BULLETIN
OF PERM NATIONAL RESEARCH POLYTECHNIC UNIVERSITY ISSN (Print): 2224-9877 ISSN (Online): 2224-9877 | ||
The causes of pathological wear of the bandage in the "bandage of the wheel of lokomotiva-tormoznaya kolodka" system and the possibility of his exception Klimov A.A., Struchkov A.V., Bondarik V.B. Received: 28.06.2018 Received in revised form: 28.06.2018 Published: 30.09.2018 ![]() Abstract:
As a result of these studies was an experimental locomotive brake pads microstructure consisting of ferrite and graphite, which easily and inexpensively can be obtained in the conditions of the manufacturer and conditions of repair facilities and comparative performance tests. The hardness varies from 100NV to 600ÍÂ. Hardness is dependent upon the balance of graphite and of cementite in the structure, which is difficult to optimize, because any technological changes in the manufacturing process can dramatically change that balance. Based on the structural analysis of the investigated standard locomotive brake pads, the authors determined that the presence of all structural components under standard, their balance may vary within wide limits. This is confirmed by the hardness measurements on the surfaces of new and worn pads. The work contains the analysis of the results of the study of pathologic wear in the tribological pair "wheel tread of the locomotive - brake pad" derived from performance tests, the locomotive brake pads three groups – standard of low hardness, standard increased hardness and experimental (with the structure of ferrite-graphite) at the three locomotives freight traffic on
the stretch of station Achinsk Krasnoyarsk railway. Analysis of the research material allowed to distinguish three classification groups gain metal bands on the brake shoes for thickness and structure. A significant number of pads have traces of abnormal wear on the tires of the wheels (fat), the influence of the structure of the cast iron pads on the magnitude of a gain. The suggested direction of reducing the gain by transforming the standard structure of cast iron in ferrite-graphite. Keywords: tyres, wheel sets, locomotive brake pads, the wear surface structure of iron, hardness, wear, graphite, ferrite, cementite, fat metal. Authors:
Alexei V. Struchkov (Krasnoyarsk, Russian Federation) – Ph.D. in Technical Sciences, Associate Professor, Department of machine design basics, Siberian state aerospace University named after academician M.F. Reshetnev; e-mail: str-alex-v@mail.ru. Anatolii A. Klimov (Krasnoyarsk, Russian Federation) – Ph.D. in Technical Sciences, Associate Professor, department of Operation of Railways, Krasnoyarsk Institute of railway transport, branch of Irkutsk state University of Railway transport; e-mail: anatoly.klimoff2013@yandex.ru. Vladimir B. Bondarik (Krasnoyarsk, Russian Federation) – postgraduate student, Krasnoyarsk Institute of railway transport, branch of Irkutsk State University of Railway transport, Chief of the technical policy of the Krasnoyarsk Railway; e-mail: bondarikVB@krw.rzd. References: 1. Afonin D.G. Issledovanie i razrabotka tekhnologii izgotovleniia otlivki tormoznoi lokomotivnoi kolodki dlia zheleznodorozhnogo transporta iz iznosostoikogo grafitizirovannogo chuguna s povyshennoi eks-pluatatsionnoi stoikost'iu [Research and development of manufacturing techniques of casting of a brake locomotive shoe for railway transport from wearproof graphitized cast iron with the increased operational firmness]. Ph.D. thesis. Moscow, 2001, 19 p. 2. Kul'bovskii I.K., Afonin D.G., Dobrovol'skii I.I., Ignatenko Iu.V. Issledovaniia struktury, svoistv chuguna i ekspluatatsionnoi stoikosti tormoznykh kolodok proizvodstva OAO «Santekhlit» [Researches of structure, properties of cast iron and operational firmness of brake shoes of production of JSC Santekhlit]. Materialovedche-skie problemy v mashinostroenii: tezisy dokladov oblastnoi nauchno-tekhnicheskoi konferentsii. Briansk, 1997, pp. 7–8. 3. Sukhov A.V., Briunchukov G.I., Timofeev V.V. Lokomotivnye bandazhi marki 4 [Locomotive bandages of brand 4]. Zheleznodorozhnyi transport. 2012, no. 2, pp. 58–61. 4. Buinosov A.P. Metody povysheniia resursa bandazhei kolesnykh par tiagovogo podvizhnogo sostava [Methods of increase in a resource of bandages of wheel couples of traction rolling stock]. Ph.D. thesis. Ekaterinburg, 2011, 456 p. 5. Khudoiarov D.L. Povyshenie dolgovechnosti bandazhei kolesnykh par elektrovozov v usloviiakh depo [Increase in durability of bandages of wheel couples of electric locomotives in the conditions of depot]. Ph.D. thesis. Ekaterinburg, 2010, 162 p. 6. Tepliakov A.N. Puti snizheniia intensivnosti iznosa grebnei kolesnykh par lokomotivov [Ways of decrease in intensity of wear of crests of wheel couples of locomotives]. Ph.D. thesis. Khabarovsk, 2004, 183 p. 7. Vzaimodeistvie eksperimental'nykh tormoznykh kolodok, razrabotannykh KrIZhT IrGUPS, i bandazhei kolesnykh par lokomotivov [Interaction of experimental brake shoes, developed KrIZhT IRGUPS, and bandages of wheel couples of locomotives]. Ed. A.A. Klimova; ispolniteli S.V. Domnin, V.P. Kirpichenko, V.B. Bondarik. Krasnoiarskii institut zheleznodorozhnogo transporta Irkutskii gosudarstvennyi universitet putei soobshcheniia, 2016, 25 p. 8. Klimov A.A., Domnin S.V., Struchkov A.V. Issledovanie vozmozhnosti ispol'zovaniia ferrito-grafitnoi mikrostruktury dlia chuguna tormoznoi lokomotivnoi kolodki [Research of a possibility of use of a fer-rito-graphitic microstructure for cast iron of a brake locomotive shoe]. Nauchnye perspektivy XXI veka. Dostizheniia i perspektivy novogo stoletiia: materialy IX Mezhdunarodnoi nauchno-prakticheskoi konferentsii, Novosibirsk, 13–14 marta. Tekhnicheskie nauki. Novosibirsk, 2015, no. 2(9), pp. 161–165. 9. Vzaimodeistvie eksperimental'nykh tormoznykh kolodok, razrabotannykh KrIZhT IrGUPS, i bandazhei kolesnykh par lokomotivov [Interaction of experimental brake shoes, developed KrIZhT IRGUPS, and bandages of wheel couples of locomotive]. Ed. A.A. Klimova; ispolniteli S.V. Domnin. Krasnoiarsk, 2013, 58 p. 10. Klimov A.A., Struchkov A.V., Bondarik V.B. Issledovanie grafitnykh vkliuchenii v mikrostrukturakh chuguna tormoznykh lokomotivnykh kolodok [A research of graphitic inclusions in microstructures of cast iron of brake locomotive shoes]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 2017, vol. 19, no. 3, pp. 19–33. 11. Klimov A.A., Domnin S.V., Struchkov A.V. Sposob uluchsheniia tribologicheskikh kharakteri-stik pary «Koleso-tormoznaia kolodka» lokomotivov [A way of improvement of tribological characteristics of couple "A wheel - a brake shoe" locomotives]. Tekhnicheskie nauki – ot teorii k praktike: materialy VIII Mezhdunarodnoi konferentsii. Saint-Petersbarg, 2016, pp. 47–53. 12. Klimov A.A., Domnin S.V., Struchkov A.V. Issledovanie vliianiia struktury i tverdosti tormoznykh kolodok na iznos bandazhei koles lokomotivov [A research of influence of structure and hardness of brake shoes on 13. Klimov A.A., Domnin S.V., Khatskevich D.S. Sposob povysheniia iznosostoikosti tormoznykh lokomotivnykh kolodok iz serogo chuguna [Way of increase in wear resistance of brake locomotive shoes from gray cast iron]. Sovremennye kontseptsii nauchnykh issledovanii: IX Mezhdunarodnaia nauchno-prakticheskaia konferentsiia. Moscow, 2014, pp. 82–85. 14. Klimov A.A., Domnin S.V., Struchkov A.V. Vliianie sostava i mikrostruktury tormoznykh lokomotivnykh kolodok na ikh tribologicheskie svoistva [Influence of structure and microstructure of brake locomotive shoes on their tribological properties]. Vestnik IrGTU, 2017, vol. 21, no. 11, pp. 179–190. 15. Klimov A.A., Struchkov A.V., Bondarik V.B. Issledovanie metallicheskoi osnovy mikrostruktury tormoznykh lokomotivnykh kolodok [Research of a metal base of a microstructure of brake locomotive shoes]. Vestnik instituta problem estestvennykh monopolii. Tekhnika zheleznykh dorog, 2017, no. 4(40), pp. 26–30. 16. Klimov A.A., Domnin S.V., Struchkov A.V. Vliianie mikrostruktury i tverdosti tormoznoi lokomotivnoi kolodki na treshchinoobrazovanie chuguna [Influence of a microstructure and hardness of a brake locomotive shoe on a cast iron treshchinoobrazovaniye]. Sistemy. Metody. Tekhnologii: nauchnyi periodicheskii zhurnal. Bratskii gosudarstvennyi universitet, 2016, no. 2(30), pp. 64–68. 17. Klimov A.A., Struchkov A.V., Bondarik V.B. Metallograficheskoe issledovanie protsessa treshchinoobrazovaniia v chugune tormoznykh lokomotivnykh kolodok [A metalgraphic research of process of a treshchinoobrazovaniye in cast iron of brake locomotive shoes]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Transport, transportnye sooruzheniia, ekologiia, 2017, no. 3, pp. 94–106. 18. Klimov A.A., Struchkov A.V., Bondarik V.B. Analiz sostava i mikrostruktury tormoznykh kolodok i vliianie ikh na tribologicheskie svoistva [18. Analysis of structure and microstructure of brake shoes and their influence on tribological properties]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 2017, no. 11, pp. 179–190. 19. Klimov A.A., Struchkov A.V. Sposob povysheniia iznosostoikosti tormoznykh lokomotivnykh kolodok [Way of increase in wear resistance of brake locomotive shoes]. Patent Rossiiskaia Federatsiia no. 2575505 (2016). 20. Klimov A.A., Struchkov A.V. Friktsionnyi chugun dlia tormoznykh lokomotivnykh kolodok i sposob ego polucheniia [Frictional cast iron for brake locomotive shoes and a way of his receiving]. Patent Rossiiskaia Federatsiia no. 2573848 (2014). Application of high-frequency induction heating for increasing crack resistance in the welding of hardening steels Orlov A.S., Pomerantsev A.S., Sizintsev S.V. Received: 15.08.2018 Received in revised form: 15.08.2018 Published: 30.09.2018 ![]() Abstract:
The purpose of this work is to investigate the feasibility of implementing such a variant of electric arc welding with heating, in which heat from the source of heating is introduced coaxially with the welding source and added together with the heat of the welding arc. The paper presents an electric arc welding method with heating, in which the source of heating is a high-frequency electromagnetic field generated by a multi-turn inductor coaxially fixed on a welding torch. The local heating zone of the welded article is shown from the action of the high-frequency induction source, as well as the heating circuit of the workpiece to be welded. Experimental studies are conducted to determine the effectiveness of the proposed variant of the welding technology using high-frequency heating as a means of increasing the resistance to cold cracking in the welding of hardening steels for automatic submerged arc welding and argon-arc welding by a non-consumable electrode. For this purpose, the compounds were welded in the form of a technological sample. The results of experimental studies confirming the effectiveness of high-frequency induction heating for increasing the resistance to the formation of cold cracks in the welding of hardening articles are presented. Keywords: arc welding, high-frequency induction heating, alternating current, cold crack, process test, heat source, inductor, hardening steels, crack resistance, annular heating source, welding torch, voltage concentrator. Authors:
Alexander S. Orlov (Voronezh, Russian Federation) – Doctor of Technical Sciences, Professor, Department of Metal constructions and welding in construction, Voronezh State Technical University; e-mail: svarka@ vgasu.vrn.ru. Andrei S. Pomerantsev (Voronezh, Russian Federation) – Ph.D. in Technical Sciences, Associate Professor, Department of Metal constructions and welding in construction, Voronezh State Technical University; e-mail: svarka@vgasu.vrn.ru. Sergei V. Sizintsev (Voronezh, Russian Federation) – postgraduate student, Department of Metal constructions and welding in construction, Voronezh State Technical University; e-mail: sizincev.1991@mail.ru. References: 1. Veter V.V., Belkin G.A., Samoilov M.I., Sarychev I.S. Predvaritel'nyi podogrev i kachestvo naplavlennogo metalla [Preliminary heating and quality of the built-up metal]. Svarochnoe proizvodstvo, 1990, no. 10, pp. 6–8. 2. Frumin I.I. Avtomaticheskaia elektrodugovaia naplavka [Automatic arc naplavka]. Khar'kov: Metallurgizdat, 1961, 422 p. 3. Karp I.N., Soroka B.S., Dashevskii L.N. Produkty sgoraniia prirodnogo gaza pri vysokikh temperaturakh [Products of combustion of natural gas at high temperatures]. Kiev: Tekhnika, 1967, 132 p. 4. Kitaev A.M., Kitaev Ia.A. Spravochnaia kniga svarshchika [Reference book by the welder]. Moscow: Mashinostroenie, 1985, 256 p. 5. Svarka v mashinostroenii [Welding in mechanical engineering]. Spravochnik v 4 tomakh. Ed. N.A. Ol'shanskogo. Moscow: Mashinostroenie, 1978, vol. 1, 504 p. 6. Svarka v mashinostroenii [Welding in mechanical engineering]. Spravochnik v 4 tomakh. Ed. A.I. Akulova. Moscow: Mashinostroenie, 1978, vol. 2, 462 p. 7. Bezbakh D.K. Vliianie shiriny zazora na formirovanie odnostoronnikh stykovykh shvov pri avtomaticheskoi svarke pod fliusom [Influence of width of a gap on formation of unilateral butt seams at automatic welding under gumboil]. Avtomaticheskaia svarka, 1988, no. 6, pp. 48–49. 8. Oborudovanie dlia dugovoi svarki [Equipment for arc welding]. Spravochnoe posobie. Ed. V.V. Smirnova. Leningrad: Energoatomizdat, 1986, 656 p. 9. Bort M.M., Bialotskii L.A., Vasil'ev G.D. Spravochnik elektrosvarshchika [Reference book by the electric welder]. 2nd ed., Kiev: Mashgiz, 1954, 515 p. 10. Spravochnik po svarke, paike, skleike i rezke metallov i plastmass [Reference book on welding, soldering, gluing together and cutting of metals and plastic]. Ed. A.N. Noimana, E.A. Rikhtera. Moscow: Metallurgiia, 1980, 464 p. 11. Sposob avtomaticheskoi svarki plavleniem: patent 039219 Ros. Federatsiia / Orlov A.S., Pomerantsev A.S., Sizintsev S.V. ¹ 2016125032/02; Zaiavl. 22.06.2016. 12. Slukhotskii A.E., Ryskin S.E. Induktory dlia induktsionnogo nagreva [Inductors for induction heating]. Leningrad: Energiia, 1974, 264 p. 13. Gaivoronskii A.A., Zhukov V.V., Shishkevich A.S. Svarivaemost' vysokoprochnoi uglerodistoi stali 65G [Svarivayemost of high-strength carbonaceous steel 65G]. Svarka i diagnostika, 2014, no. 5, pp. 49–53. 14. Skul'skii V.Iu. Osobennosti kinetiki zamedlennogo razrusheniia svarnykh soedinenii zakalivaiushchikhsia stalei [Features of kinetics of the slowed-down destruction of the welded connections which are tempered staly]. Avtomaticheskaia svarka, 1997, no. 5, pp. 3–12. 15. Sarzhevskii V.A., Gaivoronskii A.A., Gordonnyi V.G. Vliianie tekhnologicheskikh faktorov na strukturu i svoistva metalla ZTV pri remontno-vosstanovitel'noi naplavke grebnei tsel'nokatanykh vagonnykh koles [Influence of technology factors on structure and property of ZTV metal at a repair and recovery naplavka of crests of seamless-rolled carriage wheels]. Avtomaticheskaia svarka, 1996, no. 3, pp. 22–33. 16. Gaivoronskii A.A., Pozdniakov V.D., Markashova L.I. Vliianie sostava naplavlennogo metalla na strukturu i mekhanicheskie svoistva vosstanovlennykh zheleznodorozhnykh koles [Influence of composition of the built-up metal on structure and mechanical properties of the restored railway wheels]. Avtomaticheskaia svarka, 2012, no. 8, pp. 18–24. 17. Novye metody otsenki soprotivliaemosti metal-lov khrupkomu razrusheniiu [New methods of assessment 18. Gaivoronskii A.A., Zhukov V.V., Vasil'ev V.G. Strukturnye izmeneniia v uchastke peregreva metalla 19. Shorshorov M.Kh. Ispytaniia metallov na svarivaemost' [Tests of metals on a svarivayemost]. Moscow: Metallurgiia, 1972, 240 p. 20. Makarov E.L. Kholodnye treshchiny pri svarke legirovannykh stalei. – M.: Mashinostroenie, 1981. – 247 s. 21. Grivniak I. Svarivaemost' stalei [Cold cracks when welding alloyed by staly]. Moscow: Mashinostroenie, 1984, 215 p. 22. Iushchenko K.A., Derlomenko V.V. Analiz sovremennykh predstavlenii o svarivaemosti naplavke [Analysis of modern ideas of a svarivayemost to a naplavka]. Avtomaticheskaia svarka, 2005, no. 1, pp. 9–13. The using of resistometry to study the kinetics of atomic ordering in an Cu–80wt. % Au alloy Generalova K.N., Glukhov A.V., Volkov A.Yu. Received: 25.06.2018 Received in revised form: 25.06.2018 Published: 30.09.2018 ![]() Abstract:
High-precision navigation devices are used in modern aircraft construction to transmit weak signals with high reliability. Previous studies of the characteristics of sliding contacts made of noble metals showed that the contact pair (CP) brush / ring has the highest performance if it is made of gold-copper alloys near equiatomic composition. Alloys of gold and copper are capable, with appropriate heat treatment, to acquire an ordered atomic structure characterized by a strictly defined arrangement of atoms of each kind in the crystal lattice. The ordering process is carried out by the diffusion movement of atoms, so the formation of an ordered structure is determined by the temperature-time processing conditions. Earlier it was shown that the high physical and mechanical characteristics of ordered gold-copper alloys ensure stable operation of the CP. In the present study, the kinetics of the formation of an ordered structure of the L10 type in a gold-copper alloy of a nonstoichiometric composition (Cu-80 wt. % Au) has been studied by resistometry. The results obtained in measuring the electrical resistivity during heating and cooling of samples in different initial states (disordered by quenching or plastic deformation) are described. The high thermal stability of the ordered CuAuII phase at low temperatures was revealed. In turn, it was established that the CuAuI phase is very rapidly rearranged in CuAuII when heated above 350 °C. It is confirmed that the preliminary plastic deformation does not lead to an increase in the rate of atomic ordering in comparison with the quenched state. As a result of prolonged heat treatment, an ordered state with a resistivity ρ = 7.71·10–8 Om m was obtained, which is significantly lower than the data given in the literature for the alloy of the chosen composition. Keywords: copper-gold alloy, phase transformations, L10-type superstructure, atomic long-range order, structural methods of investigation, electrical resistivity, kinetics of transformation, non-equiatomic alloy, electroteñhnical contacts, plastic deformation.
Authors:
Kseniia N. Generalova (Perm, Russian Federation) – Postgraduate student, Department of Metal science and Heat Treatment of Metals, Perm National Research Polytechnic University; e-mail: kngeneralova@mail.ru) Andrei V. Glukhov (Ekaterinburg, Russian Federation) – engineer, Laboratory of Strength, Institute of Metal Physics named after M.N. Micheev of Ural Branch of the Russian Academy of Sciences; e-mail: andrey23542@ gmail.com. Aleksei Yu. Volkov (Ekaterinburg, Russian Federation) – Doctor of Technical Science, Head, Laboratory of Strength, Institute of Metal Physics named after M.N. Micheev of Ural Branch of the Russian Academy of Sciences; e-mail: volkov@imp.uran.ru. References: 1. Malyshev V.M., Rumiantsev D.V. Zoloto [Gold]. Moscow: Metallurgiia, 1979, 288 p. 2. Khol'm R. Elektricheskie kontakty [Electric contact]. Moscow: Izdatel'stvo inostrannoi literatury, 1961, 464 p. 3. Rudenko V.K. Uporiadochenie zolotomednykh splavov v rezul'tate atomnogo uporiadocheniia i raspada peresyshchennogo tverdogo rastvora [Streamlining of zolotomedny alloys as a result of atomic streamlining and disintegration of peresyshchenny solid solution]. Ph.D. thesis. Institut fiziki metallov. Sverdlovsk, 1979, 138 p. 4. Siutkina V.I. Razrabotka vysokoprochnykh uporiadochennykh splavov na osnove zolota [Development of high-strength ordered alloys on the basis of gold]. Ph.D. thesis. Institut fiziki metallov. Sverdlovsk, 1981, 259 p. 5. Grinberg B.A., Siutkina V.I. Novye metody uprochneniia uporiadochennykh splavov [New methods of hardening of ordered alloys]. Moscow: Metallurgiia, 1985, 176 p. 6. Generalova K.N., Glukhov A.V., Volkov A.Iu. Rentgenostrukturnyi analiz kinetiki atomnogo uporiadocheniia po tipu L10 v nestekhiometricheskom medno-zolotom splave [The X-ray diffraction analysis of kinetics of atomic streamlining on the L10 type in not stoichiometric copper-gold alloy]. Vestnik Permskogo natsional'nogo is-sledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 2018, no. 2, pp. 75–85. 7. Volkov A.Iu., Kazantsev V.A. Vliianie iskhodnogo sostoianiia na formirovanie struktury i svoistv uporiadochennogo splava CuAu [Influence of an initial state on formation of structure and properties of ordered CuAu alloy]. Fizika metallov i metallovedenie, 2012, vol. 113, no. 1, pp. 66–76. 8. Volkov A.Yu., Novikova O.S., Antonov B.D. The kinetics of ordering in an equiatomic CuPd alloy: A resisto-metric study. Journal of Alloys and Compounds, 2013, vol. 581, pp. 625–631. 9. Feder R., Mooney M., Nowick A.S. Ordering kinet-ics in long-range ordered Cu3Au. Acta Metallurgica, 1958, vol. 6, no. 4, pp. 266–277. 10. Volkov A.Iu., Kostina A.E., Volkova E.G., Novikova O.S., Antonov B.D. Mikrostruktura i fiziko-mekhanicheskie svoistva splava Cu–8 at.% Pd [Microstructure and physicomechanical properties of Cu-8 alloy àò. Pd %]. Fizika metallov i metallovedenie, 2017, vol. 118, no. 12, pp. 1312–1322. 11. Tanaka K., Ichitsubo T., Koiwa M. Effect of external fields on ordering of FePd. Materials Science and Engineering, 2001, vol. A312, pp. 118–127. 12. Rossiter P.L. Order-disorder and the electrical resistivity of FeCo. Journal of Physics F: Metal Physics, 1981, vol. 11, no. 3, pp. 615–621. 13. Johansson C.H., Linde J.O. Rontgenographische und electrische Untersuchungen der CuAu-Systems. Ann. Physik, 1936, vol. 25, pp. 1–48. 14. Shiraishi T., Ohta M. Low temperature ageing in equiatomic CuAu and Cu-Au-Pd ternary alloys. Journal of Materials Science, 1989, vol. 24, no. 3, pp. 1049–1052. 15. Studies on recrystallization of single-phase copper alloys by resistance measurements. J. Freudenberger, A. Kauffmann, H. Klaub, T. Marr, K. Nenkov, Subramanya Sarma V., L. Schultz. Acta Mater., 2010, vol. 58, pp. 2324–2329. 16. Siutkina V.I., Volkov A.Iu. Formirovanie prochnostnykh svoistv uporiadochennykh splavov [Formation of strength properties of ordered alloys]. Fizika metallov i metallovedenie, 1992, no. 2, pp. 134–146. 17. Ivchenko V.A., Siutkin N.N. Atomnaia struktura CuAu v polevom ionnom mikroskope [Atomic structure of CuAu in a field ionic microscope]. Fizika tverdogo tela, 1983, vol. 25, iss. 10, pp. 3049–3054. 18. Volkov A.Iu., Antonov B.D., Patselov A.M. Vli-ianie vneshnikh vozdeistvii na domennuiu strukturu ekviatomnogo splava CuAu [Influence of external impacts on domain structure of ekviatomny CuAu alloy]. Fizika metallov i metallovedenie, 2010, vol. 110, no. 3, pp. 264–274. 19. Petrov D.A., Kolachev B.A. Starenie splavov me-di s zolotom [About structure and properties of color 20. Ordering and recrystallization of CuAu alloy after cold deformation. B.A. Greenberg, O.V. Antonova, T.S. Boyarshinova, Z.M. Pesina, I.N. Sachanskaya, A.Yu. Volkov, G. Hug. Intermetallics, 1997, vol. 5, no. 4, pp. 297–309. 21. Grinberg B.A., Ivanov M.A. Intermetallidy Ni3Al i TiAl: mikrostruktura, deformatsionnoe povedenie [Intermetallida Ni3Al and TiAl: microstructure, deformation behavior]. Ural'skoi otdelenie Rossiiskoi akademii nauk, Ekaterinburg, 2002, 359 p. The temperature correlation parameters of gas-vortex stabilization of metal-cutting plasma torches Anakhov S.V., Pyckin Yu.A., Matushkin A.V. Received: 06.06.2018 Received in revised form: 06.06.2018 Published: 30.09.2018 ![]() Abstract:
The results of the efficiency studies of gas-temperature stabilization systems for metal-cutting plasmatrons are presented. Due to the fact that currently the introduction of automated metal cutting systems usually involves multi-functional use of several technologies, the development of universal or competitive in a wider range of technologies can be a serious factor in the search for the most effective metal cutting technology. Such technology can be modern methods of high-precision plasma cutting, which include appeared in recent years under the name "compressed", "accurate" or "narrow-jet" plasma development of manufacturers such as Kjellberg, MesserGreisheim, HyperTherm. Improving the efficiency of individual gaseous-vortex stabilization may be an important factor when choosing plasma cutting, optimum cutting technology of metals. It is noted that the method of efficiency evaluation developed by the authors should be based on the calculation of the uniformity of the gas flow velocity distribution over the section of the gas-heating path of the plasma torch. Various (simplified and accurate) estimation methods are proposed. The results of calculation of the velocity distribution in the control section for different modifications of
plasma torches are presented. Calculations are made on the "cold" model gas flow and its heating by a plasma arc. It is shown that when heated by a plasma arc, the flow rate at the inlet to the nozzle channel of the plasma torch and the degree of irregularity of the velocity distribution in the control section increase. By methods of statistical analysis the main parameter of the effectiveness evaluation of individual gaseous-vortex stabilization was chosen – criterion for the velocity variations. Demonstrated the advantages of the new upgraded torches, including working on technology narrow jet plasma, from the point of view of the effectiveness of individual gaseous-vortex stabilization. Keywords: plasmotron, designing, flow dynamics, velocity, air-gas path, profiling, gas rotating stabilization, swirl canals, expansion chamber, plasma gas, plasma jet, computational modeling. Authors:
Sergei V. Anakhov (Ekaterinburg, Russian Federation) – Ph.D. in physical and mathematical Sciences, Associate Professor, Head, Department of mathematical and natural Sciences, Russian state vocational Professional University, Director of LLC "TERUS"; e-mail: sergej.anahov@rsvpu.ru. Yurii A. Pyckin (Ekaterinburg, Russian Federation) – Doctor of Technical Sciences, Professor, Department of Physico-chemical technologies to protect the biosphere, Ural state forest engineering University, gene. Director of LLC NPO "Polygon"; e-mail: yappoligon@mail.ru. Anatolii V. Matushkin (Ekaterinburg, Russian Federation) – Ph.D. in technical Sciences, Senior lecturer, Department Welding technology, Ural Federal University named after the first President of Russia B.N. Yeltzin; e-mail: 227433@yandex.ru. References: 1. Shalimov M.P., Panov V.I., Votinova E.B. Svarka vchera, segodnia, zavtra...: uchebnoe posobie [Welding yesterday, today, tomorrow].Ural'skii federal'nyi universitet imeni pervogo Prezidenta Rossii B.N. El'tsina, 2nd ed. Ekaterinburg, 2015, 310 p. 2. Kaidalov A.A. Sovremennye tekhnologii termicheskoi i distantsionnoi rezki konstruktsionnykh materialov [Modern technologies of thermal and remote cutting of constructional materials]. Kiev: Ekotekhnologiia, 2007, 456 p. 3. Lashchenko G.I. Plazmennaia rezka metallov i splavov [Plasma cutting of metals and alloys]. Kiev: Ekotekhnologiia, 2003, 64 p. 4. Wegmann H. Sravnitel'nyi tekhniko-ekonomicheskii analiz plazmennoi rezki. Welding and Cutting, 2005, no. 4, pp. 191–194. 5. Pykin Iu.A., Anakhov S.V. Effektivnost' i energosberezhenie – kriterii vybora elektroplazmennykh tekhnologii [Efficiency and energy saving – criteria of the choice of electroplasma technologies]. UrFO: Stroitel'stvo. ZhKK, 2010, no. 1, pp. 22–23. 6. Potapov V.A.. Opyt ekspluatatsii lazernykh i plazmennykh ustanovok dlia rezki na amerikanskikh zavodakh [Operating experience of laser and plasma machines for cutting at the American plants]. URL: www.stankoinform.ru (accessed 30 August 2018). 7. Anakhov S.V. Printsipy i metody proektirovaniia v elektroplazmennykh i svarochnykh tekhnologiiakh: ucheb. posobie [The principles and design methods in electroplasma and welding technologies]. Ed. A.S. Borukhovicha. Ekaterinburg: Izdatel'stvo Rossiiskogo gosudarstvennogo professional'no-pedagogicheskogo universiteta, 2014, 144 p. 8. Zhukov M.F., An'shakov A.S. Osnovy rascheta plazmotronov lineinoi skhemy [Bases of calculation of plasmatrons of the linear scheme]. Institut teplofiziki Sibirskogo otdeleniia Rossiiskoi akademii nauk SSSR, Novosibirsk, 1979, 146 p. 9. Cherednichenko V.S., An'shakov A.S., Kuz'min M.G. Plazmennye elektrotekhnologicheskie ustanovki [Plasma electrotechnological installations.]. Novosibirsk: Izdatel'stvo Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta, 2011, 602 p. 10. Zhukov M.F., Zasypkin I.M., Timoshevskii A.N. Elektrodugovye generatory termicheskoi plazmy. T. 17. Nizkotemperaturnaia plazma [Arc generators of thermal plasma]. Novosibirsk: Nauka, 1999, 712 p. 11. Klimenko A.A., Liapin G.K. Konstruktsii elektrodugovykh plazmotronov [Designs of arc plasmatrons]. Moscow: Izdatel'stvo Moskovskogo gosudarstvennogo tekhnicheskogo universiteta imeni Baumana, 2010, 56 p. 12. Anakhov S.V., Pykin Iu.A. Plazmotrony: problema akusticheskoi bezopasnosti. Teplofizicheskie i gazodinamicheskie printsipy proektirovaniia maloshumnykh plazmotronov [Plasmatrons: problem of acoustic safety. Heatphysical and gasdynamic principles of design of quiet plasmatrons]. Ural'skoe otdelenie Rossiiskoi akademii nauk. Ekaterinburg, 2012, 224 p. 13. Abramovich G.N. Prikladnaia gazovaia dinamika [Applied gas dynamics]. Moscow: Nauka, 1991, ch. 1, 597 p., ch. 2, 301 p. 14. Anakhov S.V., Pykin Iu.A., Matushkin A.V. Metodicheskie osnovy avtomatizirovannogo gazodinamicheskogo proektirovaniia v elektroplazmennykh tekhnologiiakh [Methodical bases of the automated gasdynamic design in electroplasma technologies]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie. Materialovedenie, 2018, vol. 20, no. 1, pp. 62–70. 15. Shalimov M.P., Anakhov S.V., Pykin Iu.A., Matushkin A.V., Matushkina I.Iu. Otsenka effektivnosti gazovikhrevoi stabilizatsii v plazmotronakh dlia rezki metallov [Assessment of efficiency of gas-vortex stabilization in plasmatrons for cutting of metals]. Svarka i diagnostika, 2018, no. 2, pp. 57–61. 16. Anakhov S.V., Pykin Iu.A., Matushkin A.V. Gazovikhrevaia stabilizatsiia v plazmotronakh: novye resheniia [Gas-vortex stabilization in plasmatrons: new decisions]. Svarochnoe proizvodstvo, 2015, no. 5, pp. 49–53. 17. Anakhov S.V., Pykin Iu.A., Matushkin A.V. Issledovanie sistem gazovikhrevoi stabilizatsii plazmotronov [Research of systems of gas-vortex stabilization of plasmatrons]. Svarochnoe proizvodstvo, 2015, no. 4, pp. 20–24. 18. Donskoi A.V., Klubnikin V.S. Elektroplazmennye protsessy i ustanovki v mashinostroenii [Electroplasma processes and installations in mechanical engineering]. Leningrad: Mashinostroenie, 1979, 221 p. 19. Dresvin S.V., Ivanov D.V. Osnovy matematicheskogo modelirovaniia plazmotronov: ucheb. Posobie [Bases of mathematical modeling of plasmatrons]. Ch. 1. Uravnenie balansa energii. Metod kontrol'nogo ob"ema. Raschet 20. Godin A.M. Statistika: uchebnik dlia vuzov [Statistics]. Moscow: Dashkov i K°, 2005, 470 p. Penetration control for welding on analytical mathematical model of heat distribution Sidorov V.P., Melzitdinova À.V. Received: 08.08.2018 Received in revised form: 08.08.2018 Published: 30.09.2018 ![]() Abstract:
The paper describes the technique of automatic control of the welding process on the analytical model of heat propagation into the product. The technique is applicable for argon-arc welding of double-sided butt joints without edge preparation. The essence of this technique is to determine two coefficients of the structural model of a point heat source on the surface of a plate. To determine the coefficients, it is necessary to measure the temperature of the body at two points with their known coordinates. The data on standard values of the penetration and the weld width are taken as these points. The solution of the system of equations for the known coefficients is described graphically by constructing isolines for the penetration and the weld width. For control, the concept of the specific effective power per 1 A of arc current is used. It makes not to measure the effective welding power. The current and the welding speed are measured, and one parameter is used as the control parameter. In this case, the requirements to the accuracy of the control parameter are significantly reduced. An example of using the proposed technique for argon-arc welding of the first layer of a double-sided weld is given. The proposed method eliminates the inaccuracies of the mathematical model associated with the assumption that there is no temperature dependence of the thermophysical coefficients. The control method provides a significant reduction of the experiments to determine the coefficients of the mathematic dependence of the penetration against the welding parameters, to increase the accuracy of the penetration control by reducing the dependence of the coefficients determined experimentally on the welding parameters, and to take into account the influence of the temperature and the thickness of the welded parts on the penetration without additional experiments. Keywords: weld, plate, heat source, coefficients, penetration, automatic control, mathematical model, temperature, width of weld, disturbance. Authors:
Vladimir P. Sidorov (Togliatti, Russian Federation) – Doctor of Technical Sciences, Professor, Department of Welding, Metal Forming and Associated Processes, Togliatti State University; e-mail: vladimir.sidorov.2012@ list.ru. Anna V. Melzitdinova (Togliatti, Russian Federation) – Master, head of training department of welders before attestation, private educational agency additional professional education technical teaching center “Spectrum”; e-mail: melzitdinova@gmail.com References: 1. Patent Iaponii no 50-3987(1975). 2. Sidorov V.P., Mel'zitdinova A.V. Metodika opredeleniia trebovanii k tochnosti parametrov svarki [Tech- 3. Sidorov V.P., Mel'zitdinova A.V. Issledovanie dopustimykh otklonenii parametrov dugovoi dvukhstoronnei svarki [Research of tolerances of parameters of arc bilateral welding]. Svarochnoe proizvodstvo, 2016, no. 3, pp. 11–15. 4. Sidorov V.P., Melzitdinova A.V. Determination of permissible deviations of the two-sided arc welding conditions. Welding International, 2016, pp. 1–4. 5. Sas A.V., Chernov A.V., Gladkov E.A., Ganiushin V.M., Brodiagin V.N. Sposob avtomaticheskogo regulirovaniia glubiny proplavleniia pri avtomaticheskoi dugovoi svarke [A way of automatic control of depth of pro-melting at automatic arc welding]. Avtorskoe svidetelstvo no. 1013163 (1983). 6. Paton B.E., Lebedev V.K., Podo-la N.V., Rudenko P.M. Sposob regulirovaniia glubiny proplavleniia pri avtomaticheskoi argonodugovoi svarke neplaviashchimsia elektrodom bez prisadochnoi provoloki [A way of regulation of depth of pro-melting at automatic argonodugovy welding by not melting electrode without additive wire]. Avtorskoe svidetelstvo no. 1123803 (1984). 7. Sposob avtomaticheskogo regulirovaniia glubiny proplavleniia pri svarke neplaviashchimsia elektrodom [A way of automatic control of depth of pro-melting when welding by not melting electrode]. Avtorskoe svidetelstvo no. 1346369 (1987) 8. Gladkov E.A., Brodiagin V.N., Perkovskii R.A. Avtomatizatsiia svarochnykh protsessov [Automation of welding processes]. Moscow: Izdatel'stvo Moskovskogo gosudarstvennogo tekhnicheskogo universiteta imeni N.E. Baumana, 2014, 421 p. 9. Sidorov V.P., Mel'zitdinova A.V. Sposob avtomaticheskogo regulirovaniia glubiny proplavleniia pri avtomaticheskoi dugovoi svarke [A way of automatic control of depth of pro-melting at automatic arc welding]. Patent Rossiiskaia Federatsiia no. 2613255 (2017). 10. Sidorov V.P., Mel'zitdinova A.V. Sposob kontrolia otkloneniia dugi ot styka svarivaemykh kromok [Way of control of a deviation of an arch from a joint of the welded edges]. Patent Rossiiskaia Federatsiia no. 2632751 (2017). 11. Sidorov V.P., Mel'zitdinova A.V. Regulirovanie proplavleniia pri svarke s uchetom otkloneniia dugi ot styka [Regulation of pro-melting when welding taking into account an arch deviation from a joint]. Nauka – obrazovanie − proizvodstvo: opyt i perspektivy razvitiia: materialy XIV Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, 8–9 fevralia 2018. Ural'skii federal'nyi universitet imeni pervogo Prezidenta Rossii B.N. El'tsina. Nizhnii Tagil, 2018, vol. 1, pp. 220–229. 12. Teoriia svarochnykh protsessov [Theory of welding processes]. Ed. V.V. Frolova. Moscow: Vysshaia shkola, 1988, 559 p. 13. Lenivkin V.A., Diurgerov N.G., Sagirov Kh.N. Tekhnologicheskie svoistva svarochnoi dugi v zashchitnykh gazakh [Technological properties of a welding arch in protective gases]. Moscow: Mashinostroenie, 1989, 264 p. 14. Sidorov V.P., Berezhko A.V., Komarov E.E. Opredelenie vol'tova ekvivalenta anodnoi moshchnosti po kharakteristikam plavleniia elektroda [Definition of a voltov of an equivalent of anode power according to characteristics of melting of an electrode]. Svarka i kontrol' – 2005: materialy 24-i nauchno-tekhnicheskoi konferentsii. Cheliabinsk, 2005, pp. 99–106. 15. Savinov A.V., Lapin I.E., Lysak V.I. Dugovaia svarka neplaviashchimsia elektrodom [Arc welding by not melting electrode]. Moscow: Mashinostroenie, 2011, 477 p. 16. Leskov G.I. Elektricheskaia svarochnaia duga [Electric welding arch]. Moscow: Mashinostroenie, 1970, 335 p. 17. Erokhin A.A. Osnovy svarki plavleniem [Welding bases melting]. Moscow: Mashinostroenie, 1973, 448 p. 18. D'iakonov V.P. Spravochnik po algoritmam i programmam na iazyke Beisik dlia personal'nykh EVM [The reference book on algorithms and programs in the BASIC language for personal COMPUTERS]. Moscow: Nauka, 1987, 240 p. 19. Giedt W.H., Tallerico L.N., P.W. Fuersch¬bah. GTA Welding Efficienci. Calorimetric and Temperature Field Measurements. Welding Research Supplement, 1989, no. 1, pp. 28–32. 20. Konovalov A.V. Teoriia svarochnykh protsessov [Theory of welding processes]. Ed. V.M. Nerovnogo. Moscow: Izdatelstvo Moskovskogo gosudarstvennogo tekhnicheskogo universitetata imeni N.E. Baumana, 2007, 752 p. 21. Karkhin V.A. Teplovye protsessy pri svarke [Thermal processes when welding]. Saint-Petersburg: Creation of models of the solution of thermal problems of electron beam welding with fluctuations of the beam Olshanskaya T.V., Fedoseeva E.M. Received: 06.08.2018 Received in revised form: 06.08.2018 Published: 30.09.2018 ![]() Abstract:
In operation the mathematical models developed for the solution of thermal problems in case of electron beam bonding with oscillations of a beam are provided. For creation of thermal models oscillations of a beam along a joint, across and x-shaped to paths are selected. Heat source for welding with oscillations of an electron beam along a joint, across and x-shaped with the given amplitude and taking into account extension of radius of a source of heat on a surface can be provided to paths as combined, continuously acting during a certain interval of time. Models are constructed by an analytical method on the basis of the decision of the task of heat conduction with use of Green functions – method of sources. At the heart of creation of models for welding with oscillations of an electron beam introduction of a combined source of heat consisting from surface and operating on depth is used. The general approach in case of creation of models is that the source operating on a surface increases by r radius concerning the sizes of the second source. The source distributed on depth is located at some distance from a surface on axis Z. For simulation of longitudinal and cross oscillations of a beam the sizes of a combined source of heat increase linearly on the appropriate axes by value of a vibration amplitude. In model superposition of longitudinal and cross oscillations is applied to a x-shaped path. The developed thermal model of electron beam bonding with a x-shaped path can be used for the decision of thermal tasks in relation to circle and elliptic scanning. Such submission of the form of a heat source allows to transfer more precisely the form of pro-melt in case of electron beam bonding with oscillations of a beam. Keywords: mathematical models, a source of heat, fluctuation of an electronic beam, longitudinal fluctuations, cross fluctuations, fluctuations with a x-shaped trajectory, beam oscillation, beam radius, pro-melting depth, electron beam welding. Authors:
Tatyana V. Olshanskaya (Perm, Russian Federation) – Ph.D. in Technical Sciences, associate professor, Department of Welding production, metrology and technology of materials, Perm national research polytechnical university; e-mail: tvo66@mail.ru. Elena M. Fedoseeva (Perm, Russian Federation) – Ph.D. in Technical Sciences, associate professor, Department of Welding production, metrology and technology of materials, Perm national research polytechnical university; e-mail: emfedoseeva@pstu.ru. References: 1. Karlslou G., Eger D. Teploprovodnost' tverdykh tel [Heat conductivity of solid bodies] perevod s angliiskogo. Moscow: Nauka, 1964, 487 p. 2. Iazovskikh V.M. Matematicheskoe modelirovanie i inzhenernye metody rascheta v svarke: v 2 chastiakh. Chast' 2. Teplovye protsessy pri svarke i modelirovanie v pakete MathCad [Mathematical modeling and engineering methods of calculation in welding]. Perm': Izdatel'stvo Permskogo gosudarstvennogo tekhnicheskogo universiteta, 2008, 119 p. 3. Rykalin N.N. Raschety teplovykh protsessov pri svarke [Calculations of thermal processes when welding]. Moscow: Mashgiz, 1951, 296 p. 4. Kniazeva A.G. Teplofizicheskie osnovy sovremennykh vysokotemperaturnykh tekhnologii: uchebnoe posobie [Heatphysical bases of modern high-temperature technologies:]. Tomsk: Izdatel'stvo Tomskogo politekhnicheskogo universiteta, 2009, 357 p. 5. Tsaplin A.I. Teplofizika v metallurgii: uchebnoe posobie [Thermophysics in metallurgy]. Perm': Izdatel'stvo Permskogo gosudarstvennogo tekhnicheskogo universiteta, 2008, 230 p. 6. Rykalin N.N., Uglov A.A., Zuev I.V., Kokora A.N. Lazernaia i elektronno-luchevaia obrabotka materialov: spravochnik [Laser and electron beam processing of materials]. Moscow: Mashinostroenie, 1985, 496 p. 7. Rykalin N.N., Zuev I.V., Uglov A.A. Otsenka glubiny proplavleniia pri elektronno-luchevoi svarke [Pro-melting depth assessment at electron beam welding ]Fizika i khimiia obrabotki materialov, 1972, no. 1, pp. 9–14. 8. Zuev I.V., Rykalin N.N., Uglov A.A. O koleba-niiakh glubiny proplavleniia pri elektronno-luchevoi svarke [About fluctuations of depth of pro-melting at electron beam welding]. Fizika i khimiia obrabotki materialov, 1975, no. 1, pp. 136–141. 9. Ol'shanskaia T.V., Fedoseeva E.M., Koleva E.G. Postroenie teplovykh modelei pri elektronno-luchevoi svarke metodom funktsii Grina [Creation of thermal models at electron beam welding by method of functions of Green]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 2017, vol. 19, no. 3, pp. 49–74. 10. Olshanskaya T.V. Simulation of thermal processes at electron-beam welding with beam splitting. Elektrotechnica&Elektronica E+E, 2016, vol. 51, pp. 92–98. 11. Olshanskaya T.V., Salomatova E.S., Trushnikov D.N. Simulation of thermal processes at electron-beam welding with beam splitting. Global Journal of Pure and Applied Mathematics, 2016, vol. 12(4), pp. 3525–3534. 12. Polianin A.D. Spravochnik po lineinym uravneniiam matematicheskoi fiziki [Reference book on the linear equations of mathematical physics]. Moscow: Fizmatlit, 2001, 576 p. 13. Rykalin N.N., Uglov A.A., Zuev I.V. Osnovy elektronno-luchevoi obrabotki materialov [Bases of electron beam processing of materials]. Moscow: Mashinostroenie, 1978, 239 p. 14. Permiakov G.L., Ol'shanskaia T.V., Belen'kii V.Ia., Trushnikov D.N. Modelirovanie elektronno-luchevoi svarki dlia opredeleniia parametrov svarnykh soedinenii raznorodnykh materialov [Modeling of electron beam welding for determination of parameters of welded compounds of diverse materials]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 2013, vol. 15, no. 4, pp. 48–58. 15. Permiakov G.L., Ol'shanskaia T.V., Belen'kii V.Ia., Trushnikov D.N. Modelirovanie teplovykh protsessov pri elektronno-luchevoi svarke raznorodnykh materialov [Modå-ling of thermal processes at electron beam welding of diverse materials]. Izvestiia Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2013, vol. 15, no. 6(2), pp. 458–463. 16. Permyakov G.L., Olshanskaya T.V., Belenkiy V.Ya., Trushnikov D.N., Krotov L.N. Modeling of electron-beam welding to determine the weld joints parameters of dissimilar materials. Life Science Journal, 2014, vol. 11, no. 4, pp. 300–307. 17. Kaidalov A.A. Elektronno-luchevaia svarka i smezhnye tekhnologii [Electron beam welding and adjacent technologies]. 2nd ed. Kiev: Ekotekhnologiia, 2004, 260 p. 18. Erofeev V.A., Logvinov R.V., Nesterenkov V.M., Ploshikhin V.V. Formirovanie ekvivalentnogo istochnika tep-loty dlia raschetov deformatsii konstruktsii na osnove teoreticheskogo modelirovaniia vozdeistviia elektronnogo lucha na metall [Formation of an equivalent source of warmth for calculations of deformations of designs on the basis of theoretical modeling of impact of an electronic beam on metal]. Izvestiia Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2008, iss. 4, pp. 155–166. 19. Rykalin N.N., Uglov A.A., Zuev I.V. Mekhanizm svarki i obrabotki elektronnym luchom [Mechanism of welding and processing by an electronic beam]. Svarka elektronnym luchom: materialy konferentsii. Moskovskii dom nauchno-tekhnicheskoi propagandy imeni F.E. Dzerzhinskogo. Moscow, 1974, pp. 13–19.
Formation of structure and properties of steel 04ÑR18NI9 at additive production of trainings Shchitsyn Yu.D., Terentyev S.A., Neubybin S.D., Artemov A.O., Belinin D.S. Received: 15.08.2018 Received in revised form: 15.08.2018 Published: 30.09.2018 ![]() Abstract:
Additive technologies (AT) or layer-by-layer synthesis technologies are one of the most dynamically developing areas of "digital" production. The common problem of additive technologies is to ensure the proper microstructure of the synthesized material and eliminate defects. The use of a filler wire as a working material allows to get rid of the problems associated with the low productivity of existing methods, the high cost of the equipment used, the limited types of materials used due to the use of powder systems. The paper presents the results of studying the features of the formation of the structure and properties of 04Cr18Ni9 steel in additive processes, namely, in the case of ÑÌÒ (Ñold Ìåtal Òransfer) surfacing, plasma surfacing with reverse polarity current and plasma surfacing with a consumable electrode (Plasma MIG). Products made of stainless chromium-nickel steels are widely used in a wide variety of industries. The main problem with additive technologies is to ensure the properties of laminates no lower than those obtained by traditional methods. Typical defects of laminates obtained by surfacing are increased porosity, nonmetallic inclusions, reduced plasticity, and for high-alloy steels, loss of special properties. A comparison is made between the structure and mechanical characteristics of materials obtained by SMT surfacing, plasma surfacing by reverse polarity current, and plasma surfacing by a consumable electrode. It is shown that the use of a hybrid method of plasma surfacing by a consumable electrode is promising for additive technologies. It is established that the mechanical characteristics of samples made of 04Õ18Í9 steel obtained by surfacing are not lower than for steel of similar composition in the deformed state. Keywords: additive technologies, ÑÌÒ (Ñold Ìåtal Òransfer) surfacing, multilayer surfacing, plasma surfacing, reverse polarity current, direct polarity current, plasma surfacing by a consumable electrode, high-alloy steels, thermal cycle, metallographic analysis. Authors:
Yuri D. Shitsyn (Perm, Russian Federation) – Doctor of Technical Sciences, Professor, Head, Department of Welding production, metrology and technology materials, Perm National Research Polytechnic University; å-mail: svarka@pstu.ru. Sergei A. Terentyev (Perm, Russian Federation) – Postgraduate student, Department of Welding Engineering and of materials of Construction technology, Perm National Research Polytechnic University; e-mail: svarka@pstu.ru. Sergei D. Neulybin (Perm, Russian Federation) – Postgraduate student, Department of Welding production, metrology and of technology materials, Perm National Research Polytechnic University; å-mail: sn-1991@mail.ru. Arsenii O. Artemov (Perm, Russian Federation) – senior lecturer, Department of Welding production and of technology materials, Perm National Research Polytechnic University; e-mail: svarka@pstu.ru. Dmitri S. Belinin (Perm, Russian Federation) – Ph.D. Technical Sciences, Associate Professor, Department of Welding production, metrology and of technology materials, Perm National Research Polytechnic University; e-mail: 5ly87@mail.ru. References: 1. Morrow W.R., Kim H. Qi, I., Mazumder J., Skerlos S.J. Environmental aspects of laser-based and conventional tool and die manufacturing. Journal Clean Prod., 2007, no. 15, pp. 932–943. 2. Standard terminology for additive manufacturing technologies. ASTM Int 2013; F2792-12a. 3. Ding D.H., Pan Z.X., Cuiuri D., Li H.J. Wirefeed additive manufacturing of metal components: technologies, developments and future interests. Int. J. Adv. Manuf. Technol., 2015, no. 81(1–4), pp. 465–81. 4. Smirnov V.V., Barzali V.V., Ladnov P.V. Perspektivy razvitiia additivnogo proizvodstva v rossiiskoi promyshlennosti. Opyt FGBOU UGATU [The prospects of development of additive production in the Russian industry]. Novosti materialovedeniia. Nauka i tekhnika, 2015, vol. 14, no. 2, pp. 23–27. 5. A. Techel et al. Laser Additive Manufacturing of Turbine Compo-nents, Precisely and Repeatable [Elektronnyi resurs]. Fraunhofer Institute for Material and Beam Technology (IWS), Laser Institute of America. – URL: http://www.lia.org/blog/category/laserinsights-2/laser-additive manufacturing. 6. M.N. Ahsan et. al. A comparison of laser additive manufacturing using gas and plasma-atomized Ti-6Al-4V powders. Innovative Developments in Virtual and Physical Prototyping, London: Taylor & Francis Group, 2012, pp. 108–120. 7. Grigor'iants A.G., Shiganov I.N, Misiurov A.I. Tekhnologicheskie protsessy lazernoi obrabotki [Technological processes of laser processing]. Ed. A.G. Grigor'iantsa. Moscow: Izdatel'stvo Moskovskogo gosudarstvennogo tekhnicheskogo universiteta imeni N.E. Baumana, 2006, 664 p. 8. Sciaky Inc. Electron beam additive manufacturing (EBAM) [Elektronnyi resurs]. – URL: http://www.sciaky. com/images/pdfs/product-sheets/Sciaky-EBAM-echnology.pdf. 9. Jhavar S., Jain N.K., Paul S.P. Development of micro-plasma transferred arc (p-PTA) wire deposition process for additive layer manufacturing applications. Journal of Materials Processing Technology, 2014, vol. 214, no. 5, pp. 1102–1110. 10. E. Louvis et. al. Selective laser melting of aluminium components. Journal of Materials Processing Technology. The University of Liverpool, 2011, vol. 211, pp. 275–284. 11. Almeida P., Williams S. Innovative process model of Ti–6Al–4V additive layer manufacturing using cold metal transfer (CMT). Solid Free. Fabr. Symp., 2010, pp. 25–36. 12. Dwivedi R., Kovacevic R. Automated torch path planning using polygon subdivision for solid freeform fabri-cation based on welding. Journal Manuf. Syst, 2004, vol. 23, no. 4, pp. 278–291. 13. Shchitsyn Iu.D., Kosolapov O.A., Shchitsyn V.Iu. Vozmozhnosti plazmennoi obrabotki metallov tokom obratnoi poliarnosti [Possibilities of plasma processing of metals current of the return polarity]. Svarka. Diagnostika, 2009, no. 2, pp. 42–45. 14. Shitsyn Yu.D., Belinin D.S., Neulybin S.D. Plasma surfacing of high-alloy steel 10cr18ni8ti on low-alloy steel 09mg2si. International Journal of Applied Engineering Research, 2015, vol. 10, no. 20, pp. 41103–41109. 15. Dediukh R.I. Osobennosti protsessa plazmennoi svarki plaviashchimsia elektrodom [Features of process of plasma welding by the melting electrode]. Svarochnoe proizvodstvo, 2014, no. 5, pp. 34–39. 16. Shchitsyn Iu.D. Plazmennye tekhnologii i oborudovanie [Plasma technologies and equipment]. Perm': Izdatel'stvo Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta, 2014, 76 p. 17. Elmer J.W., Allen S.M., Eagar T.W. Microstructur-al development during solidification of stainless steel alloys. Met. Trans., 1989, vol. 20A, pp. 2117–2131. 18. Allan G. Castability solidification mode and residual ferrite distribution in highly alloyed stainless steels. European Commission, EUR 13941-Steelmaking, 1997, 85 p. 19. Build orientation optimization for multipart produc-tion in additive manufacturing / Y. Zhang, A. Bernard, R. Harik, K.P. Karunakaran. Journal of Intelligent Manufacturing, 2015, pp. 34–48. 20. Sajan Kapil, Fisseha Legesse, Pravin Milind Kulkarni, Prathmesh Joshi, Ankit Desai, Karunakaran K.P. Hybrid layered manufacturing using tungsten inert gas cladding. Progress in Additive Manufacturing, 2016, no. 1(1), pp. 79–91. 36NKhTYu alloy to EP517 steel dissimilar welded joints structural strength increase due to optimization of weld seam dimensions Terentyev E.V., Marchenkov A.Yu., Sliva A.P., Goncharov A.L. Received: 15.08.2018 Received in revised form: 15.08.2018 Published: 30.09.2018 ![]() Abstract:
The results of weld seams impact research on dissimilar EP517 steel to 36NKhTYu alloy weld joints strength properties are performed. The electron-beam welding technology features of 6 mm thick plates made of specified materials are described. The results of metallographic studies and mechanical tests of weld joints with various seam widths are presented, which showed that the structure and properties of weld metal do not depend on seam width. Herewith, the tension tests demonstrate a higher ultimate stress of welded joints in comparison with the ultimate stress of weld metal. Moreover, the smaller the joint width, the stronger the welded joint, that is explained by contact hardening phenomenon. In addition, the use of heat treatment after welding allows to further increase the strength properties of the weld joint due to the strengthening γ'-phase formation in weld metal and heat affected zone of the 36NKhTYu alloy. The possibility of increasing the ultimate stress of weld joints up to 93% of the EP517 steel ultimate stress value due to reduction of the seam width.and subsequent heat treatment application is shown. Keywords: electron beam welding, constructional strength, metal seam, strength of weld metal, alloy 36ÍÕÒÞ, steel ÝÏ517, contact hardening, microstructure, indentation, seam parameters. Authors:
Egor V. Terentyev (Moscow, Russian Federation) – Ph.D. in Technical Sciences, associate professor, Department of Technology of metals, National research university "Moscow Power Institute"; e-mail: TerentyevYV@mpei.ru. Artem Yu. Marchenkov (Moscow, Russian Federation) – Ph.D. in Technical Sciences, associate professor, Department of Technology of metals, National research university "Moscow Power Institute"; e-mail: Art-marchenkov@yandex.ru. Andrei P. Sliva (Moscow, Russian Federation) – Ph.D. in Technical Sciences, associate professor, Department of Technology of metals, National research university "Moscow Power Institute"; e-mail: Slivaap@mpei.ru. Alexei L. Goncharov (Moscow, Russian Federation) – Ph.D. in Technical Sciences, associate professor, Department of Associate professor Technology of metals, National research university "Moscow Power Institute"; e-mail: GoncharovAL@mpei.ru. References: 1. Dragunov V.K., Terent'ev E.V., Goncharov A.L., Marchenkov A.Iu. Issledovanie vliianiia skorosti ELS na khimicheskii sostav, strukturu i svoistva svarnykh soedinenii splava D16 [Research of influence of speed of ELS on the chemical composition, structure and properties of welded compounds of D16 alloy]. Svarochnoe proizvodstvo, 2015, no. 12, pp. 17–21. 2. Erofeev V.V., Ignat'ev A.G. Obosnovanie rezhimov elektronno-luchevoi svarki izdelii obolochkovogo tipa iz nagartovannykh splavov AMg6N i AMg6NPP [Justification of the modes of electron beam welding of products of shell type from nagartovanny alloys AMG6N and AMG6NPP]. Vestnik IuUrGU. Mashinostroenie, 2015, vol. 15, no. 4, pp. 53–61. 3. Dragunov V.K., Goncharov A.L., Terent'ev E.V., Marchenkov A.Iu. Sozdanie svarnykh kombinirovannykh konst-ruktsii v energetike: uchebnoe posobie [Creation of the welded combined designs in power]. Ch. 1. Fizicheskie protsessy pri svarke raznorodnykh metallov. Ed. V.K. Dragunova. Moscow: Veche, 2015, 176 p. 4. Shakhmatov M.V., Erofeev V.V., Kovalenko V.V. Tekhnologiia izgotovleniia i rascheta svarnykh obolochek [Manufacturing techniques and calculation of welded covers]. Ufa: Poligrafkombinat, 1999, 272 p. 5. Bakshi O.A., Erofeev V.V., Anisimov Iu.I., Shakhmatov M.V., Iaroslavtsev S.I. Vliianie stepeni mekhanicheskoi neodnorodnosti na staticheskuiu prochnost' svarnykh soedinenii [Influence of degree of mechanical heterogeneity on the static durability of welded connections]. Svarochnoe proizvodstvo, 1983, no. 4, pp. 1. 6. Dil'man V.L., Ostsemin A.A., Eroshkina T.V. Prochnost' mekhanicheski neodnorodnykh svarnykh soedinenii sterzhnei armatury // Vestnik mashinostroeniia. – 2008. – ¹ 9. – S. 13–16. 7. Dil'man V.L., Ostsemin A.A. Napriazhennoe so-stoianie i staticheskaia prochnost' plastichnoi prosloiki pri ploskoi deformatsii [Durability of mechanically non-uniform welded connections of cores of fittings]. Problemy mashinostroeniia i nadezhnosti mashin, 2005, no. 4, pp. 38–48. 8. Aimetov S.F., Aimetov F.G. Prochnost' sty-kovykh svarnykh soedinenii, oslablennykh miagkoi prosloikoi, pri deistvii izgibaiushchei nagruzki [Durability of the butt welded connections weakened by soft layer, at action of the bending loading]. Vestnik Iuzhno-Ural'skogo gosudarstvennogo universiteta. Metallurgiia, 2015, vol. 15, no. 1, pp. 107–112. 9. Paton B.E., Leskov G.I., Nesterenkov V.M. Dinamicheskie modeli kanalov proplavleniia pri elektronno-luchevoi svarke [Dynamic models of channels of pro-melting at electron beam welding]. Avtomaticheskaia svarka, 1988, no. 1, pp. 1–6. 10. Belen'kii V.Ia., Trushnikov D.N., Mladenov G.M., Ol'shanskaia T.V. Osobennosti polucheniia kachestvennykh svarnykh shvov pri elektronno-luchevoi svarke vysokoprochnykh stalei bol'shoi tolshchiny [Features of receiving qualitative welded seams at electron beam welding high-strength staly big thickness]. Avtomaticheskaia svarka, 2012, no. 2(706), pp. 47–50. 11. Dragunov V.K., Sliva A.P., Terentyev E.V., Goncharov A.L., Marchenkov A.Yu., Portnov M.A. EBW technology of combined bandage of high-speed electric machine rotor. 13th International Conference on Electron Beam Welding “E+E”, 2018, vol. 53, no. 5–6, pp. 112–118. 12. Matiunin V.M. Indentirovanie v diagnostike mekhanicheskikh svoistv materialov [Indentirovaniye in diagnostics of mechanical properties of materials]. Moscow: Izdatel'skii dom MEI, 2015, 288 p. 13. Terent'ev E.V., Dragunov V.K., Sliva A.P., Shcherbakov A.V. Vliianie skorosti svarki na formirovanie shva pri ELS so skvoznym proplavleniem [Influence of speed of welding on formation of a seam at ELS with through pro-melting]. Svarochnoe proizvodstvo, 2014, no. 2, pp. 25–29. 14. Terentyev Y.V., Dragunov V.K., Sliva A.P., Scherbakov A.V. Effect of welding speed on weld formation in electron beam welding with continuous penetration . Welding International, 2015, vol. 29, no. 2, pp. 150–154. 15. Dragunov V.K., Terent'ev E.V., Sliva A.P., Goncharov A.L., Marchenkov A.Iu. Opredelenie skorosti svarki pri ELS bol'-shikh tolshchin so skvoznym proplavleniem [Determination of speed of welding at ELS of big thickness with through pro-melting]. Svarochnoe proizvodstvo, 2016, no. 4, pp. 20–25. 16. Dragunov V.K., Terentev E.V., Sliva A.P., Goncharov A.L., Marchenkov A.Y. Determination of welding speed in electron beam welding of thick components with continuous penetration. Welding International, 2017, vol. 31, no. 4, pp. 307–311. 17. Sliva A.P. Povyshenie kachestva svarnykh soedinenii pri ELS s ostsilliatsiei elektronnogo puchka splavov aliuminiia so skvoznym proplavleniem [Improvement of quality of welded connections at ELS with oscillation of an electron beam of alloys of aluminum with through pro-melting]. Elektronno-luchevaia svarka i smezhnye tekhnologii: II mezhdunarodnaia konferentsiia, 2017. Moscow: Izdatel'stvo MEI, 2017, pp. 506–520. 18. Akop'iants K.S. Nesterenkov V.M. Nazarenko O.K. Elektronno-luchevaia svarka stalei tolshchinoi do 60 mm s prodol'nymi kolebaniiami lucha [Electron beam welding with a staly thickness up to 60 mm with longitudinal fluctuations of a beam]. Avtomaticheskaia svarka, 2002, no. 9, pp. 3–5. 19. Berg V.I., Chekardovskii M.N., Iakubovskaia S.V., Toropov V.S. Vliianie neodnorodnosti mekhanicheskikh svoistv razlichnykh zon svarnogo stykovogo soedineniia na rabotu soedineniia v uprugoplasticheskoi stadii deformatsii [Influence of heterogeneity of mechanical properties of various zones of welded butt connection on work of connection in an elasto-plastic stage of deformation]. Sovremennye problemy nauki i obrazovaniia, 2015, no. 2–3, pp. 28. 20. Bakshi O.A. Ob uchete faktora mekhanicheskoi neodnorodnosti svarnykh soedinenii pri ispytanii na rastia-zhenie [About accounting of a factor of mechanical heterogeneity of welded connections at test on stretching]. Svarochnoe proizvodstvo, 1985, no. 7, pp. 32–34. Identification of potassium fluorophylate of the tested batch for compliance with the standard Yudin M.V., Ignatova A.M., Ignatov M.N. Received: 15.08.2018 Received in revised form: 15.08.2018 Published: 30.09.2018 ![]() Abstract:
To develop pilot production into serial production, it is necessary to identify the material-science characteristics of the potassium-phlogopite material for compliance with the technological regulations. For this, raster electron microscopy was used with X-ray spectral microprobe analysis, petrographic, X-ray phase and silicate analyzes. In the course of petrographic analysis, refractive indices, the nature of cleavage and the general interference of light were determined. Additionally, the morphometric parameters of the structural components were evaluated by the image analysis method. As a result, the following attributes of potassium fluorophilic acid have been identified: refractive indices equal to 1.597 and 1.550; perfect cleavage - ((001), parallel bands along the grains, interference of 2-3 orders of magnitude (multisyllabic color transitions on the photo), change in color when moving the microscope stage. It is established that the morphometric characteristics of the components vary in size, but the proportional structure of the components is preserved, as evidenced by the stable value of the sphericity coefficient. Using the methods of scanning electron microscopy and microprobe X-ray spectral analysis, the structure of the microstructure and the elemental composition of the individual constituents were established. A joint analysis of X-ray diffraction and silicate analysis revealed that the composition of sample material, %: SiO2 - 39.00-41.10; TiO2 - 0.04-0.06; Al2O3 - 9.00-9.70; Fe2O3 (total) - 0.05-0.15; P2O5 no more than 0,01, Na2O - 0,04-0,47; K2O - 7.20-8.90; CaO - 0.80-3.20; MgO - 27.2-29.2;
5.0-7.0 %, glass-phase - 5.1-7.2 %. Samples of potassium fluorophlogopite have been identified meet the requirements of the technological regulations of the enterprise and correspond to TU 5714-489-05785388. Keywords: fluorophlogopite, sludkrystalline material, stone casting, petrology, production organization, silicate analysis, image analysis, structure morphology, pilot production, petrographic analysis. Authors:
Maxim V. Yudin (Berezniki, Russian Federation) – Postgraduate Student, Deputy Director for Fluorophilic Casting, LLC "AVISMA-Spetsremont"; e-mail: yudinmax1313@yandex.ru. Anna M. Ignatova (Perm, Russian Federation) – Ph.D. in Technical Sciences, Leading Researcher, Occupational Safety Institute, production and human, Perm National Research Polytechnic University; e-mail: anutapages@gmail.com. Mikhail N. Ignatov (Perm, Russian Federation) – Doctor of Technical Sciences, Professor, Department of Welding Engineering and of materials of construction technology, Perm National Research Polytechnic University; e-mail: iampstu@gmail.com. References:
Peculiar properties of the equipment maintenance and repair approaches in continuous production Ivanov V.A., Feshchenko A.A. Received: 26.06.2018 Received in revised form: 26.06.2018 Published: 30.09.2018 ![]() Abstract:
Continuous production process has a number of peculiar properties that affect the organization of technological equipment maintenance and repair aimed to the most efficient using of the allotted time for service, that is, the required number of equipment maintenance and repair with the required quality. Reducing the time between shutdown and start-up of the production process without loss of work quality and quantity helps to reduce the lost profit as an unprocessed products during downtime. The purpose of the work is to conduct an analytical review of maintenance and repair of technological equipment approaches in continuous production taking into account its features. The analysis of the organization features of continuous production was carried out and three organizational approaches of the equipment maintenance and repair in continuous production were considered to achieve this purpose: preventive maintenance, repair based on the actual condition, Run-to-Failure Maintenance. Continuous production is characterized by process accuracy, production system interconnection, the presence of powerful substances and energy flows, automation, downtime high cost, the technological line and its components specialization, assessing complexity of the changes efficiency in the technical complex components, continuous, periodic and random operations presence, flows synchronization, territorial localization. The described continuous production features are technological and organizational constraints, therefore the maintenance system should be flexible, taking into account the continuous production features and adaptive to emerging situations, using the various considered approaches principles. Keywords: continuous production, MRO, maintenance, repair, diagnostics, preventive maintenanceá equipment, quality, condition, effectiveness, peculiar. Authors:
Vladimir A. Ivanov (Perm, Russian Federation) – Doctor of Technical Sciences, Professor, Department of Welding Production, Metrology and Technology of Materials, Perm National Research Polytechnic University; Alexander A. Feshchenko (Perm, Russian Federation) – postgraduate student, Department of Welding Production, Metrology and Technology of Materials, Perm National Research Polytechnic University; e-mail: feshchenko_alexander@mail.ru. References: 1. Antseva N.V. Upravlenie kachestvom tekhnicheskogo obsluzhivaniia i remonta metalloobrabatyvaiushchego oborudovaniia s periodicheskim kontrolem sostoianiia [Quality management of maintenance and repair of the metalworking equipment with periodic control of a state]. Ph.D. thesis. Tula, 2008, 20 p. 2. Noritsyn I.A., Shekhter V.Ia., Mansurov M.A. Proektirovanie kuznechnykh i kholodnoshtampovykh tsekhov i zavodov [Design of forge and holodnoshtampovy shops and plants]. Moscow: Vysshaia shkola, 1977, 428 p. 3. Danilova S.Iu. Modelirovanie transportno-logisticheskoi sistemy khimicheskikh predpriiatii s nepreryvnym tsiklom proizvodstva [Modeling of a transport and logistics system of the chemical companies with a continuous cycle of production]: Ph.D. thesis. Tol'iatti, 2015, 203 p. 4. Kudinov A.V., Markov N.G. Ob effektivnosti vnedreniia MES dlia nepreryvnykh proizvodstv [About efficiency of introduction of MES for process productions]. Avtomatizatsiia v promyshlennosti, 2013, no. 1, pp. 23–28. 5. Levin M.A. Upravlenie obsluzhivaniem oborudovaniia predpriiatii otraslei promyshlennosti s setevoi tekhnologiei nepreryvnogo proizvodstva [Management of equipment maintenance of the enterprises of industries with network technology of process production]. Ph.D. thesis. Moscow, 2005, 27 p. 6. Popov A.V., Seregin S.N., Metelkin M.N. Po-vyshenie effektivnosti remontov i tekhnicheskogo obslu-zhivaniia [Increase in efficiency of repairs and maintenance]. Materialy XII Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem, 2015, vol. II, no. 1, pp. 255–262. 7. Grishin A.I. Razrabotka metoda sovershenstvovaniia SMK proizvodstvennogo predpriiatiia v chasti protsessov tekhnicheskogo obsluzhivaniia tekhnologicheskogo oborudovaniia [Development of a method of improvement of SMK of manufacturing enterprise regarding processes of maintenance of processing equipment]. Ph.D. thesis. Moscow, 2013, 187 p. 8. Pronikov A.S. Parametricheskaia nadezhnost' mashin [Parametrical reliability of cars]. Moscow: Izdatel'stvo Moskovskogo gosudarstvennogo tekhnicheskogo universiteta imeni N.E. Baumana, 2002, 560 p. 9. Tipovaia skhema tekhnicheskogo obsluzhivaniia i remonta metallo- i derevoobrabatyvaiushchego oborudovaniia [Standard scheme of maintenance and repair metallo-and woodworking equipment]. Ed. V.N. Kliagina, F.S. Sabirova. Moscow: Mashinostroenie, 1988, 672 p. 10. Bondarenko E.V., Keian E.G., Khasanov R.Kh. Tekhnicheskaia ekspluatatsiia i remont tekhnologicheskogo oborudovaniia: uchebnoe posobie [Technical operation and repair of processing equipment]. Ed. R.S. Faskieva. Orenburgskii gosudarstvennyi universitet, 2011, 261 p. 11. Samsonov A.M. Planovo-predupreditel'nyi remont oborudovaniia – predposylka kachestva izdelii mashinostroeniia [Scheduled preventive maintenance of the equipment – a prerequisite of quality of products of mechanical engineering]. Standarty i kachestvo, 2006, no. 10, pp. 58–62. 12. Tomazova O.V. Formirovanie sistemy tekhnicheskogo obsluzhivaniia i remonta po fakticheskomu sostoianiiu neftianogo oborudovaniia [Formation of system of maintenance and repair on actual state of the oil equipment]. Voprosy ekonomiki i prava, 2012, no. 6, pp. 55–59. 13. Malev I.V. Upravlenie tekhnicheskim obsluzhivaniem i remontom oborudovaniia prokatnogo proizvodstva [Management of maintenance and repair of the equipment of rolling production]. Ph.D. thesis. Cheliabinsk, 2005, 21 p. 14. Sivakov V.P. Razrabotka kontseptsii tekhnicheskogo obsluzhivaniia oborudovaniia proizvodstva tselliulozy na osnove vibratsionnogo diagnostirovaniia [Development of the concept of maintenance of the equipment of production of cellulose on the basis of vibration diagnosing]. Ph.D. thesis. Ekaterinburg, 2004, 46 p. 15. Sannikov A.A. O metodakh prognozirovaniia 16. Tokmachev A.E. Obosnovanie sistemy TOiR po fakticheskomu sostoianiiu s primeneniem metodov tekhnicheskogo diagnostirovaniia [Justification of the TOIR system on actual state with application of methods of technical diagnosing]. Sovershenstvovanie metodologii poznaniia v tseliakh razvitiia nauki, 2018, no. 1, pp. 47–50. 17. Usmanov R.R., Asudullin A.I., Agliullin I.Iu. Povyshenie effektivnosti tekhnicheskogo obsluzhivaniia i tekushchego remonta oborudovaniia gazoraspredelitel'nykh stantsii na primere opyta OOO «Gazprom transgaz Ufa» [Increase in efficiency of maintenance and maintenance of the equipment of gas distribution stations on the example of 18. Gerike B.L., Abramov I.L., Gerike P.B. Strategiia tekhnicheskogo obsluzhivaniia gornykh mashin po fakticheskomu sostoianiiu na osnove metodov vibrodiagnostiki i nerazrushaiushchego kontrolia [The strategy of maintenance of mining machines on actual state on the basis of methods of vibration diagnostics and nondestructive control]. Vestnik Kuzbasskogo gos-udarstvennogo tekhnicheskogo universiteta, 2008, no. 1(65), pp. 11–14. 19. Zagorodnii A.D. Obespechenie perekhoda na obsluzhivanie po fakticheskomu tekhnicheskomu sostoianiiu za schet primeneniia kompleksa mer po zashchite, monitoringu i diagnostike [Ensuring transition to service on the actual technical condition due to application of a package of measures for protection, monitoring and diagnostics]. Khimicheskaia tekhnika, 2010, no. 8, pp. 32–37. 20. Iashchura A.I. Sistema tekhnicheskogo obsluzhivaniia i remonta obshchepromyshlennogo oborudovaniia [System of maintenance and repair of the common industrial equipment]. Moscow: Enas, 2008, 360 p. Advanced technologies for additive manufacturing of metal product Oskolkov A.A., Matveev E.V., Bezukladnikov I.I., Trushnikov D.N., Krotova E.L. Received: 13.08.2018 Received in revised form: 13.08.2018 Published: 30.09.2018 ![]() Abstract:
In this article, the most effective technologies for the additive manufacturing of metal products, using the methods of layer-by-layer deposition of the material are considered. The principles of operation of such technologies as GMAW, GTAW, PAW, CMT, DMD, LBDMD, EBAM, FDM are described. A summary table of key characteristics of these processes and their comparative analysis are presented. The advantages and disadvantages of these methods, main applications and development tendencies are revealed. The most promising direction of development of technologies for creating metal products by the method of layer-by-layer deposition of the material is determined. It is concluded that FDM technology has not fully revealed its potential due to a wide range of technical problems. Current research is considered aimed at overcoming existing technological barriers that impede the development of FDM 3D printing technology. The range of issues to be solved for the successful manufacture of metal products using this technology is considered. Hypotheses and ways of solving problems are being put forward. Prospects of this technology are considered, as well as an assessment of its utility in production and for society. The initial stage of development by the scientific team of Perm National Research Polytechnic University of a more mobile and easily accessible technology for printing metal products of complex geometric shapes based on FDM technology of 3D printing is presented. A number of technical solutions have been described that allow to avoid or solve existing problems and limitations in this area. For example, heating the hot-end of the extruder to 1000 ° C for several tens of seconds and previously impossible rapid and accurate temperature control, which allows to fully control the extrusion process of the material. Keywords: Additive manufacturing, FDM, 3D printing, WAAM, GMAW, PAW, CMT, DMD, LBDMD, EBAM, induction heating, electromagnetic induction, ultrasound. Authors:
Alexander A. Oskolkov (Perm, Russian Federation) – postgraduate student, Department of Welding Production, Metrology and Technology of Materials, Perm National Research Polytechnic University; e-mail: oskolkov.w@ yandex.ru. Evgenii V. Matveev (Perm, Russian Federation) – postgraduate student, Department of Welding Production, Metrology and Technology of Materials, Perm National Research Polytechnic University; e-mail: zhenyamatveev@ yandex.ru. Igor I. Bezukladnikov (Perm, Russian Federation) – Ph.D. in Engineering Sciences, Associate Professor, Department of Automation and telemechanics, Perm National Research Polytechnic University; e-mail: corrector@at.pstu.ru. Dmitrii N. Trushnikov (Perm, Russian Federation) – Ph.D. in Engineering Sciences, Professor, Department of Welding Production, Metrology and Technology of Materials, Perm National Research Polytechnic University; e-mail: trdimitr@yadex.ru. Elena L. Krotova (Perm, Russian Federation) – Ph.D. in Physical and Mathematical Sciences, Associate Professor, Department of Higher mathematics, Perm National Research Polytechnic University; e-mail: lenkakrotova@yandex.ru. References: 1. D. Ding et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. International Journal of Advanced Manufacturing Technology, 2015, vol. 811, no. 4, pp. 465–481.
2. A. Addison, J. Ding, F. Martina, H. Lockett, S. Wil-liams Manufacture of complex titanium parts using wire + arc additive manufacture 2. As Deposited Mechanical
Properties, Titan. Eur., 2015. URL: httpt://cdn.ymaws.
com/titanium.org/resource/resmgr/AddisonAdrianTiEU2015- 3DAddi.pdf (accessed 21 August 2017).
3. Bonaccorso F., Cantelli L., Muscato G. Arc welding control for shaped metal deposition process. IFAC Proceed-ings Volumes, 2011, vol. 44, pp. 11636–11641.
4. D. Ding et al. Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part. Comput Aided Des., 2016, no. 73, pp. 66–75.
5. X. Xiong et al. Metal direct prototyping by using hybrid plasma deposition and milling. Journal Mater Process Technol., 2009, no. 209, pp. 124–130.
6. H. Wang, W. Jiang, M. Valant, R. Kovacevic. Micro plasma powder deposition as a new solid freeform fabrication process. Proceedings of the Institution of Mechanical Engineers, 2003, no. 217, pp. 1641–1650.
7. Jhavar S., Jain N., Paul C. Development of micro-plasma transferred arc (μ-pta) wire deposition process for additive layer manufacturing application. Journal of Mate¬rials Processing Technology, 2014, vol. 214, no. 5, pp. 1102–1110.
8. Jhavar S., Jain N. Development of micro-plasma wire deposition process for layered manufacturing. Daaam international scientific book, 2014, no. 20, pp. 239–256.
9. F. Martina, J. Mehnen, S.W. Williams, P. Colegro¬ve, F. Wang. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti–6al–4v.
Journal Mater. Process. Technol, 2012, vol. 212, no. 6, pp. 1377–1386.
10. S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, P. Colegrove. Wire arc additive manufacturing. Materials Science and Technology, 2015, vol. 32, iss. 7, pp. 641–647.
11. Fronius CMT. URL: http://tctena.ru/texnologii/ cmt (accessed 21 August 2017).
12. Fronius CMT. URL: https://www.fronius.com/cps/ rde/xchg/SID-2BF524E9-50258D/fronius_international/hs.xsl/79_17482_ENG_HTML.htm (accessed 21 August 2017).
13. J. Gu, B. Cong, J. Ding, S.W. Williams, Y. Zhai. Wire+arc additive manufacturing of aluminium. Proc. 25th Int. Solid Freeform Fabrication Symp., August 2014. Uni-versity of Texas, 451–458. Dutta. Additive Manufacturing by Direct Metal Deposition. Advanced Materials & Processes, 2011, pp. 33–36.
14. Prado-Cerqueira J.L., Diéguez J.L., Camacho A.M. Preliminary development of a wire and arc additive manu-facturing system (WAAM). Procedia Manufacturing, 2017, no. 13, pp. 895–902.
15. Cong B., Ding J., Williams S.W. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al–6.3%Cu alloy. Journal Adv. Manuf. Technol., 2015, no. 76, pp. 1593–1606.
16. Dutta. Additive manufacturing by direct metal deposition. Advanced materials & processes, 2011, pp. 33–36.
17. L. Thivillon, P. Bertrand, B. Laget, I. Smurov.
Potential of direct metal deposition technology for manufac-turing thick functionally graded coatings and parts for reactors components. Journal Nucl. Mater., 2009, vol. 385, no. 2, pp. 236–241.
18. Yan J., Battiato I., Fadel G. Planning the process parameters during direct metal deposition of functionally graded thin-walled parts based on a 2D model. Proceedings of the Solid Freeform Fabrication Symposium. Austin, 2016, pp. 185–186.
19. Ding Y., Dwivedi R., Kovacevic R. Process plan-ning for 8-axis robotized laser-based direct metal deposition (LBDMD) system: a case on building revolved parts. Robot-ics and Computer-Intergrated Manufacturing, 2017, no. 44, pp. 67–76.
20. Ding Y., Warton J., Kovacevic R. Development
of sensing and control system for robotized laser-based direct metal addition system. Addit. Manuf., 2016, no. 10, pp. 24–35.
21. Ding Y., Kovacevic R. Feasibility study on 3-d printing of metallic structural materials with robotized laser-based metal additive manufacturing. JOM, 2016, pp. 1–6.
22. Zeković S., Kovacević R. Modeling of laser-based direct metal deposition. Tribology in industry, 2006, vol. 28, no. 1, 2, pp. 9–14.
23. Additivnye tekhnologii [Additive technologies]. URL: http://additivemanufacturing.com/2015/10/14/ electron-beam-additive-manufacturing-ebam-advantages-of-wire-am-vs-powder-am/ (accessed 21 August 2017).
24. Sciaky: ‘Sciaky's metal additive manufacturing. URL: http://www.sciaky.com/ documents/Sciaky_Direct_ Manufacturing.pdf. (accessed 16 June 2017).
25. Cheng B., Chou K. Geometric consideration of support structures in part overhang fabrications by electron beam additive manufacturing. Computer-Aided Design, 2015, no. 69, pp. 102–111.
26. Baufeld B. Electron Beam Additive Manufactu¬ring at the Nuclear AMRC. Elektronika ir Elektrotechnika, 2016, vol. 22, no. 5–6, pp. 7–13.
27. Kompaniia The Virtual Foundry. URL: https:// www.thevirtualfoundry.com/ (accessed 30 August 2017).
28. Sait razrabotchika [website of the developer]. URL: http://diy3dprinting.blogspot.com/2015/03/making-induction-heated-extruder.html (actssed 26 August 2017).
29. Tan W.S. Proof of concept: application of induction heating to 3D print low melting point metal alloy:
final project summary report 2015. UNSW@ADFA, 2015,
pp. 1–13.
30. Sebko V.V. Beskontaktnyi kompleksnyi mnogo-parametrovyi vikhretokovyi kontrol' obraztsov slaboferromagnitnykh i ferromagnitnykh zhidkikh sred [Non-contact complex multiparameter vikhretokovy control of samples of slaboferromagnitny and ferromagnetic liquid environments]. Elektrotekhn³ka ³ Elektromekhan³ka, 2011, no. 1, pp. 53–57.
31. Sebko V.V. Vikhretokovyi mnogoparametrovyi metod kontrolia ploskikh izdelii aviatsionnogo oborudovaniia [Vikhretokovy multiparameter control method
of flat articles of the aviation equipment]. Aviatsionno-kos-micheskaia tekhnika i tekhnologiia, 2010, no. 5, pp. 83–90.
32. Sebko V.V. Vozdeistvie temperatury na magnitnuiu pronitsaemost' i udel'noe elektricheskoe soprotivlenie tsilindricheskogo izdeliia [Impact of temperature on magnetic permeability and specific electric resistance of a cylindrical product]. Elektrotekhn³ka ³ Elektromekhan³ka, 2003, no. 3, pp. 44–47.
33. Singh R., Singh S. Process capability analysis of MMC prepared by combining FDM, vacuum moulding and stir casting. Asian J. Eng. Appl. Technol., 2013, vol. 2, no. 2, pp. 69–72.
Investigation of secondary emission signals from the impact zone of the laser beam during laser beam welding in vacuum Letyagin I.Yu., Belenkiy V.Ya., Trushnikov D.N., Shengyong Pang, Lyamin Ya.V. Received: 15.08.2018 Received in revised form: 15.08.2018 Published: 30.09.2018 ![]() Abstract:
Development and improvement of laser equipment used for welding, makes it possible to increase the proportion of laser welding processes. This is necessary to obtain high-quality connections. There is a problem of absorbing of part of the laser beam power by a plasma cloud during laser welding with deep penetration. The problem can be solved by using laser welding in a vacuum. Laser welding in vacuum makes it possible to obtain much more penetration depth at the same power of the laser beam as compared to laser welding in a protective gas environment. Laser welding in vacuum also provides effective protection of the welding zone from the external environment, which is especially important when welding active metals. It is necessary to study the processes in a plasma cloud formed above the zone of action of a laser beam on a metal. The study of secondary emission processes in the plasma in the zone of action of a laser beam on a metal in a vacuum made it possible to carry out a numerical simulation of processes in laser welding, depending on the focusing of the laser beam and other technological parameters of laser welding in vacuum. In the course of the study, a secondary emission current was recorded in order to control the geometric parameters of penetration during laser welding. Varying the pressure in the vacuum chamber confirmed the collisional mechanism of damping of secondary-emission current oscillations. Register secondary emission of the ion current signal is of particular interest because the parameters recorded signal is not related to the excitation of plasma oscillations. Conse- quently, the magnitude of the ion current directly reflects the fluctuations in the density of metal vapors flowing out of the channel. This technique can be used in the construction of methods for the operational control of the welding process. Êëþ÷åâûå ñëîâà: laser welding in vacuum, numerical simulation, plasma, welding zone, electron current, ion current, secondary-emission signal, amplitude-time characteristics, autooscillatory processes, plasma cloud above the laser welding zone, spectrum of oscillations of the secondary emission current, operational control of penetration. Authors:
Igor Yu. Letyagin (Perm, Russian Federation) – Ph.D. in Technical Sciences, Associate Professor, Department of Welding Production, Metrology and Technology of Materials, Perm National Research Polytechnic University; e-mail: letyagin@pstu.ru. Dmitrii N. Trushnikov (Perm, Russian Federation) – Doctor of Technical Sciences, Professor, Department of Welding Production, Metrology and Technology of Materials, Perm National Research Polytechnic University; e-mail: trdimitr@yandex.ru Vladimir Ya. Belenkió (Perm, Russian Federation) – Doctor of Technical Sciences, Professor, Department of Welding Production, Metrology and Technology of Materials, Perm National Research Polytechnic University; e-mail: vladimirbelenkij@yandex.ru. Shengyong Pang (Wuhan, China) – Ph.D. in Material Processing Engineering, Associate Professor, State Key Laboratory of Material Processing and Die & Mould Technology, Director, Computational Welding Process Design Laboratory at Huazhong University of Science and Technology; e-mail: spang@hust.edu.cn. Yakov V. Lyamin (Perm, Russian Federation) – Ph.D. in Technical Sciences, Associate Professor, Department of Welding Production, Metrology and Technology of Materials, Perm National Research Polytechnic University; e-mail: yakov_lyamin@mail.ru. References: 1. Vedenov A.A., Gladush G.G. Fizicheskie protsessy pri lazernoi obrabotke materialov [Physical processes at laser processing of materials]. Moscow: Energoatomizdat, 1985, 208 p. 2. Grigor'iants A.G. Osnovy lazernoi obrabotki materialov [Bases of laser processing of materials]. Moscow: Mashinostroenie, 1989, 304 p. 3. Vinogradov B.A., Gavrilenko V.N., Libenson M.N. Teoreticheskie osnovy vozdeistviia lazernogo izlucheniia na materialy [Theoretical bases of impact of laser radiation on materials]. Blagoveshchensk: Izdatelstvo BPI, 1993, 344 p. 4. Zuev I.V. Obrabotka materialov kontsentrirovannymi potokami energii [Processing of materials the concentrated energy streams]. Moscow: Izdatel'stvo MPEI, 1997, 437 p. 5. Mirkin L.I. Fizicheskie osnovy obrabotki materialov luchami lazera [Physical bases of processing of materials laser beams]. Moscow: Izdatel'stvo Moskovskogo gosudarstvennogo universiteta, 1975, 383 p. 6. Letiagin I.Iu. Tekhnologicheskie perspektivy lazernoi svarki v vakuume [The technological prospects of laser welding in a vacuum]. Svarka i rodstvennye tekhnologii: materialy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, 22–23 noiabria 2016. Ekaterinburg, 2016, pp. 6–7. 7. Belen'kii V.Ia., Trushnikov D.N., Letiagin I.Iu. Lazernaia svarka v vakuume – perspektivnaia svarochnaia tekhnologiia izgotovleniia izdelii otvetstvennogo naznacheniia [Laser welding in a vacuum – perspective welding manufacturing techniques of products of responsible appointment]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 2014, vol. 16, iss. 4, pp. 71–81. 8. Letyagin I.Yu., Belenkiy V.Ya., Trushnikov D.N. Benefits and prospects of laser welding application in vacuum. IV Sino-Russian ASRTU Symposium on Advanced Materials and Processing Technology (2016): ASRTU conf. proc. Knowledge E Engaging minds. – Dubai: Knowledge E, 2016, vol. 2016, pp. 90–94. URL: http://knepublishing.com/ index.php/KnE-aterials/article/view/ 568/1818. 9. Belen'kii V.Ia., Trushnikov D.N. Issledovanie formirovaniia signala vtorichnogo toka v plazme pri elektronno-luchevoi svarke s ostsilliatsiei elektronnogo puchka [A research of formation of a signal of secondary current in plasma at electron beam welding with oscillation of an electron beam]. Svarochnoe proizvodstvo, 2012, no. 11, pp. 9–13. 10. Boiko V.A. Rentgenovskaia spektroskopiia lazernoi plazmy / [X-ray spectroscopy of laser plasma]. Itogi nauki i tekhniki. Radiotekhnika, 1980, vol. 27, 264 p. 11. Trushnikov D.N., Belenkiy V.Ya., Salomatova E.S. Formation of a secondary current signal in electron beam welding of dissimilar materials. Global Journal of Pure and Applied Mathematics, 2016, vol. 12, no. 1, pp. 657–676. 12. Letyagin I.Yu., Trushnikov D.N., Belenkiy V.Ya. The studies of plasma torch processes by laser beam wel-ding. Mechanical Engineering: materials science and civil engineering, 19–20 November, 2016. Ed. J. Zhao; Trans Tech. Publications Inc., 2017, vol. 893, pp. 1662–9752. 13. Lieberman M.A., Lichtenberg A.J. Principles of plasma discharges and materials processing. MRS Bulletin, 1994, vol. 30, pp. 899–901. 14. Gureev D.M., Iamshchikov S.V. Osnovy fiziki lazerov i lazernoi obrabotki materialov: uchebnoe posobie [Fundamentals of physics of lasers and laser processing of materials]. Samarskii universitet, Samara, 2001, 392 p. 15. Trushnikov D.N., Mladenov G.M. Numerical model of the plasma formation at electron beam welding. Journal of Applied Physics, 2015, ol. 117, no. 1, pp. 013301. 16. Trushnikov D.N., Belenkiy V.Ya., Portnov N.S. Secondary – emission signal for weld formation monitoring and control in electron beam welding (EBW). Material wissenschaft und Werkstofftechnik, 2012, vol. 43, no. 10, pp. 892–897. 17. Trushnikov D.N. Izuchenie fizicheskikh protsessov pri elektronno-luchevoi svarke po parametram vtorichnogo toka v plazme [Studying of physical processes at electron beam welding in parameters of secondary current in plasma]. Fizika i khimiia obrabotki materialov, 2015, no. 5, pp. 36–45. 18. Mladenov G.M., Koleva E.G., Varushkin S.V., Trushnikov D.N., Belenkiy V.Y. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding, 2014, vol. 4, iss. 4, pp. 1–10. 19. Ianchuk L.M., Zuev I.V., Uglov A.A. O vliianii stepeni zaglubleniia fokusa materiala na parametry proplavleniia pri elektronno-luchevoi svarke [About influence of extent of deepening of focus of material on pro-melting parameters at an electron beam svark]. Svarochnoe proizvodstvo, 1974, no. 12, pp. 3–4. 20. Letiagin I.Iu., Fedoseeva E.M. Otsenka skvoznogo proplavleniia pri lazernoi svarke na osnove registratsii plazmennogo fakela [Assessment of through pro-melting at laser welding on the basis of registration of a plasma torch]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 2016, vol. 18, iss. 1, pp. 84–100.
| ||