В.В. Черняев

Пермский национальный исследовательский политехнический университет

ИССЛЕДОВАНИЕ ВЛИЯНИЯ РЕОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК НА ПРОЦЕСС ЭКСТРУЗИИ ПОЛИМЕРОВ

Представлена математическая модель и проведено численное исследование зависимости процесса экструзии полимеров от реологических параметров перерабатываемого материала.

При выборе и совершенствовании технологических режимов переработки полимеров важно знать и учитывать влияние реологических характеристик перерабатываемого материала на процесс экструзии. Большинство расплавов полимеров, являясь сложными реологическими системами, способно к развитию одновременно трех видов деформации: мгновенной упругой, высокоэластической и пластической. Однако в червячных экструдерах течение полимеров как правило происходит при стационарных режимах и в каналах с плавно изменяющейся геометрией, поэтому эффект упругости не будет оказывать сколько-нибудь заметного влияния на характер течения, и при рассмотрении процессов тепломассопереноса можно ограничиться рассмотрением только вязких свойств полимеров [1, 2].

При этом следует учитывать, что в ходе экструзии происходит плавление гранул полимера с образованием бассейна расплава. Поэтому анализ процессов, протекающих в канале, требует рассмотрения наряду с уравнением энергии и уравнений гидродинамики.

С учетом вышеизложенного система уравнений, описывающих движение и фазовые превращения к канале экструдера, примет вид:

в твердой фазе

$$C_{s}\rho_{s}V_{p}\frac{\partial T}{\partial z} = \frac{\partial}{\partial x}\left(\lambda_{s}\frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y}\left(\lambda_{s}\frac{\partial T}{\partial y}\right),\tag{1}$$

где ρ_s , C_s , λ_s — соответственно плотность, теплоемкость и коэффициент теплопроводности твердого полимера; V_p — скорость пробки гранул;

в расплаве полимера:

уравнение сплошности:

$$\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} = 0, \tag{2}$$

уравнения движения:

$$\rho_{m}\left(V_{x}\frac{\partial V_{x}}{\partial x}+V_{y}\frac{\partial V_{x}}{\partial y}\right)=-\frac{\partial P}{\partial x}+2\frac{\partial}{\partial x}\left(\mu_{3}\frac{\partial V_{x}}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu_{3}\left(\frac{\partial V_{x}}{\partial y}+\frac{\partial V_{y}}{\partial x}\right)\right), \quad (3)$$

$$\rho_{m}\left(V_{x}\frac{\partial V_{y}}{\partial x}+V_{y}\frac{\partial V_{y}}{\partial y}\right)=-\frac{\partial P}{\partial y}+2\frac{\partial}{\partial y}\left(\mu_{3}\frac{\partial V_{y}}{\partial y}\right)+\frac{\partial}{\partial x}\left(\mu_{3}\left(\frac{\partial V_{x}}{\partial y}+\frac{\partial V_{y}}{\partial x}\right)\right), \quad (4)$$

$$\rho_{m}\left(V_{x}\frac{\partial V_{z}}{\partial x}+V_{y}\frac{\partial V_{z}}{\partial y}\right)=-\frac{\partial P}{\partial z}+\frac{\partial}{\partial x}\left(\mu_{3}\frac{\partial V_{z}}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu_{3}\frac{\partial V_{z}}{\partial y}\right),\tag{5}$$

уравнение энергии:

$$\rho_{m}C_{m}\left(V_{z_{m}}\frac{\partial T}{\partial z}+V_{x}\frac{\partial T}{\partial x}+V_{y}\frac{\partial T}{\partial y}\right)=\frac{\partial}{\partial x}\left(\lambda_{m}\frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(\lambda_{m}\frac{\partial T}{\partial y}\right)+\mu_{3}F,\quad(6)$$

где ρ_m , C_m , λ_m — соответственно плотность, теплоемкость и коэффициент теплопроводности расплава полимера; V_x , V_y , V_z — компоненты скорости движения расплава полимера; T — температура; P — давление; F — функция диссипации; $\mu_{\mathfrak{g}}$ — эффективная вязкость, являющаяся функцией скорости сдвига и температуры и определяющаяся степенным законом [1]:

$$\mu_{9} = \mu_{0} \exp(-\beta (T - T_{0})) \left(\frac{I_{2}}{2}\right)^{\frac{(n-1)}{2}}.$$
 (7)

В формуле (7) I_2 — второй инвариант тензора скоростей деформации; μ_0 — вязкость при $I_2/2=1$ и $T=T_0$ (начальная вязкость); β — температурный коэффициент вязкости; n — степень отклонения свойств данной жидкости от свойств ньютоновской жидкости (показатель аномалии вязкости).

Для исследования были выбраны шнеки как с классической, так и с барьерной геометрией (МЕ-90, Бар) [3]. Реализация математической модели и подтверждение адекватности описаны в [4].

Полученные результаты представлены на рисунке и в таблице, где $l_{_{3,\Pi}}$ — длина зоны плавления, $P_{_{\rm BЫX}}$ — давление и $T_{_{\rm BЫX}}$ — средняя температура материала на выходе, $V_{_{\Pi}}$ — скорость пробки в конце зоны плавления.

Зависимость параметров экструзии от реологических характеристик

No	Папаметп	Величина	Шнек		
	Параметр	Беличина	Бар	ME-90	Классический
1	$\mu_0 = 25\ 000,\ \Pi a^{\circ} c$	$l_{_{3,\Pi}}$, вит.	20,50	21,90	21,90
	n = 0.5	$P_{\scriptscriptstyle m BMX}$, Πa .	4,81 ⁻ 10 ⁸	$4,66^{\circ}10^{8}$	$5,18^{\cdot}10^{8}$
	$\beta = 0.007, 1/{}^{\circ}C$		282,14	279,75	272,00
	ρ 0,007, 17 Θ	$T_{\text{вых}}$, °C	0,305	0,249	0,249
		$V_{\rm n}$, M/c			
2	$\mu_0 = 12500, \Pi a^{\circ} c$	$l_{_{3,\Pi}}$, вит.	20,80	22,80	23,10
	n = 0.5	$P_{\scriptscriptstyle m BMX}$, Πa .	$2,76^{\cdot}10^{8}$	$2,74^{\cdot}10^{8}$	$2,92.10^{8}$
	$\beta = 0.007, 1/{}^{\circ}C$		265,93	260,74	254,75
	β = 0,007, 17 €	$T_{\text{вых}}$, °C	0,324	0,249	0,249
		$V_{\rm m}$, M/c			
3	$\mu_0 = 25\ 000,\ \Pi a^{\circ} c$	$l_{_{3,\Pi}}$, вит.	20,60	22,30	22,49
	n = 0.5	$P_{\scriptscriptstyle m BMX}$, Πa .	$4,28^{\cdot}10^{8}$	$4,40^{\circ}10^{8}$	$4,79^{\cdot}10^{8}$
	$\beta = 0.014, 1/{}^{\circ}C$		270,53	258,71	264,96
	ρ 0,011,17 ε	$T_{\text{вых}}$, °C	0,312	0,249	0,249
		$V_{_{\Pi}}$, M/c			
4	$\mu_0 = 25\ 000,\ \Pi a^{\circ} c$	$l_{_{3,\Pi}}$, вит.	17,90	19,60	16,90
	n = 0.75	$P_{\scriptscriptstyle m BMX}$, Πa .	1,09 ⁻ 10 ⁹	$9,82\cdot10^{8}$	$1,11^{\cdot}10^{9}$
	$\beta = 0.007, 1/{}^{\circ}C$		327,95	327,40	312,62
	p = 0,007, 17 C	$T_{\text{вых}}$, °C	0,249	0,249	0,249
		$V_{_{\Pi}}$, M/c			

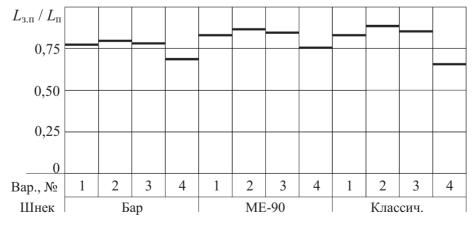


Рис. Диаграмма изменения относительной длины зоны плавления

Анализируя полученные данные, можно сделать вывод, что реологические свойства расплава полимера оказывают существенное влияние на длину зоны плавления, а также на температуру получаемого экструдата. Так, например, изменение показателя аномалии вязкости n с 0,5 до 0,75 привело к изменению длин зон плавления на 11-23 %. При этом отличие в средней температуре составило 40-50°C. Такое расхождение результатов можно объяснить различным вкладом диссипативной составляющей тепла в процесс тепломассопереноса в канале экструдера. При этом увеличение показателя аномалии вязкости n, начальной вязкости μ_0 , а также снижение температурного коэффициента β приводят к увеличению вклада диссипативной составляющей вследствие роста эффективной вязкости.

Библиографический список

- 1. Янков В.И., Труфанова Н.М., Щербинин А.Г. Неизотермическое течение полимерных жидкостей в винтовых уплотнениях с продольной циркуляцией // Химическое и нефтегазовое машиностроение, 2006. № 3. C. 3-7.
- 2. Янков В.И., Труфанова Н.М., Щербинин А.Г. Изотермическое течение аномально-вязких жидкостей в винтовых уплотнениях с продольной циркуляцией // Химическое и нефтегазовое машиностроение. -2006. -№ 6. C. 1-5.
- 3. Субботин Е.В., Черняев В.В. Исследование влияния геометрии шнека на процесс плавления // Вестник ПГТУ. Электротехника, информационные технологии, системы управленияю. Пермь: Изд-во Перм. гос. техн. ун-та, $2009. \mathbb{N} 2. \mathbb{C}. 25–32.$
- 4. Щербинин А.Г., Труфанова Н.М., Янков В.И. Пространственная математическая модель одночервячного пластицирующего экструдера. Сообщение 3. Проверка адекватности модели // Пластические массы. -2005. -№ 5, ℂ. 43–45.

Получено 09.09.2011