|
BULLETIN
OF PERM NATIONAL RESEARCH POLYTECHNIC UNIVERSITY ISSN (Print): 2224-9877 ISSN (Online): 2224-9877 | ||
|
Formation of a hardened layer on the surface of austenitic stainless steel Zagorskikh O.A., Laptev A.B. Received: 22.10.2024 Received in revised form: 15.11.2024 Published: 19.12.2024 Abstract:
In the operation of the elements of the external strapping of engines, there are cases of fatigue breakdowns of pipes made of alloy stainless steel. The breakdown of pipelines is preceded by the appearance of foci of fretting corrosion on the surface of pipes (under the gasket of the same material). A regular reinforcing sleeve does not always ensure the effective operation of the reinforced pipe in conditions of fretting corrosion and it is necessary to search for affordable and technological ways to increase the resistance of the pipe material to fretting corrosion and fretting fatigue. This article provides an overview of such types of damage to conditionally fixed joints as fretting corrosion and fretting fatigue. The conditions for the appearance of foci of fretting corrosion on the surface of mated parts and the mechanism of the origin of fatigue cracks are shown. The known methods of technological and constructive ways to reduce the intensity of fretting corrosion are considered. A method is proposed to increase the fretting fatigue strength of the outer surface of austenitic stainless steel by creating a hardened layer on its surface (by cold plastic deformation – blowing glass shot). The results of testing samples of pipes of 8×1 mm grade 12Cr18Ni10Ti after hardening treatment with glass shot in comparison with the initial (ground) state (without additional processing) are presented. Studies have shown that pipe surface hardening is effective for increasing the endurance limit of 12X18H10T steel pipes and is effective for increasing fatigue strength in fretting corrosion conditions. Experimental work has shown that the hardening treatment of the pipe surface with glass shot according to a given regime leads to the formation of a surface hardened layer with an increased level of compressive residual stresses relative to the initial / ground state. It is also shown that the hardening treatment of samples (according to a given regime) eliminates the annular rippling on the surface of the polished pipes and eliminates the negative effect of individual deep ripples, which are the foci of fatigue cracks. Keywords: fretting corrosion, fretting fatigue, austenitic steel, stainless steel, surface hardening, hydroblasting, fretting resistance, fatigue tests, residual stresses, fatigue. Authors:
Olga A. Zagorskikh (Perm, Russian Federation) – Postgraduate student of NRC «Kurchatov Institute» - VIAM, Deputy Chief Metallurgist, JSC «UEC – Perm Engines» (93, Komsomolsky ave., Perm, 614010, Russian Federation, e-mail: Zagorskikh-OA@pmz.ru). Anatoliy B. Laptev (Moscow, Russian Federation) – Doctor of Technical Sciences, Senior Researcher, NRC «Kurchatov Institute» - VIAM (17, Radio str., Moscow, 105005, Russian Federation, e-mail: admin@viam.ru). References: 1. Petukhov A.N. Fretting-korroziia i fret-ting-ustalost' v malopodvizhnykh soedineniiakh. A.N. Petukhov [Fretting-corrosion and fretting-fatigue in slow-moving joints]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta imóòø akademika S.P. Koroleva, 2006, 2. Vinogradov S.S., Terkulova Iu.A., Kurdiukova E.A., Nikiforov A.A. Iznosostoikioe, antifriktsionnoe i frettingostoikoe pokrytie na osnove Ni-B [Wear-resistant, sliding and fretting-resistant Ni-B-based coating]. Elektronnyi nauchno-tekhnicheskii zhurnal. Trudy VIAM, 2015, no. 1, pp. 8–14. DOI: 10.18577/2307/6046-2015-0-1-2-2 3. Gorlov D.S., Skripak V.I., Muboiadzhan S.A., Egorova L.P. Issledovanie fretting-iznosa tverdosma-zochnogo, shlikernogo i ionno-plazmennogo pokrytii [Study of fretting wear of hard-lubricating, slicker and ion-plasma coatings]. Elektronnyi nauchno-tekhnicheskii zhurnal. Trudy VIAM, 2017, no. 3 (51), pp. 65–73. DOI: 10.18577/2307-6046-2017-0-3-7-7 4. Muboiadzhan S.A., Konnova V.I., Gorlov D.S., Aleksandrov D.A. Issledovanie frettingostoikosti stali EP866Sh [Investigation of fretting resistance of EP866Sh steel]. Elektronnyi nauchno-tekhnicheskii zhurnal. Trudy VIAM, 2015, no. 7, p. 1. DOI: 10.18577/2307-6046-2015-0-7-1-1 5. Panova I.M. Analiz nadezhnosti soedi-nenii s natiagom v osobykh usloviiakh ekspluatatsii [Reliability analysis of interference fit joints under special operating conditions]. 6. Maksarov V.V. Mekhanizmy treniia tonkosloinykh pokrytii v usloviiakh fretting-korrozii [Friction mechanisms of thin-layer coatings under fretting-corrosion conditions]. 7. Mystkowska J. Effect off Saliva and Mucin-Based Saliva Substitutes on Fretting Processes of 316 Austenitic Stainless Steel. J. Mystkowska, D. Lysik, M. Klekotka. Metals, 2019, vol. 9, 178 p. 8. Ivanova S.V. Ustalostnoe razrushenie metallov [Fatigue failure of metals]. S.V. Ivanova. Moscow: Metallurgizdat, 1963, pp. 67–71. 9. Ostrovskii M.S. Fretting kak prichina snizheniia nadezhnosti gornykh mashin [Fretting as a cause of reduced reliability of mining machines]. Gornyi informatsionno-analiticheskii biulleten' (nauchno-tekhnicheskii zhurnal), 2011, no. S3, pp. 315–331. 10. Leonova L.N. Fretting-korroziia i ee preduprezhdenie s pomoshch'iu nemetallicheskikh pokrytii [Fretting corrosion and its prevention with non-metallic coatings]. L.N. Leonova, O.E. Kestner, O.N. Mikheeva. Prilozhenie k zhurnalu «Aviatsionnaia promyshlennost'», Moscow: Mashinostroenie, 1972, no. 1, pp. 24–28. 11. Ivanova V.S., Gurevich S.E. et al. Ustalost' i khrupkost' metallicheskikh materialov [Fatigue and brittleness of metallic materials]. Moscow: Nauka, 1968, pp. 147–157. 12. Zagorskikh O.A. Osobennosti fretting-korrozii nerzhaveiushchikh austenitnykh stalei (obzor) [Features of fretting corrosion of stainless austenitic steels (review)]. O.A. Zagorskikh, A.B. Laptev. Aktual'nye problemy zashchity ot korrozii neftegazovogo oborudovaniia i truboprovodov (KORROZIIa-2023): sbornik materialov I Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, posviashchennoi 75-letiiu FGBOU VO «UGNTU» (15 maia 2023 g.). Ufa: Ufimskii gosudarstvennyi neftianoi tekhnicheskii universitet, 2023, pp. 40–42. 13. Aslanian I.R. Opredelenie faktorov, sushchestvenno vliiaiushchikh na fretting-iznashivanie elektroliticheskikh NiP pokrytii [Determination of factors significantly affecting fretting wear of electrolytic NiP coatings]. 14. Aslanian I.R. Vliianie dobavok karbida kremniia SiS na iznashivanie elektroliticheskikh NiP pokrytii [Effect of silicon carbide SiC additives on wear of electrolytic NiP coatings]. I.R. Aslanian, Zh.P. Selis, L.Sh. Shuster. Trenie i iznos, 2010, vol. 31, no. 5, pp. 353–361. 15. Aslanian I.R. Iznashivanie elektroliticheskikh NiP pokrytii pri frettinge [Fretting wear of electrolytic NiP coatings]. I.R. Aslanian, L.Sh. Shuster. Aviatsionnye materialy i tekhnologii, 2015, no. 3, pp. 38–43. 16. Aslanian, I.R. Povyshenie effektivnosti primeneniia iznosostoikikh elektroliticheskikh pokrytii [Increasing the efficiency of application of wear-resistant electrolytic coatings]. PhD. Theses. Ufa, 2014, 39 p. 17. Aslanian, I.R. Tribologicheskie kharakteristiki elektroliticheskikh pokrytii v razlichnykh usloviiakh treniia [Tribological characteristics of electrolytic coatings under different friction conditions]. I.R. Aslanian, N.K. Krioni, 18. Dokshanin S.G. Vliianie smazochnykh kompozitsii s ul'tradispersnymi dobavkami na fretting-ustalostnye protsessy [Influence of lubricating compositions with ultradisperse additives on fretting-fatigue processes]. Vestnik SIBGAU, 2014, no. 3 (55), pp. 198–201. 19. Shevelia V.V. Reologicheskie aspekty vli-ianiia frettinga na korrozionnoe rastreskivanie stali [Rheological aspects of fretting effect on corrosion cracking of steel]. 20. Zabirov F.Sh. O negativnom vliianii fretting-korrozii v rezinometallicheskoi opore shpindelia turbobura [About negative influence of fretting corrosion in rubber-metal support of turbodrill spindle]. F.Sh. Zabirov, R.R. Mansurov. Alleia nauki, 2017, vol. 2, no. 9, pp. 412–414. 21. Petukhov A.N. Fretting i fretting-ustalost' konstruktsionnykh materialov i detalei [Fretting and fretting-fatigue of structural materials and parts]. Aviatsionnaia promyshlennost', 2014, no. 4, pp. 45–50. 22. Petukhov, A.N. Voprosy mnogotsiklovoi ustalosti dlia materialov i detalei sovremennykh GTD [Issues of multi-cycle fatigue for materials and parts of modern GTEs]. Vestnik samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2009, no. 3 (19), pp. 172–177. 23. Pogonyshev V.A. Metod povysheniia frettingostoikosti detalei mashin putem uluch-sheniia ikh dempfiruiushchikh svoistv [Method of increasing fretting resistance of machine parts by improving their damping properties]. V.A. Pogonyshev, S.V. Tishchenko. Sovremennye tendentsii v nauke, tekhnike, obrazovanii: sbornik nauchnyh trudov po materialam III Mezhdunarodnoi nauchno-prakticheskoi konferentsii. Smolensk, 31 marta 2018 goda. Smolensk: Obshchestvo s ogranichennoi otvetstvennost'iu «NOVA-LENSO», 2018, part 2, pp. 77–80. 24. Smyslov A.M. Razrabotka i issledovanie tekhnologicheskikh metodov povysheniia fretting stoikosti rabochikh lopatok iz titanovykh splavov [Development and research of technological methods for increasing fretting resistance of titanium alloy working blades]. A.M. Smyslov, K.S. Selivanov. Tekhnologiia mashinostroeniia. Vestnik UGATU, 2007, iss. 9, no. 1 (19), pp. 77–83. 25. Fridman Z.G. Vliianie mekhaniko-termicheskoi obrabotki na tsiklicheskuiu prochnost' listov iz stali 1Kh18N9. Ustalost' metallov i splavov [Effect of mechanical and thermal treatment on cyclic strength of 1Cr18Ni9 steel sheets. Fatigue of metals and alloys]. Z.G. Fridman, M.G. Veitsman. Ustalost' metallov i splavov: sbornik materialov V Soveshchaniia po ustalosti metallov. Moscow: Nauka, 1971, pp. 97–102. 26. Fouvry S. Quantification of fretting damage. 27. Loto R.T. Assessment of pitting corrosion of austenitic stainless steel type 304 in an acidchloride environment. Journal of Materials and Environmental Sciences, 2013, vol. 4(4), pp. 448–459. 28. Dabrowski J.R. Fretting and fretting corrosion of 316L implantation steel in the oral cavity environment. 29. Vieira A.C., Ribeiro A.R., Rocha L.A., Celis J.P. Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva. Wear, 2006, vol. 261, pp. 994–1001. 30. Troshchenko V.T. Soprotivlenie ustalosti metallov i splavov: spravochnik [Fatigue resistance of metals and alloys: handbook]. V.T. Troshchenko, L.A. Sosnovskii. Spravochnik. Kiev: Naukova dumka, 1987, part 1, pp. 219–222. 31. Golego N.L. Fretting – korroziia metallov [Fretting is the corrosion of metals]. Kiev: Tekhnika, 1974, 270 p. 32. Liashok S.V. Pokrytiia dlia zashchity ot fretting-korrozii [Coatings for protection against fretting corrosion]. Vostochno-Evropeiskii zhurnal peredovykh tekhnologii, 2011, no. 5 (50), pp. 27–30. 33. Uoterkhauz R.B. Fretting-korroziia [Fretting corrosion]. Leningrad: Mashinostroenie, 1976, 272 p. 34. Bubnov V.A. Uprochnenie austenitnykh stalei kholodnoi plasticheskoi deformatsiei. Materialovedenie i tekhnologiia mashinostroeniia [Strengthening of austenitic steels by cold plastic deformation]. Vestnik KGU, 2017, 35. Kablov E.N., Antipov V.V., Iakovlev N.O., Kulikov V.V., Avtaeva Ia.V., Avtaev V.V., Medvedev P.N. Vliianie temperatury i anizotropii listov iz splava sistemy Al-Cu-Mg-Li na mekhanicheskie svoistva v oblasti malykh plasticheskikh deformatsii [Influence of temperature and anisotropy of Al-Cu-Mg-Li alloy sheets on mechanical properties in the region of small plastic deformations]. Zavodskaia laboratoriia. Diagnostika materialov, 2022, vol. 88, no. 11, pp. 55–65. 36. Toloraiia V.N., Kablov E.N., Svetlov I.L., Orekhov N.G., Golubovskii E.R. Anizotropiia prochnostnykh kharakteri-stik v monokristallov nikelevykh zharoprochnykh splavov [Anisotropy of strength characteristics in single crystals of nickel heat-resistant alloys]. Gornyi informatsionno-analiticheskii biulleten', 2005, no. S, pp. 225–236. 37. Kablov E.N. Obzor zarubezhnogo opyta issledovanii korrozii i sredstv zashchity ot korrozii [Review of foreign experience in corrosion research and corrosion protection means]. E.N. Kablov, O.V. Startsev, I.M. Medvedev. Aviatsionnye materialy i tekhnologii, 2015, no. 2, pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87 Study of the possibility of processing edges on gear wheels with rotating elastic abrasive tools Podashev D.B. Received: 21.09.2024 Received in revised form: 15.11.2024 Published: 19.12.2024 Abstract:
The article examines the study of the possibility of processing edges on the ends of gear wheels using a rotating elastic abrasive tool, and also determines the effect of processing modes on the productivity of the process and the quality of the processed edges. During experimental studies, elastic abrasive tools were used: a radial polymer-abrasive brush of the company 3M brand Scotch-Brite™ BD-ZB P36 and a flap wheel 14A 5 GOST 22775-77 (OJSC «Belgorod Abrasive Plant»). Experimental studies were carried out using a modern vertical machining center Deckel Maho DMC 635V. As a result of the research, it was found that it is impossible to measure the parameters necessary for evaluating the productivity of the process on the available measuring equipment, and a method for assessing the sizes of rounded edges on real gears using impressions and counter-impressions obtained directly from rounded edges has been developed. Dependencies between the average size of the edge and the cutting speed and the tool deformation during the processing of the gear edge of the feed box screw-cutting lathe made of steel 40H have been identified. Rational ranges of variation of processing modes for each of the studied tools are established. It is proved that processing using modes exceeding these ranges leads to the occurrence of unacceptable defects on the processed edges. Based on the results of the research, a regression equation is obtained, which allows calculating the average size of the edge from the processing modes for each of the studied tools. The obtained results should be taken into account when optimizing the considered operations and when designing the technological operation of finishing the edges of gear wheels with elastic abrasive tools. Keywords: polymer-abrasive brush, flap wheel, processing performance, average edge size, rounding off edges, deburring, processing modes, disc deformation, cutting speed, gear wheel edges, regression equation. Authors:
Dmitriy B. Podashev (Kaliningrad, Russian Federation) – Doctor of Technical Sciences, Professor of department of process eguipment engineering, Kaliningrad State Technical University (1, Sovetsky prosp., Kaliningrad, 236022, Russian Federation, e-mail: dmitrij.podashev@klgtu.ru). References: 1. Kalimullina Z.A. Abrazivnye materialy. Klassifikatsiia, vidy i ikh kharakteristiki [Abrasive materials. Classification, types and their characteristics]. Alleia nauki, 2018, vol. 1, no. 11(27), pp. 42–45. 2. Artamonov V.D. Analiz effektivnosti protsessov zubonarezaniia tsilindricheskikh koles [Analyzing the efficiency of gear cutting processes of spur wheels]. V.D. Artamonov, Iu.N. Fedorov. Tula: Izdatelstvo TulGU, 2008, 356 p. 3. Kalashnikov A.S. Tekhnologiia izgotovleniia zubchatykh koles [Gear manufacturing technology]. Moscow: Mashinostroenie, 2004, 480 p. 4. Dal'skii A.M. Spravochnik tekhnologa-mashinostroitelia [Handbook of mechanical engineering technologist]. A.M. Dal'skii, A.G. Kosilova, R.K. Meshcheriakov. Ed. A.G. Suslova. Moscow: Mashinostroenie, 2003, vol. 1, 912 p.; vol. 2, 944 p. 5. Veselovskii A.A. Issledovanie iznosostoikosti chugunnykh zubchatykh koles s diffuzionnymi karbidnymi pokrytiiami [Investigation of wear resistance of cast iron gears with diffusion carbide coatings]. Vestnik Ul'ianovskoi gosudarstvennoi sel'skokhoziaistvennoi akademii, 2020, 6. Ivashchenko A.P. Issledovanie staticheskoi prochnosti kosozubogo tsilindricheskogo zubchatogo kolesa [Study of static strength of helical helical spur gears]. Sovremennye naukoemkie tekhnologii, 2020, no. 10, pp. 51–56. 7. Abilmazhitov A.T. Issledovanie protsessa iznosa zubchatykh koles [Study of gear wear process]. Internauka, 2020, no. 14-1(143), pp. 53–56. 8. Linovskii A.V., Fedorov A.A., Bobkov N.V., Bredgauer Iu.O. Issledovanie poverkhnosti zubchatykh koles, izgotovlennykh s primeneniem elektrokhimicheskoi obrabotki [Investigation of the surface of gears manufactured using electrochemical treatment]. Dinamika sistem, mekhanizmov i mashin, 2019, vol. 7, no. 3, pp. 71–75. 9. Soldatov A.G. Issledovanie sherokhovatosti pri shlifovanii zubchatykh koles [Investigation of roughness during gear grinding]. Vestnik Rostovskogo gosudarstvennogo universiteta putei soobshcheniia, 2023, no. 1(89), pp. 44–48. 10. Chechuga A.O. Issledovanie protsessa ob-rabotki zubchatykh koles metodom shevingovaniia [Study of gear machining process by the method of roughing]. Izvestiia Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2023, no. 11, pp. 440–442. 11. Boldychev K.V. Issledovanie vozmozhno-stei obrabotki evol'ventnykh zubchatykh koles po metodu obkatki instrumentami s reechnym konturom [Investigation of possibilities of machining involute gears by the rolling method with rack-and-pinion tools]. K.V. Boldychev, 12. Morozova L.V. Issledovanie prichin raz-rusheniia zubchatykh koles v protsesse ekspluatatsii [Investigation of causes of gear destruction in the process of operation]. L.V. Morozova, M.R. Orlov. Aviatsionnye materialy i tekhnologii, 2015, no. S1(38), pp. 37–48. 13. Feofilov N.D., Skriabin V.N., Vorob'ev I.A., Ianov E.S.Vliianie peretochek i geometrii perednikh poverkhnostei sbornoi cherviachnoi frezy na profil' zubchatykh koles [Influence of resharpening and geometry of the front surfaces of a prefabricated worm mill on the profile of gear wheels]. Izvestiia Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2016, no. 7-2, pp. 86–92. 14. Karavanova A.G. Razlichie rezul'tatov protsessov obrabotki zubchatykh koles metodami khoningovaniia, shlifovaniia i polirovaniia iskhodia iz vyiavlennykh znachenii mikronerovnostei obrabatyvaemoi poverkhnosti [Difference in the results of machining of gear wheels by honing, grinding and polishing methods based on the revealed values of microroughnesses of the machined surface]. A.G. Karavanova, A.S. Kalashnikov. Nauka i biznes: puti razvitiia, 2020, no. 11(113), pp. 23–27. 15. Kozhevnikova A.A. Al'ternativnye metody izgotovleniia zubchatogo kolesa planetarnogo reduktora s vnutrennim zatsepleniem [Alternative methods of manufacturing the gear wheel of a planetary gearbox with internal meshing]. A.A. Kozhevnikova, A.A. Shvedunenko. Izvestiia Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta, 2021, no. 1(248), pp. 19–23. 16. Rasulov N.M. Povyshenie effektivnosti shlifovaniia zub'ev zubchatykh koles metodom kopirovaniia na osnove upravleniia glubinoi rezaniia [Increasing the efficiency of gear teeth grinding by copying method on the basis of cutting depth control]. N.M. Rasulov, E.T. Shabiev. Izvestiia Vysshikh uchebnykh zavedenii. Mashinostroenie, 2017, 17. Tiutrin S.G. Ustroistvo dlia obrabotki prodol'nykh kromok zub'ev zubchatykh koles [Device for machining longitudinal edges of gear teeth]. Patent Rossiiskaia Federatsiia no. 2421305 C1 (2011). 18. Shilkov G.A., Novikov A.A., Radoshchekin G.A. Ustroistvo dlia elektrokhimicheskogo skrugleniia kromok zubchatykh koles [Device for electrochemical rounding of gear edges]. Avtorskoe svidetelstvo SSSR no. 648369 A1 (1979). 19. Valikov E.N., Iamnikov A.S., Beliakova V.A. Instrument dlia finishnoi obrabotki tsilindricheskikh zubchatykh koles [Finishing tool for spur gears]. Patent Rossiiskaia Federatsiia no. 56246 U1 (2006). 20. Neginskii E.A., Ott O.S., Artiukhin L.L. Sposob obrabotki bokovykh storon profilia tsilindricheskikh zubchatykh evol'ventnykh koles [Method of machining of lateral sides of the profile of cilindrical involute gears]. Patent Rossiiskaia Federatsiia no. 2453404 C1 (2012). 21. Valikov E.N. Obrabotka tortsov zub'ev krupnogabaritnykh zubchatykh koles: uchebnoe posobie dlia vuzov [Processing of tooth faces of large-size gear wheels: textbook for universities]. E.N. Valikov, V.A. Beliakova. Tula: Izdatelstvo TulGU, 2010, 115 p. 22. Valikov E.N. Obkatnik dlia obrabotki kromok zub'ev krupnogabaritnykh zubchatykh koles [Rolling machine for machining edges of large-sized gear teeth]. E.N. Valikov, Iu.S. Timofeev, A.S. Zhurina. Izvestiia Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2013, no. 8, pp. 260–263. 23. Dimov Iu.V. Issledovanie kachestva poverkhnosti pri skruglenii kromok polimerno-abrazivnymi shchetkami [Investigation of surface quality during edge rounding with polymer-abrasive brushes]. Iu.V. Dimov, D.B. Podashev. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 2016, no. 9, pp. 23–34. 24. Dimov Iu.V. Issledovanie proizvoditel'nosti protsessa skrugleniia kromok polimerno-abrazivnymi shchetkami [Performance study of edge rounding process with polymer-abrasive brushes]. Iu.V. Dimov, D.B. Podashev. Vestnik mashinostroeniia, 2017, no. 3, pp. 74–78. 25. Dimov, Iu.V. Proizvoditel'nost' protsessa pri obrabotke kromok detalei polimerno-abrazivnymi shchetkami [Process productivity for edge treatment of parts with polymer-abrasive brushes]. Iu.V. Dimov, D.B. Podashev. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 2020, vol. 22, no. 3, pp. 29–36. The structural transformatioins during dyes with ceramics and earthernware glazes and decorative properties of the material Papulova G.N., Zadorozhnyy I.V. Received: 16.10.2024 Received in revised form: 15.11.2024 Published: 19.12.2024 Abstract:
One of the main directions of modern development of the production of construction and fine ceramics, as well as new generation refractories, is to increase the level of their own operational properties, taking into account the demand of modern design. The microstructure of fine ceramics (porcelain and faience) is represented by SiO2 quartz grains, mullite crystals (variable composition from to glass phase with feldspar components in the amount of 5–10 % (faience) and 50 % (porcelain). Studies have been conducted on the introduction of fillers to increase the adsorption capacity of pigmented part of colorful material due to fluctuations magnitude of the negative surface charge to redistribute silane groups. After applying the colorful material to aporous surface by silkscreen printing, by glazing and firing from 1140 to 1160°C the gloss and glaze spill improves as a result of thermal transformations. During firing the metal salt solution decomposes. The oxides deposited in the ceramic material combine with silica, alumina and other components as well as with glaze. It has been shown that the pigments of various chemical systems in colorful compositions affect the decorative properties of the coatings. Êeywords: thermal transformations, structure, coatings, ceramic pigments, chemical system, adsorption capacity, ceramic material, decorative properties, fillers, mineral salts, silanol groups, economics, design. Authors:
Galina N. Papulova (Moscow, Russian Federation) – Associate Professor, Candidate of Technical Sciences the Moscow State University of Technology "STANKIN" Ilya V. Zadorozhnyy (Moscow, Russian Federation) – Student the Moscow State University of Technology "STANKIN" (3A, Vadkovskiy Pereulok, 127055, Moscow, Russian Federation, e-mail: ilko2916@mail.ru). References: 1. Indeikin E.A. Pigmentirovanie lakokra-sochnykh materialov [Pigmentation of paintwork materials]. 2. Ermilov P.I. Dispergirovanie pigmentov [Pigment dispersion]. Moscow: Khimiia, 1971, 299 p. 3. Maslennikova G.N. Keramicheskie pigmenty [Ceramic pigments]. G.N. Maslennikova, I.V. Pishch. Moscow: RIF Stroimaterialy, 2009, 240 p. 4. Pishch et al. Pigmenty na osnove kremnezema [Silica-based pigments]. Steklo i keramika, 2011, no. 3, p. 3. 5. Anionoobmenyi sintez kobal'tosoderzhashchikh pigmentov shpinel'nogo tipa [Anion-exchange synthesis of cobalt-containing spinel-type pigments]. FGBUN Institut khimii i khimicheskoi tekhnologii SO RAN (g. Krasnoiarsk), FGAOU VPO Sibirskii fede-ral'nyi universitet (Krasnoiarsk). Steklo i keramika, 2013, no. 6, pp. 28. 6. Sintez keramicheskikh pigmentov shpinel'nogo tipa i glazurei na ikh osnove [Synthesis of spinel-type ceramic pigments and glazes based on them]. Institut khimii i tekhnologii redkikh elementov i mineral'nogo syr'ia im. I.V. Tananaeva 7. Papulova G.N. Izuchenie vliianiia vida ke-ramicheskogo pigmenta v sostave vysokonapolnennogo lakokrasochnogo materiala na fiziko-khimicheskie svoistva LKP na keramicheskikh poverkhnostiakh [Study of the influence of the type of ceramic pigment in the composition of highly filled paint and varnish material on the physical and chemical properties of paintwork on ceramic surfaces]. Lakokrasochnye materialy i ikh primenenie, 2017, no. 6, pp. 36–39. 8. Papulova G.N. Stabiliziruiushchee deistvie polivinilovogo spirta v kolloidnom vodnom rastvore KF-oligomera i okrashennykh soliano- i sernokislykh solei kobal'ta i medi pri dekorirovanii poristoi keramiki krasochnymi kompozitsiiami [Stabilizing effect of polyvinyl alcohol in colloidal aqueous solution of KF-oligomer and dyed hydrochloric and sulfuric acid salts of cobalt and copper at decoration of porous ceramics with colorful compositions]. G.N. Papulova, I.V. Zadorozhnyi. Vestnik Tomskogo gosudarstvennogo universiteta, 2024, no. 35, pp. 132–142. 9. Ermilov P.I. Fizicheskaia khimiia pigmentov i pigmentirovannykh materialov [Physical chemistry of pigments and pigmented materials]. P.I. Ermilov, E.A. Indeikin. Iaroslavl': Iaroslavskii Politekhnicheskii iniversitet, 1976, 85 p. 10. Papulova G.N. Izuchenie vliianiia soliano- i sernokislykh solei nekotorykh metallov v retsepture LKM dlia dekorirovaniia poristogo faiansa na dekorativnye svoistva krasochnykh pokrytii [Study of the influence of hydrochloric and sulfuric acid salts of some metals in the formulation of paintwork materials for decorating porous faience on the decorative properties of paint coatings]. Lakokrasochnye materialy i ikh primenenie, 2019, no. 3, pp. 35–37. 11. Papulova G.N. Izuchenie vliianiia vida i kolichestva napolnitelia v sostave vysokonapolnennoi kraski na fiziko-khimicheskie svoistva LKP na keramicheskikh poverkhnostiakh [Study of the influence of the type and amount of filler in the composition of highly filled paint on the physical and chemical properties of paintwork on ceramic surfaces]. Ogneupory i tekhnicheskaia keramika, 2017, no. 6, pp. 29–33. 12. Nekhliudova T.P. Kompleksnaia otsenka so-stoianiia poverkhnosti glazurovannogo farfora [Comprehensive assessment of the surface condition of glazed porcelain]. T.P. Nekhliudova, Iu.N. Kriuchkov. Steklo i keramika, 2018, no. 3, p. 193. 13. Sintez keramicheskikh pigmentov shpi-nel'nogo tipa i glazurei na ikh osnove [Synthesis of spinel-type ceramic pigments and glazes based on them]. Institut khimii i tekhnologii redkikh elementov i mineral'nogo syr'ia im. I.V. Tananaeva (g. Apatity). Steklo i keramika, 2013, no. 9, p. 17. 14. Akunova A.F. Materialovedenie i tekhnologiia proizvodstva khudozhestvennykh keramicheskikh izdelii [Materials science and technology of production of huart ceramic products]. A.F. Akunova, S.Z. Pribluda. Moscow: Vysshaia shkola, 1979, 118 p. 15. Sostav pod-glazurnoi kraski dlia dekorirovaniia keramicheskikh izdelii [Composition of underglaze paint for decorating ceramic products]. Patent Rossiiskaia Federatsiia no. 98113982/03 (2000). 16. Sostav podglazurnoi kraski dlia dekorirovaniia keramicheskikh izdelii [Composition of underglaze paint for decorating ceramic products]. Patent Rossiiskaia Federatsiia no. 98111022/04 (2002). 17. Zeltyn' V.M. Issledovanie smachivaemosti pigmentov putem opredeleniia skorosti ikh propitki l'nianym maslom 18. Tsiurupa N.N. Praktikum po kolloidnoi khimii [Workshop on colloidal chemistry]. Moscow: Vysshaia shkola, 1963, 184 p. 19. Putilova I.N. Rukovodstvo k prakticheskim zaniatiiam po kolloidnoi khimii [Manual for practical classes on colloidal chemistry]. Moscow: Vysshaia shkola, 1961, 292 p. 20. Papulova G.N. Formirovanie pokrytii iz vodnykh rastvorov plenkoobrazovatelei na keramicheskikh poverkhnostiakh [Formation of coatings from aqueous solutions of film formers on ceramic surfaces]. PhD. Thesis. Moscow, 1987, 164 p. 21. Hobden J.F. Adsorption of high polymers from solution on to solids Adsorbtion of polysterene on charcoal. J.F. Hobden, H. Jellineek. Journal Polymer. Sci., 1953, 22. Ermilov P.I. Adsorbtsiia rabochikh rastvorov pentaftalevoi kisloty na pigmentakh [Adsorption of working solutions of pentaphthalic acid on pigments]. LKM, 1969, 23. Ermilov P.I. Dispergirovanie pigmentov [Pigment dispersion]. Moscow: Khimiia, 1971, 299 p. 24. Virpsha Z. Aminoplasty [Aminoplasts]. Z. Virpsha, Ia. Bzhezin'skii. Moscow: Khimiia, 1973, 343 p. 25. Moroz I.I. Farfor, faians, maiolika [Porcelain, faience, majolica]. Kiev: Tekhnika, 1975, 351 p. 26. Lipatov Iu.S. Fizicheskaia khimiia napolnennykh polimerov [Physical chemistry of filled polymers]. Moscow: Khimiia, 1977, 304 p. 27. Papulova G.N. Izuchenie adgezii mezhdu lakovoi plenkoi dekoli i poristoi glazurovannoi keramicheskoi poverkhnost'iu [Study of adhesion between decal lacquer film and porous glazed ceramic surface]. G.N. Papulova, M.Iu. Kvasnikov. LKM i ikh primenenie, 2020, no. 1, no. 2, pp. 42–44. A method for producing threaded holes in prefabricated cutting tool housings using additive technologies Pizhenkov E.N., Kuznetsov I.T. Received: 17.10.2024 Received in revised form: 15.11.2024 Published: 19.12.2024 Abstract:
Additive technologies (AT) are becoming increasingly widespread in all branches of Russian industry. Along with the many advantages of these technologies, there are a number of technical problems that limit the use of AT. This work is devoted to solving the technical problem of obtaining profiled holes, namely threaded ones, in the housings of prefabricated cutting tools (SRI) during their synthesis from metal powders by an additive method, namely by selective laser fusion (SLM). The purpose of the work is to obtain threaded holes in the housings of parts synthesized using additive SLM technology. Due to the peculiarities of SLM technology, the actual shape and dimensions of the threaded hole do not correspond to the nominal shape and dimensions specified A 3D model. The actual dimensions of the axial section (outer, middle and inner diameters) due to the step structure of the synthesized surface are obtained less than the specified ones. The shape of the cross-section is distorted due to such a phenomenon as "sagging". The authors of the work have proposed a method for compensating the distortion of the axial section by adjusting the nominal dimensions, as well as by removing every second turn of the nominal profile. Compensation for the distortion of the cross section in the form of "sagging" is made by introducing a prismatic cutout in the upper part of the hole. The proposed modification of the longitudinal and transverse thread profile makes it possible to ensure the assemblability of the resulting hole with a mounting screw, while eliminating the complex and expensive operation of obtaining a thread in the housing in the traditional way (drilling + threading with a tap or a threaded cutter). The conducted research makes it possible to obtain prefabricated cutting tool housings using progressive SLM technology, while compensating for certain features of this technology by modifying the original model of the threaded hole. The method proposed by the authors makes it possible to obtain threaded holes without further machining, which reduces the cost of obtaining each hole in the amount of 100 to 500 rubles. Keywords: prefabricated cutting tools, additive SLM technology, threaded holes, thread correction, thread profile distortion compensation, thread modification for SLM technology, distortion of the theoretical thread profile, improving the efficiency of SLM technology, thread synthesis by SLM, screwing synthesized threads with a screw. Authors:
Evgenii N. Pizhenkov (Yekaterinburg, Russian Federation) – Senior lecturer at the Department of Mechanical Engineering Technologies, Machine Tools and Tools, Head of the Laboratory of the Central Research Institute of UrFU (19, Mira st., Yekaterinburg, 620002, Russian Federation, e-mail: e.n.pizhenkov@urfu.ru). Ivan T. Kuznetsov (Yekaterinburg, Russian Federation) – Undergraduate student of the Department of Mechanical Engineering Technologies, Machine Tools and Tools (19, Mira st., Yekaterinburg, 620002, Russian Federation, e-mail: I.T.Kuznetsov@urfu.me). References: 1. Kosilova A.G., Meshcheriakov R.K. Spravochnik tekhnologa-mashinostroitelia. V 2-kh tomakh. T. 2. [Handbook of a mechanical engineer. In 2 volumes. Vol. 2.]. The development of a methodology for determining the binder content in carbon fiber plastics using low-temperature solvolysis Shaidurova G.I., Khanova V.R., Kuksinov V.V. Received: 22.10.2024 Received in revised form: 15.11.2024 Published: 19.12.2024 Abstract:
In today's world, many high-tech companies are looking for new methods, technologies, and tools to accurately measure the physical and chemical properties of products made from polymer composite materials. This is especially important for mass production of critical components made from these materials. To reduce the time it takes to determine the content of the polymer matrix, a new method using low-temperature solvolysis was tested.This method showed promising results in reducing the time required for the measurement process. Based on the analysis of literature, regulatory, scientific and technical documents, as well as state standards for determining the binder content in carbon fiber plastics, currently used methods for studying this indicator were considered, such as the calculation method, burning (calcination) and etching in aggressive media compared to the solvolysis method. The results of studies on carbon fiber samples produced using prepreg technology by autoclaving based on layered, unidirectional, and combined reinforcing fillers are presented. Advantages and disadvantages of the solvolysis method are discussed. In the case of solvolysis, the type of filler, number of layers, and reinforcement scheme are important when choosing the geometry of the test sample.. According to the research, it was found that when using the low-temperature solvolysis method, the testing time to determine the binder content index was reduced by two times compared to the method according to GOST R 56682 requirements. This is a significant improvement for production processes. Keywords: low-temperature solvolysis, physico-chemical properties, polymer composite materials, carbon fiber, reinforcement filler, matrix concentration, binder concentration, prepreg, autoclave molding, etching, calculation technique, burning. Authors:
Galina I. Shaidurova (Perm, Russian Federation) – Doctor of Technical Sciences, Professor, Department of Mechanics of composite materials and structures, Perm National Research Polytechnic University (29, Komsomolsky av., 614990, Perm, Russian Federation, e-mail: sgi615@iskra.perm.ru). Valentina R. Khanova (Perm, Russian Federation) – Lead engineer NOC ACT, a postgraduate student of the Department Mechanics of composite materials and structures, Perm National Research Polytechnic University (29, Komsomolsky av., 614990, Perm, Russian Federation, e-mail: Khanova-kt2@pstu.ru). Victor V. Kukshinov (Perm, Russian Federation) – Engineer NOC ACT, Student of the Department of Aircraft Engineering, Perm National Research Polytechnic University (29, Komsomolsky av., 614990, Perm, Russian Federation, e-mail: viktor.kykshinov@yandex.ru). References: 1. Slavin A.V., Donetskii K.I., Khrul'kov A.V. Perspektivy primeneniia polimernykh kompozitsionnykh materialov v aviatsionnykh konstruktsiiakh v 2025-2035 gg (Obzor) [Prospects for the use of polymer composite materials in aircraft structures in 2025-2035 (Review)]. Trudy VIAM, 2022, no. 11 (117), pp. 81-91. Prospects for the application of high-performance plasma metallization for the additive formation of aluminum alloy products Belinin D.S., Shchitsyn Y.D., Neulybin S.D., Voynov P.S., Pichkalev M.V., Nikulin R.G., Nikulina S.G., Karunakaran K.P. Received: 29.10.2024 Received in revised form: 15.11.2024 Published: 19.12.2024 Abstract:
The study examined the possibility and prospects of using high-performance plasma metallization for additive manufacturing of aluminum alloy products. In the context of modern production, where there is an increasing need for high-quality and lightweight materials, efficient aluminum processing technologies are becoming relevant. In most cases, powder materials are used as initial materials for the manufacture of metal products using additive technologies. This work shows the technological possibility of using the products of spraying wire material from aluminum alloys to form products, blanks and coatings. Plasma metallization as a method with a high degree of control over the formation process and excellent mechanical properties opens up new horizons in additive technology. The work considers the basic principles of plasma metallization, its advantages over traditional methods, as well as the influence of various process parameters on the properties of the resulting products. It is shown that the creation of optimal conditions for the formation of blanks using layer-by-layer plasma metallization is determined by the features of plasma arc generation, the composition and diameter of the wire used, the composition and consumption of the plasma-forming and additional gases, the arc current, the distance to the formed surface, the protection of particles and the formed surface. The morphology and mechanical properties of the obtained metallization materials were studied. Particular attention was paid to the analysis of the microstructure and mechanical characteristics of aluminum alloys formed using high-performance plasma metallization technology, which allows us to determine their suitability for industrial application of both additive technology and "classical" metallization. Studies were also conducted on the effect of heat treatment of materials obtained using additive technologies based on the high-performance plasma metallization method. Keywords: layered plasma metallization, additive technologies, additive product formation, aluminum alloys, additive material. Authors:
Dmitry S. Belinin (Perm, Russian Federation) – Candidate of Technical Sciences, Professor of the Department “Operation of Auto Armored Vehicles”, Perm Military Institute of National Guard Forces of the Russian Federation Yuri D. Shchitsyn (Perm, Russian Federation) – Doctor of Technical Sciences, Professor, Head of Department “Welding Production, Metrology and Technology of Materials”, Perm National Research Polytechnic University Maxim V. Pichkalev (Perm, Russian Federation) – Researcher of the laboratory of precision technologies in agriculture, Perm Research Institute of Agriculture, Roman G. Nikulin (Perm, Russian Federation) – Postgraduate Student of the Department “Welding Production, Metrology and Technology of Materials”, Perm National Research Polytechnic University (29, Komsomolsky av., Perm, 614990, Russian Federation, e-mail: mt-bw@yandex.ru). Svetlana G. Nikulina (Perm, Russian Federation) – Postgraduate student of the Department of “Welding Production, Metrology and Technology of Materials”, Perm National Research Polytechnic University (29, Komsomolsky av., Perm, 614990, Russian Federation, e-mail: mt-bw@yandex.ru). Sergey D. Neulybin (Perm, Russian Federation) – Candidate of Technical Sciences, Associate Professor of the Department of “Welding Production, Metrology and Technology of Materials”, Perm National Research Polytechnic University (29, Komsomolsky av., Perm, 614990, Russian Federation, e-mail: sn-1991@mail.ru). Pavel S. Voynov (Perm, Russian Federation) – Major, Lecturer, Department of Operation of Armored Vehicles, Perm Military Institute of National Guard Forces of the Russian Federation (1, st. Rattling log, Perm, 614030, Russian Federation, e-mail: voynovps@rosgvard.ru). Pulan Karunakara Pupati Karupasami (Bombay, India) – Ph.D., Professor, Head of Mechanical Engineering Department, Indian Institute of Technology Bombay (Main Gate Rd, IIT Area, Powai, Mumbai, Maharashtra 400076, India email: karuna@iitb.ac.in). References: 1. Wohlers T. Wohlers report 2022: 3D printing and additive manufacturing global state of the industry. 2. Vozmozhnosti additivnykh tekhnologii primenitel'no k izdeliiam otvetstvennogo mashinostroeniia [Possibilities of additive technologies applied to the products of responsible mechanical engineering]. E.Iu. Kolpishon, 3. Frazier W.E. Metal Additive Manufacturing: A Review. Journal of Materials Engineering and Performance, 2014, vol. 23, no. 6, pp. 1917–1928. 4. Kolpishon E.Iu., Ivanov I.A., Razumov N.G. et al. Ispol'zovanie additivnykh tekhnologii dlia izgotovleniia izdelii v mashinostroenii [Use of additive technologies for manufacturing of products in mechanical engineering]. Tiazheloe mashinostroenie, 2022, no. 5-6, pp. 30–36. 5. Rynok tekhnologii 3D-pechati v Rossii i mire: perspektivy vnedreniia additivnykh tekhnologii v proizvodstvo [3D printing technology market in Russia and the world: prospects for introducing additive technologies into produc- 6. Rynok metallicheskih poroshkov [Metal powders market]. URL: https://xn--80aplem.xn--p1ai/analytics/Rynok-met-poroskov (data avalable 01.02.2024). 7. Zlenko M.A. Additivnye tekhnologii v mashinostroenii: uchebnoe posobie [Additive technologies in mechanical engineering: textbook]. M.A. Zlenko, A.A. Popovich, I.N. Mutylina. Saint Petersburg: Izdatelstvo Politekhnicheskogo universiteta, 2013, 222 p. 8. Razumov N.G. Nauchno-tekhnologicheskie osnovy sinteza slozhnolegirovannykh poroshkovykh i kompozitsionnykh materialov dlia mashin additivnogo proizvodstva [Scientific and technological bases of synthesis of complex-alloyed powder and composite materials for additive manufacturing machines]. PhD/ Thesis. Saint Petersburg, 2023, 270 p. 9. Karunakaran K.P. [et al.] Low cost integration of additive and subtractive processes for hybrid layered manufacturing. Robot. Comput. Integr. Manuf., 2010, vol. 26, 10. Sova A., Grigoriev S., Okunkova A.A., Smurov I. Cold spray deposition of 316L stainless steel coatings on aluminium surface with following laser post-treatment. Surf. Coat. Technol., 2013, vol. 235, pp. 283–289. 11. Neulybin S.D., Shchitsyn Y.D., Verkho-rubov V.S., Korobov Y.S., Filippov M.A., Savrai R.A., Soboleva N.N. Metallurgical Processes During Plasma Remelting of a Metallized Coating of the FeCCrTiAl System. Metallurgist = Metallurg (Metal1). Puti razvitiia v Rossii proizvodstva zheleznykh i legirovannykh poroshkov. V.B. Akimenko et al. Kon-struktsii iz kompozitsionnykh materialov, 2006, 12. Donskoi A.V. Elektroplazmennye protsessy i ustanovki v mashinostroenii [Electroplasma processes and installations in mechanical engineering]. A.V. Donskoi, 13. Erokhin, A.A. Osnovy svarki plavleniem. Fiziko-khimicheskie zakonomernosti [Fundamentals of fusion welding. Physico-chemical regularities]. Moscow: Mashinostroenie, 1973, 448 p. 14. Krampit N.Iu. Sposoby upravleniia plavleniem i perenosom elektrodnogo metalla [Methods of controlling melting and electrode metal transfer]. Svarochnoe proizvodstvo, 2009, no. 3, pp. 31–36. 15. Strukov N.N. Razrabotka tekhnologii plazmennogo raspyleniia prutkovykh materialov v kamere s protivopotokom [Development of technology of plasma atomization of rod materials in a counterflow chamber]. PhD. Thesis. Perm': PNIPU, 2012, 127 p. 16. Shchitsyn Iu.D., Strukov N.N., Belinin D.S., Kuchev P.S. Ustroistvo dlia polucheniia metallicheskikh poroshkov [Device for production of metal powders]. Patent Rossiskaiia Federatsiia no. 2532215 (2013). 17. Shchitsyn Y.D., Belinin D.S., Neulybin S.D., Karunakaran K.P., Kazantsev A.V., Nikulina S.G. Control of Metal Transfer in Additive Shaping of Workpieces: Layerby Layer Application of Metal Layers by Plasma Spraying. Russian Engineering Research, 2023, vol. 43, no. 3, pp. 312–315. 18. Shchitsyn Y.D., Belinin D.S., Neulybin S.D., Karunakaran K.P., Kazantsev A.V., Nikulina S.G. Influence of the Stabilizing Nozzle on the Quality of High-Speed Plasma Metallization. Russian Engineering Research, 2023, vol. 43, no. 8, pp. 1007–1010. 19. Shchitsyn Iu.D., Belinin D.S., Neulybin S.D., Karunakaran K.P., Kazantsev A.V., Nikulina S.G. Upravlenie perenosom metalla pri additivnom formirovanii zagotovok posloinoi plazmennoi metallizatsiei [Metal transfer control at additive forming of blanks by layer-by-layer plasma metallization]. STIN, 2023, no. 2, pp. 14–17. 20. Shchitsyn Iu.D., Belinin D.S., Ol'shanskaia T.V., Kazantsev A.V., Neulybin S.D., Nikulina S.G., Karunakaran K.P., Pichkalev M.V., Morgunov V.A. Perspektivy primeneniia plazmennoi metallizatsii dlia additivnogo formirovaniia zagotovok izdelii iz razlichnykh grupp materialov [Prospects of application of plasma metallization for additive forming of blanks from different groups of materials]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 2022, vol. 24, no. 4, pp. 56–66. 21. Yardley V.A., Shi Z., Lin J., Altıparmak S.C. Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing. International Journal of Lightweight Materials and Manufacture, 2021, vol. 4, iss. 2, pp. 246–261. 22. Zhang B. Defect Formation Mechanisms in Selective Laser Melting: A Review. B. Zhang, Y. Li, Q. Bai. China Journal Mech. Engeenering, 2017, vol. 30, pp. 515–527. DOI: 10.1007/s10033-017-0121-5 23. Aboulkhair N.T., Everitt N.M., Ashcroft I., Tuck C. Reducing porosity in AlSi10Mg parts pro-cessed by selective laser melting. Additive Manufacturing, 2014, vol. 1–4, 24. Tang M., Pistorius P.C., Narra S. et al. Rapid Solidification: Selective Laser Melt-ing of AlSi10Mg. JOM, 2016, 25. Dobatkin V.I. Bystro zakristallizovannye aliuminievye splavy [Rapidly crystallized aluminum alloys]. V.I. Dobatkin, V.I. Elagin, V.M. Fedorov. Moscow: VILS, 1995, 341 p. Regularities of weld crystallization processes occurring during welding, crystallization mechanisms of austenitic steels (review). Part 1 Olshanskaya T.V., Fedoseeva E.M. Received: 10.09.2024 Received in revised form: 15.11.2024 Published: 19.12.2024 Abstract:
The work reviews the processes occurring during the crystallization of alloys. The regularities of crystallization of welds and the formation of the primary structure of alloys are shown. Certainly the urgent question for today is to ensure the operational reliability of welded assemblies and structures as a whole, including stainless steels. The reliability of the structure is directly related to the required level of mechanical properties of welded joints, which in turn have a direct dependence on the structural and phase components of the weld and the welded joint as a whole. The issues of formation of structure and properties during crystallization of weld metal to date have not been fully studied and research in this area continues. The conditions of primary structure formation are formulated. The type of primary structure of welds is determined by the impurity content and the value of the concentration supercooling criterion. It is revealed that it is possible not only to obtain all these structures in the weld, but also to control their development by changing the conditions of growth, as it follows from the theory of concentration supercooling. The crystallization pattern of welds is shown, representing the shape of crystallite axes and the value of the angle of accretion of oppositely growing crystallites to the weld axis – the angle between tangents to these axes. Also the paper presents the analysis of these regularities of crystallization processes in metal, criteria of crystallization processes and its mechanisms are highlighted. The interrelation of crystallization processes with the Keywords: crystallization, weld, crytsallization front, concentration supercooling, austenitic class steel, structure, welding process, cooling rate, weld pool, temperature. Authors:
Tatyana V. Olshanskaya (Perm, Russian Federation) – Doctor of Technical Sciences, Professor, Department of Welding Production, Metrology and Technology of Materials, Perm National Research Polytechnic University Elena M. Fedoseeva (Perm, Russian Federation) – Ph.D. in Technical Sciences, Associate Professor, Department of Welding Production, Metrology and Technology of Materials, Perm National Research Polytechnic University (29, Komsomolsky ave., Perm, 614990, Russian Federation, å-mail: emfedoseeva@pstu.ru). References: 1. Novikov I.I. Metallovedenie, termoobrabotka i rentgenografiia [Metallurgy, heat treatment and radiography]. I.I. Novikov, G.B. Strogonov, A.I. Novikov. Moscow: MISIS, 1994, 470 p. 2. Fizicheskoe metallovedenie: uchebnik dlia vuzov [Physical metallurgy: textbook for universities]. S.V. Grachev, V.R. Baraz, A.A. Bogatov, V.P. Shveikin. Ekaterinburg: UGTU–UPI, 2009, 548 p. 3. Bokshtein C.Z. Stroenie i svoistva metallicheskikh splavov [Structure and properties of metal alloys]. Moscow: Metallurgiia, 1971, 496 p. 4. Mal'tseva L.A. Materialovedenie: uchebnoe posobie [Materials science: textbook]. L.A. Mal'tseva, M.A. Gervas'ev. 3nd. Ekaterinburg: UrFU, 2012, 344 p. 5. Mal'tseva L.A. Materialovedenie: uchebnoe posobie [Materials science: textbook]. L.A. Mal'tseva, V.I. Grokhovskii, T.V. Mal'tseva. Ed. V.R. Baraz. Ural'skii federal'nyi universitet. Ekaterinburg: UrFU, 2014, 200 p. 6. Svarka i svarivaemye materialy: spravochnik: v 3 t. 7. Teoriia svarochnykh protsessov: uchebnik dlia vuzov [Theory of welding processes: textbook for universities]. 8. Makarov E.L. Teoriia svarivaemosti stalei i splavov [Theory of weldability of steels and alloys]. E.L. Makarov, 9. Teoriia svarochnykh protsessov: uchebnik dlia vuzov [Theory of welding processes: textbook for universities]. 10. Teoriia svarivaemosti stalei i splavov: monografiia [Theory of weldability of steels and alloys: monographs]. 11. Lippol'd D. Metallurgiia svarki i svarivaemost' nerzhaveiushchikh stalei: per. s angliiskogo [Welding metallurgy and weldability of stainless steels]. D. Lippol'd, D. Koteki. Ed. N.A. Sosnina, A.M. Levchenko. Saint Petersburg: Izdatelstvo Politekhicheskogo universiteta, 2011, 467 p 12. Lippold J.S. Solidification of austenitic stainless ststeel weldments, a proposed mechanism. J.S. Lippold, 13. Lacombe P. Stainless Steels, Les Editions de Physique. P. Lacombe, B. Baroux, G. Beranger. Les Ulis. France, 1993. 14. Talbot A.M., Furman D.E. Transactions of the American Society for Metals, 1983, vol. 45, pp. 429–440. 15. Kim Y.H., Kim D.G., Sung J.H., Kim I.S., Kang N.H., Hong H.U., Park J.H., Lee H.W. Influences of Cr/Ni equivalent ratios of filler wires on pitting corrosion and ductilitydip cracking of AISI 316l weld metals. Metals and Materials International, 2011, no. 17, pp. 151–155. 16. Thomas R.G. The effect of delta ferrite on the creep rupture properties of austenitic weld metals. Welding Journal, 1978, vol. 5; 7(3), pp. 8 Is–86s. 17. Szumachowski E.R. Cryogenic toughness of SMA austenitic stainless steel metals, 1: role of ferrite. 18. Read D.T., McHenry H.I., Steinmeyer P.A., Thomas R.D. Metallurgical factors affecting the toughness 316L SMA weldments at cryogenic temperatures. Welding Journal, 1998, vol. 59(4), pp. 104s–113s. 19. Balmforth M.C. A New Ferritic-Martensitic Stainless Steel Constitution Diagram. New equivalency relationships improve the accuracy for predicting weld metal microstructure. M.C. Balmforth, J.C. Lippold. Supplement to the welding journal, 2000, pp. 339–345. 20. Suuatala N. The relationship between solidi-fication and microstructure in austenitic and austenitic-ferritic stainless steel welds. N. Suuatala, T. Takalo, T. Moisio. Metall Mater Trans A, 1979, no.10, pp. 512–514. 21. Elmer J.W. Microstructural Development during Solidification of Stainless Steel Alloys. J.W. Elmer, S.M. Allen, T.W. Eagar. Metallurgical and Materials Transactions A, 1989, vol. 20A, pp. 2117–2131. 22. GOST 5632–2014. Legirovannye nerzha-veiushchie stali i splavy korrozionnostoikie, zharostoikie i zharoprochnye. Marki [Alloyed stainless steels and alloys corrosion-resistant, heat-resistant and heat-resistant. Classes]. Moscow: Standartinform, 2015. 23. Kakhovskii N.I. Svarka vysokolegirovannykh stalei [Welding of high-alloy steels]. Kiev: Tekhnika, 1975. 24. Chernyshova T.A. Granitsy zeren v metalle svarnykh soedinenii [Grain boundaries in the metal of welded joints]. Moscow: Nauka, 1989. 25. Shurygin D.A., Levkov L.Ya., Dub V.S., Orlov S.V. et al. Influence of special solidification conditions of steel ingots on the formation of their structure and characteristics of non-metallic inclusions. Solidifications: computer simulation, experiments and technology: Abstract of the IX international conference. Izhevsk: UdmFRC UB RAS Publ., 2022, 258 p. 26. Masakov V.V. Svarka nerzhaveiushchikh sta-lei: uchebnoe posobie [Welding of stainless steels: textbook]. 27. Chen X., Li J. et al. Effect of heat treatment on microstructure, me chanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing. Materials Science and Engineering A, 2018, vol. 715, pp. 307–314. 28. Lipodaev V.N., Iushchenko K.A., Gordan' G.N. et al. Stoikost' metalla mnogosloinykh austenitnykh shvov protiv goriachikh treshchin [Metal resistance of multilayer austenitic welds against hot cracks]. Avtoma-ticheskaia svarka, 1986, no. 5, pp. 1–6. 29. Poletaev Iu.V. Sklonnost' austenitnykh stalei k obrazovaniiu goriachikh treshchin pri svarke i lokal'nykh razrushenii pri malotsiklovoi polzuchesti [Tendency of austenitic steels to form hot cracks during welding and localized fractures during low-cycle creep]. Iu.V. Poletaev, A.I. Pen'kov. Avtomaticheskaia svarka, 1989, no. 3. 30. Ishina E.A. Neravnovesnaia kristallizatsiia. Kinetika kristallizatsii splavov: uchebnoe posobie [Non-equilibrium crystallization. Kinetics of crystallization of alloys: textbook]. 31. Medovar B.I. Svarka khromonikelevykh austenitnykh stalei [Welding of chromiumnickel austenitic steels]. Kiev; Moscow: Mashgiz, 1958. 32. Moroz L.S. Mekhanika i fizika deformatsii i razrusheniia materialov [Mechanics and physics of deformation and fracture of materials]. Leningrad: Mashinostroenie, 1984, 224 p. 33. Grezev A.N. Osobennosti obrazovaniia treshchin pri lazernoi naplavke nikel'khromborkremnievykh splavov [Features of crack formation during laser cladding of nickel-chromium-boron-silicon alloys]. A.N. Grezev, G.L. Poltev, I.P. Kondrat'ev. Svarochnoe proizvodstvo, 1989, no. 9, pp. 10–12. 34. Lipodaev V.N., Snisar' V.V., Elagin V.P., Sidoruk B.C., Gordan' G.N., Tsvigun A.F. Vliianie moduliatsii svarochnogo toka na strukturu i treshchinostoikost' vysokolegirovannykh austenitnykh shvov [Influence of welding current modulation on structure and crack resistance of high-alloyed austenitic welds]. Avtomaticheskaia svarka, 1991, no. 2, 35. Mezhidov V.Kh. Kharakter kavitatsionnykh protsessov, protekaiushchikh na kristallicheskom fronte pri deistvii ul'trazvuka [Nature of cavitation processes occurring at the crystal front under the action of ultra-sound]. 36. Mezhidov V.Kh. Vozdeistvie ul'trazvukovoi kavitatsii na front kristallizatsii pri nalichii v rasplave nerastvorimykh primesei [Impact of ultrasonic cavitation on the crystallization front in the presence of insoluble impurities in the melt]. V.Kh. Mezhidov, M.A. Arsanov, I.V. Kudrin. Fizika i khimiia obrabotki materialov, 1991, no. 5, pp. 140–144. 37. Russo V.L. Issledovanie vozdeistviia uprugikh kolebanii razlichnykhchastot na kristallizatsiiu svarochnoi vanny [Investigation of the impact of elastic vibrations of different frequencies on weld pool crystallization]. Svarka. Leningrad: Sudpromgiz, 1958, pp. 3–15. 38. Golodnov A.I. Vliianie vibratsii na formirovanie kristallicheskoi struktury medi i mednykh splavov [Influence of vibration on formation of crystalline structure of copper and copper alloys]. PhD. Thesis. Ekaterinburg, 2024, 25 p. 39. Mysik R.K., Brusnitsyn S.V., Gruzdeva I.A., Golodnov A.I. Ispol'zovanie vibratsionnoi obrabotki pri proizvodstve stal'nykh otlivok [Use of vibration processing in the production of steel castings]. Nauchnye trudy XIV otchetnoi konferentsii molodykh uchenykh GOU VPO UGTU–UPI. Ekaterin-burg: UGTU–UPI, 2008, part 1, pp. 30–33. 40. Supov A.V., Khrulev A.E. Poligradientnaia kristallizatsiia – novaia tekhnologiia polucheniia vysokokache-stvennykh litykh metallicheskikh izdelii [Polygradient crystallization - a new technology for obtaining high quality cast metallic products]. 175 let MGTU imeni N.E. Baumana: tezisy dokladov nauchno-tekhnicheskoi konferentsii. Moscow, 2005, pp. 270–271. 41. Kushnarev A.V., Khrulev A.E., Supov A.V. et al. Minimizatsiia strukturnoi i khimicheskoi neodnorodnosti stal'nogo lit'ia za schet uskoren-nnogo okhlazhdeniia pri kristallizatsii [Minimization of structural and chemical heterogeneity of steel castings due to accelerated cooling during crystallization]. Sovremennye tekhnologii i oborudovanie dlia vnepechnoi obrabotki i nepreryvnoi razlivki stali: tezisy dokladov mezhdunarodnoi konferentsii. Moscow, 2007, p. 41. 42. David S.A., Goodwin G.M., Braski D.N. Solidification behavior of austenitic stainless steel filler metals. Welding Journal, 1979, vol. 58(11), pp. 330–336. 43. Sufiiarov V.Sh. Analiz i modelirovanie protsessov formirovaniia dendritnoi neodnorodnosti v staliakh s tsel'iu ee ustraneniia [Analysis and modeling of processes of dendritic heterogeneity formation in steels with the purpose of its elimination]. PhD. Thesis. Sankt-Peterburg, 2013. 44. Aleshin D.V. O nekotorykh osobennostiakh dendritnoi kristallizatsii konstruktsionnoi khromonikel'molibdenovoi stali [About some features of dendritic crystallization of structural chromium-nickel-molybdenum steel]. PhD. Thesis. Moscow, 1962, 21 p. 45. Fedoseeva E.M., Ol'shanskaia T.V., Dushina A.Iu. Zakonomernosti formirovaniia struktury v mekhanizmakh kristal lizatsii austenitnykh stalei (obzor) [Laws of Structure Formation in Mechanisms of Crystallization of Austenitic Steels (Overview)]. Vestnik PNIPU. Mashinostroenie. Materialovedenie, 2023, vol. 25, no. 1, pp. 83–97. 46. Ol'shanskaia T.V. Konstruktsionnye materialy. Svarivaemost' i svarka: uchebnoe posobie [Structural materials. Weldability and welding: textbook]. Perm': Izdatelstvo Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta, 2015, 242 p. Electron beam additive technologies (review of literature sources) Varushkin S.V., Belenkiy V.Ya., Kovtunovich M.A., Kolchanov N.A., Pechenkin A.O. Received: 04.10.2024 Received in revised form: 15.11.2024 Published: 19.12.2024 Abstract:
Additive technologies for growing products are developing intensively and are increasingly being used in high-tech industries for manufacturing complex-shaped parts from structural steels and special alloys. Currently, in most cases, additive technologies based on the use of powder materials as the source material are used in the manufacture of metal products. However, when using these technologies, the list of structural materials from which it is possible to obtain products with the required physical and mechanical characteristics is significantly narrowed. At the same time, a significant increase in the productivity of the layer-by-layer growth of products is provided by additive technologies based on surfacing of wire material. These technologies can significantly increase the metal utilization rate and reduce the time for technological preparation of production. The article provides a review of literary sources describing the development and study of additive processes for electron beam growth of products using wire filler material. These works are intensively carried out in the following companies: 3D Systems Corporation (U.S.), 3T RPD (U.K.), Arcam AB (Sweden), Biomedical Model-ing, Inc. (U.S.), Envisiontec GmbH (Germany), EOS GmbH Electro Optical Systems (Germany), Fcubic AB (Sweden), GPI Prototype and Manufacturing Services, Inc. (U.S.), Greatbatch, Inc. (U.S.), Layerwise NV (Belgium), Limacorporate SPA (Italy), Materialise NV (Belgium), Medical Modeling, Inc. (U.S.) Norsk Titanium (U.S.), Sciaky (US). The characteristics of materials grown by electron beam wire surfacing are considered. Among the disadvantages noted is the low accuracy of the geometry of parts, compared to powder surfacing methods, due to temperature deformations of the synthesized material. In addition, the surface of the products is uneven due to the layer-by-layer nature of the surfacing process, and to obtain the specified geometric parameters of the parts, it is necessary to carry out final mechanical processing of their surface. The parameters of electron-beam additive surfacing are given, the effect of the filler wire feed mode on the results of product formation is described. Mathematical models of the process are described and an analysis of patents on electron-beam surfacing with wire material is carried out. Keywords: additive technologies, 3D printing, layered formation, electron beam sources of thermal energy. Authors:
Stepan V. Varushkin (Perm, Russian Federation) – Candidate of Technical Sciences, Researcher at the Laboratory of Methods of Creation and Design of systems "Material – Technology – Construction" (29, Komsomolsky ave., Perm, 614990, Russian Federation, e-mail: e-mail: stepan.varushkin@ mail.ru). Vladimir Y. Belenky (Perm, Russian Federation) – Doctor of Technical Sciences, Professor, Professor of the Department "Welding Production, Metrology and Technology of Materials", Professor of the Department of Operation of Armored Vehicles, Perm Military Institute of National Guard Troops of the Russian Federation (1, st. Rattling log, Perm, 614030, Russian Federation, e-mail: vladimirbelenkij@yandex.ru). Maxim A. Kovtunovich (Perm, Russian Federation) – Bachelor's degree, Master's degree, Process Engineer Nikolai A. Kolchanov (Perm, Russian Federation) – Bachelor's degree, Master's degree, process engineer Alexandr O. Pechenkin (Perm, Russian Federation) – Bachelor's degree, Master's degree, Process Engineer References: 1. Elliott J.A. Novel Approaches to Multiscale Modelling in Materials Science. International Materials Reviews. 2011, 56, p. 207-225.
| ||