УДК 669.14.018.29:621.643-412

А.Н. Юрченко, М.Ю. Симонов, К.А. Шибанова A.N. Yurchenko, M.Yu. Simonov, K.A. Shibanova

Пермский национальный исследовательский политехнический университет Perm National Research Polytechnic University

МЕХАНОТЕРМИЧЕСКАЯ ОБРАБОТКА ТРУБНЫХ ЗАГОТОВОК ИЗ КОНСТРУКЦИОННОЙ СТАЛИ 20: СРАВНЕНИЕ МИКРОСТРУКТУРЫ И МЕХАНИЧЕСКИХ СВОЙСТВ

THERMOMECHANICAL TREATMENT OIL COUNTRY TUBULAR GOODS IN STEEL 20: COMPARISON OF MICROSTRUCTURE AND MECHANICAL PROPERTIES

Проведен сравнительный анализ микроструктуры и механических свойств трубных заготовок из конструкционной стали 20 после термического улучшения и деформационно-термической обработки. Проанализирован характер эволюции структуры после холодной пластической деформации методом радиальной ковки и последеформационного отжига.

Ключевые слова: радиальная ковка, деформационно-термическая обработка, структурообразование, сталь 20, трубные заготовки.

The comparative analysis microstructure and mechanical properties oil country tubular goods in steel 20 after heat refining and deformation-heat treatment. The comparative analysis structure evolution after low temperature plastic deformation with method of radial forging and annealing after deformation was carried out.

Keywords: radial forging, deformation-heat treatment, formation of structure, steel 20, pipe billets.

В последние годы достаточно широко получили распространение методы диспергирования структур за счет холодной пластической деформации. Однако стоит отметить, что многие из них (кручение под высоким давлением (КВД) [1, 2] и равноканальное угловое прессование (РКУП) [2, 3]) являются скорее лабораторными методами моделирования структур: они не могут быть реализованы в промышленных заготовках довольно большого сечения и поэтому не находят широкого применения в машиностроении. Среди промышленных методов реализации пластической деформации для

<u>№</u> 2

получения дисперсных структур следует отметить штамповку обкатыванием (ШО) и радиальную ковку (РК). Схемы методов КВД, РКУП и ШО представлены на рис. 1.

Рис. 1. Схемы проведения различных пластических деформаций: $a - кручение под высоким давлением; <math>\delta - равноканальное угловое прессование;$ *в* – штамповка обкатыванием; *1* – пуансон; *2* – образец; *3* – суппорт

Стоит отметить, что технология РК применяется на производстве гораздо чаще, чем ШО. Радиальную ковку применяют в основном для повышения прочности валов и трубных заготовок в исходно низкоотпущенном состоянии для получения максимально высокой прочности. Однако существует возможность получения высоковязкого состояния с повышенным уровнем прочности за счет деформации исходно высокоотпущенных заготовок с помощью РК из низколегированных или нелегированных конструкционных сталей [4, 5]. Преимуществами РК по сравнению с другими методами пластической деформации являются: высокая скорость деформации, формирование мелкозернистой и ультрамелкозернистой структур металла, возможность промышленного применения в непосредственном технологическим цикле. При использовании методов РК материал заготовки в очаге деформации находится в состоянии всестороннего равномерного сжатия посредством прерывистой высокочастотной деформации 4 бойками. Обработка поверхности заготовки осуществляется за счет многократных одновременных обжатий. Такая схема деформации позволяет получить высокую степень холодной пластической деформации (ХПД) без образования трещин в обрабатываемом материале, а локализация очага деформации в сочетании с поворотом заготовки способствует постоянному и равномерному изменению формы материала заготовки. Схема проведения радиальной ковки показана на рис. 2.

Рис. 2. Радиально-ковочная машина: *а* – схематическое изображение; *б* – реальный вид; *1* – радиально-обжимная машина; *2* – заготовка; *3* – деформирующий инструмент

Цель данной работы – анализ структуры и механических свойств трубных заготовок из стали 20 после механотермической обработки радиальной ковкой.

Материалы и методики. В исследовании принимали участие образцы, полученные из трубной заготовки конструкционной стали 20, химический состав которой представлен в табл. 1.

Таблица 1

Σ	Кимический	состав	стали	20

Столи	Содержание элементов, %								
Сталь	С	Si	Mn	S	Р	Cr	Ni	Cu	Mo
20	0,24	0,25	0,39	0,022	0,012	0,22	0,18	0,15	0,14

Термическую и термомеханическую обработку проводили по следующим режимам (рис. 3):

1. Термическое улучшение (ТУ) – закалка в воде, начиная с температуры 885 °С, после чего проводился отпуск при температуре 570°С в течение 1 ч с охлаждением в воде.

2. Термически улучшенную заготовку подвергали радиальной ковке в три этапа с общей пластической деформацией $\varepsilon_{1+2+3} = 55$ %, после чего проводили последеформационный отжиг при температуре 600°С 1 ч.

Испытания на ударную вязкость КСТ проводили в соответствии с требованиями ГОСТ 9454–78 на образцах с размерами $6,5 \times 11,5 \times 55$ мм с заранее наведенной усталостной трещиной $\lambda = 0,27$. Ударные испытания проводили на маятниковом копре КМ-30. Для наращивания трещин использовали вибратор Дроздовского.

Рис. 3. Схема вырезки образцов из трубной заготовки: a – после термического улучшения; δ – после термического улучшения и радиальной ковки (ϵ = 55 %)

Относительную длину трещины (λ) определяли по формуле $\lambda = \ell / b$, где ℓ – суммарная длина основного надреза и трещины; b – ширина образца.

Геометрические параметры образцов и изломов определяли с помощью стереомикроскопа Olympus SZX-16 в программном обеспечении StreamMotion 1.8 с точностью $\pm 0,05$ мм.

Ударную вязкость рассчитывали по формуле КСТ = A_p / F , где: A_p – работа разрушения, снимаемая со шкалы копра с точностью до ±0,05 кГм; *F*– площадь живого сечения образца, см².

Для фиксации изображений изломов использовали цифровую камеру Canon Digital IXUS-130. Полученные изображения обрабатывали с помощью программы Photoshop 7.0.

Оценку твердости исследуемых материалов проводили на твердомере ТК по методу Роквелла (шкалы *C* и *B*) в соответствии с требованиями ГОСТ 9013–59. Значение твердости определяли как среднее арифметическое по результатам 4–6 замеров. Затем полученное среднее значение твердости по таблицам переводили в твердость по Бринеллю.

Микроструктуру исследовали на шлифах, приготовленных на поперечном и продольном сечениях ударных образцов. Для травления использовали 4%-ный раствор азотной кислоты в этиловом спирте. Травленые микрошлифы исследовали на сканирующем электронном микроскопе FEIPHENOM G2 ProX при увеличениях от ×2000 до ×15000 и ускоряющем напряжении 15 кВ.

Результаты и их обсуждение. Структуру трубных заготовок из стали 20 исследовали в поперечном и продольном (осевом) направлениях. Исходной структурой трубных заготовок перед радиальной ковкой была структура высокоотпущенного мартенсита, полученная после ТУ (режим 1). Анализ световой металлографии не выявил структурных отличий в поперечном и осевом направлениях (рис. 4, *а–г*). Исследования с помощью сканирующего

112

электронного микроскопа (SEM) структуры в исходном состоянии показали, что пакетно-реечная морфология, полученная в результате закалки после отпуска стали 20 при температуре 570 °С, практически полностью отсутствует. Наблюдается выделение большого количества дисперсных карбидов по границам реек в виде цепочек (рис. 4, ∂ –e), однако в структуре было выявлено присутствие объемов немартенситной природы различной формы: вероятнее всего, данные объемы являются бейнитом, которые образовались вследствие малой устойчивости переохлажденного аустенита.

Рис. 4. Структура стали 20 в исходном состоянии: *а*–*б* – продольное направление; *в*, *г*, *д*, *е* – поперечное направление; *a*, *б*, *в*, *г* – световая металлография; *д*, *е* – сканирующая электронная микроскопия; *a*, *в* – увеличение ×500; *б*, *г* – снято при увеличении ×500 и масштабировано в 2 раза; *д* – увеличение ×15 000; *е* – базовое увеличение ×15 000 с дополнительным масштабированием в 2 раза (см. стр. 109)

Рис. 4. Структура стали 20 в исходном состоянии: *а*–*б* – продольное направление; *в*, *г*, *д*, *е* – поперечное направление; *a*, *б*, *в*, *г* – световая металлография; *д*, *е* – сканирующая электронная микроскопия; *a*, *в* – увеличение ×500; *б*, *г* – снято при увеличении ×500 и масштабировано в 2 раза; *д* – увеличение ×15 000; *е* – базовое увеличение ×15 000 с дополнительным масштабированием в 2 раза

В табл. 2 представлены результаты исследования механических свойств стали 20. В исходном состоянии уровень ударной вязкости КСТ в данном структурном состоянии равен 200 Дж/см², при этом предел текучести равен 400 МПа, а предел прочности 570 МПа.

Таблица 2

Режим	Ударная вязкость	$\sigma_{0,2}$	$\sigma_{\rm B}$	δ	Ψ	Твердость
обработки	КСТ, Дж/см ²	МПа		%		HB
1	200	400	570	31	76,5	165
2	180	640	645	21	73,5	214

Механические свойства исследуемой стали 20

После проведения режима 2 результаты световой металлографии свидетельствуют о том, что в продольном и осевом направлениях произошло общее измельчение структуры, также в осевом направлении наблюдается вытягивание в продольном направлении трубной заготовки во время РК (рис. 5, a–z). Исследование структуры на сканирующем электронном микроскопе (SEM) на большом количестве полей показало у стали 20 наличие чрезвычайно однородной и высокодисперсной зеренной/субзеренной структуры с размером зерен/субзерен 1 мкм и менее (рис. 5, ∂ –e). Наблюдаются также карбиды средних и малых размеров по границам зерен/субзерен и в теле зерна/субзерна.

Рис. 5. Структура стали 20 после 2-го режима обработки: *а*–б – продольное направление; *в*, *г*, *д*, *е* – поперечное направление; *a*, *б*, *в*, *г* – световая металлография; *д*, *е* – сканирующая электронная микроскопия; *a*, *в* – увеличение ×500; *б*, *г* – снято при увеличении ×500 и масштабировано в 2 раза; *д* – увеличение ×15000; *е* – базовое увеличение ×15 000 с дополнительным масштабированием в 2 раза

Стоит отметить, что проведение механотермической обработки приводит к незначительному понижению ударной вязкости КСТ до 180 Дж/см², однако при этом более чем на 50 % увеличивается уровень предела текучести до 640 МПа со стабилизацией на одном уровне с пределом прочности на уровне 645 МПа. Выявлено также незначительное понижение пластичности до 21 %.

Выводы:

1. Применение пластической деформации методом холодной радикальной ковки приводит к общему диспергированию структуры.

2. После радиальной ковки происходит общее вытягивание структуры в осевом направлении.

3. В процессе реализации 2-го режима обработки происходит появление субзеренной структуры.

4. Наблюдается комплексное повышение уровня механических свойств после применения радиальной ковки и последеформационного отжига при 600 °C.

Список литературы

1. Валиев Р.З. Создание наноструктурных металлов и сплавов с уникальными свойствами, используя интенсивные пластические деформации // Российские нанотехнологии. – 2006. – Т. 1, № 1–2. – С. 208–216.

2. Валиев Р.З., Александров И.В. Наноструктурные материалы, полученные интенсивной пластической деформацией. – М.: Логос, 2000. – 272 с.

3. Формирование структуры и механических свойств углеродистой конструкционной стали в процессе наноструктурирования методом равноканального углового прессования / Н.В. Копцева, Ю.Ю. Ефимова, М.П. Барышников, О.А. Никитенко // Деформация и разрушение материалов. – 2011. – № 7. – С. 11–16.

4. Формирование комплекса повышенных механических характеристик промышленных заготовок из стали 35Х методом механотермического воздействия / А.С. Перцев, Ю.Н. Симонов, А.В. Касаткин, А.Д. Бухалов // Ми-ТОМ. – 2012. – № 11. – С. 11–17.

5. Основы получения повышенного уровня динамической трещиностойкости и прочности в стали 35Х после холодной радиальной ковки [Электронный ресурс] / М.Ю. Симонов, А.Н. Юрченко, А.С. Перцев, Ю.Н. Симонов, Г.С. Шайманов // Современные проблемы науки и образования. – 2014. – № 6. – URL: http:// www.science-education.ru/120-15946 (дата обращения: 25.03.2015).

Получено 04.06.2015

<u>№</u> 2

Юрченко Александр Николаевич – магистрант, Пермский национальный исследовательский политехнический университет, механико-технологический факультет, гр. МТО-1314M, e-mail: sanyaurchenko@rambler.ru.

Симонов Михаил Юрьевич – младший научный сотрудник, Пермский национальный исследовательский политехнический университет, механикотехнологический факультет, e-mail: mto@pstu.ru.

Шибанова Кристина Андреевна – студентка, Пермский национальный исследовательский политехнический университет, механико-технологический факультет, гр. MTO-11, e-mail: mto@pstu.ru.