOI: 10.1016/j.ssci.2014.01.007
34. Kim S., Nussbaum M.A., Jia B. The benefits of an additional worker are task-dependent: Assessing low-back injury risks during prefabricated (panelized) wall construction. Applied Ergonomics, 2012, vol.43(5), pp.843-849. DOI: 10.1016/j.apergo.2011.12.005
35. Kostić R., Vatin N., Murgul V. Fire safeguards of “Plastbau” construction. Applied Mechanics and Materials, 2015, vol.725-726, 145 p. DOI: 10.4028/www.scientific.net/AMM.725-726.138
36. Salehi S.H., Fatemi M.J., Aśadi K., Shoar S., Ghazarian A., Samim, R. Electrical injury in construction workers: a special focus on injury with electrical power. Burns, 2014, vol.40(2), pp. 300-304. DOI: 10.1016/j.burns.2013.05.019
37. Spangenberg S., Baarts Ch., Dyreborg J., Jensen L., Kines P., Mikkelsen K.L. Factors contributing to the differences in work related injury rates between Danish and Swedish construction workers. Safety Science, 2003, vol.41(6), pp.517-530. DOI: 10.1016/S0925-7535(02)00007-3
38. Vatin N., Gamayunova O., Petrosova D. Relevance of education in construction safety area. Applied Mechanics and Materials, 2014, 635-637, 2089 p. DOI: 10.4028/www.scientific.net/AMM.635-637.2085
Analysis of possibilities to reduce the rate of accidents in coal industry of the Russian FederationTryapitsyn A.B., Abdulloev I.T., Sidorov A.I. Received: 08.09.2017 Accepted: 11.10.2017 Published: 01.12.2017 http://dx.doi.org/10.15593/2224-9923/2017.4.10
PDF |
Abstract |
Authors |
References |
Abstract: The dynamics of coal mining development in the world and Russian Federation is estimated. Incident rates in coal mining is analyzed. The subject of the study is the coal industry of the Russian Federation. The purpose of the study is to identify possible ways to improve the safety of personnel working in the coal industry of the Russian Federation. The research objectives are as follows: to identify promising directions for development of the coal industry; to conduct an analysis of incidents in the coal industry of the Russian Federation; to conduct a comparative analysis of the level of safety in coal mining in the Russian Federation and other industrialized countries; to identify the main causes of injuries in the coal industry of the Russian Federation; to analyze the available means of protecting the personnel of the coal industry of the Russian Federation from electricity and identify opportunities for their improvement. The research methods are as follows: analysis of statistical information on coal mining in the Russian Federation and world; patent search for devices that protect workers of the coal industry from effects of electricity.
The papers refers that the level of accidents in underground coal mining in the Russian Federation is significantly higher than in coal mining in coal sections. It is noted that the amount of underground coal mining in the Russian Federation have not changed in recent years, and the volume of open-pit coal mining is growing. The main causes of accidents in the coal industry of the Russian Federation are identified. The cases of accidents from electricity are considered in detail. The main technical means ensuring protection of a person from electric shock during coal mining in coal mines are analyzed. A patent search for existing devices for monitoring the continuity of the ground wire in electrical installations which are used for the extraction of coal by the open method is carried out. The results obtained can be used to improve devices for ensuring electrical safety in the coal industry.
Key words: coal, section, quarry, mine, excavator, accident, zero accident, electric accident, electric current, protective means, protective grounding, automatic control, step voltage, touch voltage, protective grounding resistance, grounding conductors.
Authors: Aleksandr B. Tryapitsyn
South Ural State University (National Research University)
tryapitsyn@mail.ru
76 Lenina st., Chelyabinsk, 454080, Russian Federation
Ilhom T. Abdulloev
South Ural State University (National Research University)
bgd-susu@mail.ru
76 Lenina st., Chelyabinsk, 454080, Russian Federation
Aleksandr I. Sidorov
South Ural State University (National Research University)
bgd-susu@mail.ru
76 Lenina st., Chelyabinsk, 454080, Russian Federation
References: 1. Energy in 2016: short-run adjustments and longrun transition. BP Statistical Review of World Energy June 2017, available at: http://www.bp.com/en/global/ corporate/energy-economics/statistical-review-of-world-energy.html (accessed: 18 May 2017).
2. Plakitkina L.S., Plakitkin Iu.A. Potreblenie uglia v osnovnykh regionakh i stranakh mira v period 2000-2015 gg. Analiz, tendentsii i perspektivy [Consumption of coal in the main regions and countries of the world in the period 2000-2015. Analysis, trends and prospects]. Ugol', 2017, no.1, pp.57-61. DOI: 10.18796/0041-5790-2017-1-57-61
3. Shirnin I.G., Palkin V.A. Aktual'nye problemy ugledobychi v Ukraine i Rossii [Actual problems of coal mining in Ukraine and Russia]. Nauchnye trudy Donetskogo natsional'nogo tekhnicheskogo universiteta – Elektrotekhnika i energetika, 2008, iss.8(140), pp.148-154.
4. Baranova A.S., Okhrimenko A. E., Stoliarova A.P., Stenina N.A. Analiz problem ugol'noi otrasli [Analysis of the problems of the coal industry]. Rossiia molodaia. IX Vserossiiskaia nauchno-prakticheskaia konferentsiia molodykh uchenykh, available at: http://science.kuzstu.ru/wp-content/Events/Conference/RM/2017/RM17/index.htm (accessed: 18 May 2017).
5. Grazhdankin A.I., Pecherkin A.S., Iofis M.A. Promyshlennaia bezopasnost' otechestvennoi i mirovoi ugledobychi [Industrial safety of domestic and world coal mining]. Bezopasnost' truda v promyshlennosti, 2010, no.9, pp.36-43.
6. Rudakov M.L. Korporativnye programmy «nol' neschastnykh sluchaev» kak element strategicheskogo planirovaniia v oblasti okhrany truda dlia ugledobyvaiushchikh predpriiatii [Corporate programs "zero accidents" as an element of strategic planningin the field of labor protection for coal mines]. Zapiski gornogo instituta, 2016, vol.219, pp.465-471. DOI: 10.18454/PMI.2016.3.465.
7. Cudworth A. The positive impact of communication on safety at Shell. Strategic communication management, 2009, vol.14 (1), pp.16-19.
8. Drupsteen L., Groeneweg J., Zwetsloot G. Critical steps in learning from incidents: using learning potential in the process from reporting an incident to accident prevention. Journal of Occupational Safety and Ergonomics, 2013, vol.19 (1), pp.63-77. DOI: 10.1080/10803548.2013.11076966
9. Fahlquist J. Responsibility ascriptions and Vision Zero. Accident Analysis & Prevention, 2006, vol.38, no.6, pp.1113-1118. DOI: 10.1016/j.aap.2006.04.020
10. Geller E.S. 10 leadership qualities for a total safety culture. Professional Safety, 2000, vol.45, pp.38-41.
11. Matysiak J.F. The pursuit of zero accidents at Weirton. New Steel, 2001, vol.17, no.5, pp.34.
12. Minter S.G. The power of zero. Occupational Hazards, 2003, vol.65, no.7, pp.15-17.
13. Zwetsloot G., Aaltonen M., Wybo J., Saari J., Kines P., Op De Beeck R. The case for research into the zero accident vision. Safety Science, 2013, vol.58, pp.41-48. DOI: 10.1016/j.ssci.2013.01.026
14. Litvin A.R., Kolikov K.S., Ishkhneli O.G. Avariinost' i travmatizm na predpriiatiiakh ugol'noi promyshlennosti v 2010-2015 godakh [Accident and injury at coal industry enterprises in 2010-2015]. Vestnik nauchnogo tsentra po bezopasnosti rabot v ugol'noi promyshlennosti, 2017, no.2, pp.6-17.
15. Tarazanov I.G. Itogi raboty ugol'noi promyshlennosti Rossii za ianvar'-dekabr' 2016 g. [The results of the work of the Russian coal industry in January-December 2016]. Ugol', 2017, no.3, pp.36-51. DOI: 10.18796/0041-5790-2017-3-36-50
16. Tarazanov I.G. Itogi raboty ugol'noi promyshlennosti Rossii za ianvar'-dekabr' 2015 g. [Results of the work of the Russian coal industry in January-December 2015]. Ugol', 2016, no.3, pp.58-72. DOI: 10.18796/0041-5790-2016-3-58-72
17. Tarazanov I.G. Itogi raboty ugol'noi promyshlennosti Rossii za ianvar'-dekabr' 2014 g. [Results of the work of the Russian coal industry in January-December 2014]. Ugol', 2015, no.3, pp.56-71.
18. Tarazanov I.G. Itogi raboty ugol'noi promyshlennosti Rossii za ianvar'-dekabr' 2013 g. [Results of the work of the Russian coal industry in January-December 2013]. Ugol', 2014, no.3, pp.52-67.
19. Tarazanov I.G. Itogi raboty ugol'noi promyshlennosti Rossii za ianvar'-dekabr' 2012 g. [The results of the work of the Russian coal industry in January-December 2012]. Ugol', 2013, no.3, pp.78-90.
20. Tarazanov I.G. Itogi raboty ugol'noi promyshlennosti Rossii za ianvar'-dekabr' 2011 g. [The results of the work of the Russian coal industry in January-December 2011]. Ugol', 2012, no.3, pp.40-51.
21. Tarazanov I.G. Itogi raboty ugol'noi promyshlennosti Rossii za ianvar'-dekabr' 2010 g. [The results of the work of the Russian coal industry in January-December 2010]. Ugol', 2011, no.3, pp.37-45.
22. Tarazanov I.G. Itogi raboty ugol'noi promyshlennosti Rossii za ianvar'-dekabr' 2009 g. [The results of the work of the Russian coal industry in January-December 2009]. Ugol', 2010, no.3, pp.34-43.
23. Tarazanov I.G. Itogi raboty ugol'noi promyshlennosti Rossii za ianvar'-dekabr' 2008 g. [The results of the work of the Russian coal industry in January-December 2008]. Ugol', 2009, no.3, pp.45-52.
24. Volotkovskii S.A., Shchutskii V.I., Chebotaev N.I. et al. Elektrifikatsiia otkrytykh gornykh rabot [Electrification of open mining operations]. Moscow, Nedra, 1987, 332 p.
25. RD 06-572-03. Instruktsiia po bezopasnoi ekspluatatsii elektroustanovok v gornorudnoi promyshlennosti [Instructions for the safe operation of electrical installations in the mining industry]. Moscow, Gosudarstvennoe unitarnoe predpriiatie “Nauchno-tekhnicheskii tsentr po bezopasnosti v promyshlennosti Gosgortekhnadzora Rossii”, 2003, seriia 06, iss.3, 152 p.
26. Kemerovskii eksperimental'nyi zavod sredstv bezopasnosti Ustroistvo kontrolia zazemleniia kar'ernykh elektroustanovok [Kemerovo experimental plant of safety equipment The device for monitoring the earthing of career electrical installations], available at: http://www.kezsb.ru/ goods/all/51.html (accessed: 18 May 2017).
27. PB 05-619-03. Pravila bezopasnosti pri razrabotke ugol'nykh mestorozhdenii otkrytym sposobom [Safety rules for the development of open-pit coal deposits]. Moscow, Gosudarstvennoe unitarnoe predpriiatie “Nauchno-tekhnicheskii tsentr po bezopasnosti v promyshlennosti Gosgortekhnadzora Rossii”, 2004, seriia 05, iss.3, 144 p.
28. Kemerovskii eksperimental'nyi zavod sredstv bezopasnosti Avtomaticheskoe ustroistvo kontrolia tselostnosti tsepi zazemleniia [Kemerovo experimental plant of safety equipment Automatic device for monitoring the integrity of the grounding circuit], available at: http://www.kezsb.ru/ goods/all/50.html (accessed: 18 May 2017).
29. Grishin V.A., Kondakov V.M., Grishin M.V. Ustroistvo kontrolia zazemleniia gornykh mashin [The device for monitoring the grounding of mining machines]. Patent 60275 Rossiiskaia Federatsiia no.2006129752/22.
30. Grishin V.A., Kondakov V.M., Grishin M.V. Ustroistvo kontrolia zazemleniia kar'ernykh elektroustanovok [Device for monitoring the earthing of quarry electrical installations]. Patent 69336 Rossiiskaia Federatsiia no. 2007115841/22.
|
|