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Abstract. The deformation of the Lamina Cribrosa under intraocular pressure is studied
by means of the linear and nonlinear Ambartsumyan’s theory of plate and the refined
theory proposed by Rodionova, Titaev and Chernykh. Lamina Cribrosa is modelled as a
continuos nonuniform transversal isotropic plate.
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The Lamina Cribrosa is the part of a sclera, which is weakened by a system of pores.
According to the experimental data [1-3] the site of damage of nerve fibers under glaucoma is
just the scleral Lamina Cribrosa.
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It makes the study of the effect of the intraocular pressure on the stress-strain state of
the Lamina Cribrosa important. The experimental researches have also revealed that the
increased pressure does not cause an increase in the size of the scleral canal through which the
optic nerve passes (diameter of the Lamina Cribrosa). That permits us to consider the Lamina
Cribrosa as a perforated plate with clamped edges under normal pressure.

In order to describe the stress-strain state of perforated plates these plates are usually
represented as continuous plates with reduced parameters [4]. These parameters are defined
from the condition, that the average displacements of the "reduced"” plate and perforated plate
are equal under same loads.

The main problem in the analytical evaluations of the Lamina Cribrosa deformations
is the lack of the precise data on the mechanical nature of the Lamina Cribrosa. Some
research data on the average depth of optic disc cupping under fixed values of the intraocular
pressure [1-3, 5] and experimental data of special research [6-9] permit to estimate the
reduced modulus of elasticity for the Lamina Cribrosa.

The deflection of the Lamina Cribrosa under uniform normal pressure is studied by
means of the linear and nonlinear Ambartsumyan’s theory of plates [10] and the refined
theory proposed by Rodionova, Titaev and Chernykh [11].

It is assumed that the Lamina Cribrosa is a circular plate of radius R with the annular
hole of radius & in the centre of the plate. The lower and upper surfaces of the plate are

loaded by the uniform intraocular ( p~) and intraskull ( p*) pressures:
o, =—p  for z=+h/2, 7, =0 for z=+h/2.
We also assume that the Lamina Cribrosa is a transversal isotropic plate:
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Here r, 6 are the polar coordinates in the middle surface of the Lamina Cribrosa; z is the
distance along the normal from the middle surface; E; and E, are the moduli of elasticity in
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the tangential and transversal directions, respectively; v, v', v" are Poisson's ratios
(v describes the shortening in the plane of isotropy under the tension in this plane; v’
describes the shortening in the plane of isotropy under the tension in the direction orthogonal
to the plane; v" describes the shortening in the direction orthogonal to the plane of isotropy
under the tension in the plane); o, t© are the stresses and e are the deformations in polar
coordinates; G and G’ are the shear moduli for the isotropy plane and planes orthogonal to
this plane.

We assume that due to symmetry the distribution of the stresses does not depend on
the angle 6

According to the Ambartsumyan’s theory

2
ez:O’Trzzz(P( {hz sz'

_ _u_gdw, z(h?_z?)olr)
u, =w(r), u, =u Zar* (4 3j a

where ¢(r) is an arbitrary function of r. Here u,(r,z) and u,(r,z) are the radial and normal
displacements of the plate points, u,(r,0)=u(r), u,(r,0)=w(r).

Substituting these expressions into the elasticity relations and then into the equilibrium
equations we obtain the governing system of differential equations for functions u, w and ¢.
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The governing system splits into two subsystems. The first subsystem describes the plane
deformations, the second one describes the plate bending. To study the bending problem we
consider the system for the functions w(r) and o(r):

dop o __12P
ar r K3’
P=p -p", 1)

dwldw_id_w dE; [ d2w  vdw|_ (_ .2 dE; h2 (do o
E()[dr Ty dr?  r? dr}+ dr{dr +rdr} (1 V)(P(r)+ dr 106'\dr " V7 )’
Let the edge r =4 be free:

r=6:T,=0,M,=0, N, =0, (2)
and on the other edge the following boundary conditions are imposed:
_R:w=0 u —o _dw h* "
r=R:w=0,u, =0, ar +86,(p_0. (3)
Taking into account boundary conditions (2), (3) we can get from equations (1) an
expression for ¢(r):
_6P(_,, 8%
@(r)—hg( r+ rj (4)

and the equation for deflection w(r):
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Taking into account (3), we obtain boundary conditions for equation (5) in the form
r=p: dw__6

)

dr?  5Gh 6
dw_ 3P (&°
r=R: w=0, ar 4G’h( R).

If E; =const, then equation (5) has analytical solution
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where the unknown constants C;, C,, C, are evaluated from boundary conditions (6).

As it was noted, the Lamina Cribrosa is the part of the sclera, which is weakened by a
system of pores. According to experimental data [1-3], the Lamina Cribrosa has about 700
holes which occupy about 2/3 of the Lamina Cribrosa area.

The survey of research, devoted to calculation of elastic parameters of continuous
plate, which has the same stiffness as the perforated plate is given in [4]. Comparing vibration
frequencies of plates, perforated by circular holes of different size, the following relation may
be obtained

713
D" =uD, u:(l—?f’j : (7)

where S is the area of the plate; S is the part of the area occupied by holes; D" and D are
cylindrical stiffnesses of the continuous and perforated plates, respectively.
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According to relation (7)

E -
El_10,

where E =1.43 MPa is the Young’s modulus of the sclera. One should note that the various

values of the sclera Young’s modulus (5.0 — 40.0 MPa) in literature depend not only on the
domain of scleral shells but also on the age [12].

If the density of the holes increases at the periphery of the Lamina Cribrosa, then we
may assume that tangential modulus of elasticity decreases approaching the edge of the plate,
for example:

. —qf
Ei(r)=Ee R
To study the effect of the decreasing rate of function E;(r) on the form of the
deflection the calculation was performed for different El and q, but for constant average
value of E,:

R
Enm = RL—SJS: El exp(— q%)dr :
Itis clear that El and g should satisfy the condition
E,(8)=E, exp(— q%) <E.
Shear modulus G', which is also dependent on r, is represented in the form
G'(r)=KE(r).

If E,, =E/10=1.43 MPa, then q=10 is the maximum permissible value.

According to experimental studies [1-3, 8, 9] the diameter of the Lamina Cribrosa is
1.2-1.7 mm, the thickness of the Lamina Cribrosa is 0.1-0.35 mm.

In Table 1 the dependence of the maximum of the displacement (in the centre) on
intraocular pressure is represented for the plate with R=0.75mm, h=0.2mm

(E; =122 MPa, q=7).

Table 1.
p, mmHg 15 30 40 50 60 80
W(ES), mm 0.164 0.328 0.438 0.547 0.656 0.875

One can see that the displacement has order of the plate thickness, and it means that to
refine the results one must apply the geometrically nonlinear theory.

The nonlinear theory [10] takes into account the effect of the angles of the normal
rotation on the lengthening and shear. If the inner stress-couples are expressed by the stress-
function F = F(r):

Yordr T g2
then the system of equations for the functions (r), F(r) and w(r) has the form
d_(P+9+£L(d_Wd_F) __12p
dr r rh®dr \dr dr h3

2
7 _1dF 1 _d%F
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The solution of the equations (8) with boundary conditions (2), (3) was obtained by
the perturbation method [10]. The maximum displacements of the Lamina Cribrosa with

E; =12.2 MPa, q=7, k=1 due to the nonlinear Ambartsumyan's theory of plates are given
in Table 2.

Table 2.
p, mmHg 15 30 40 50 60 80
w(s), mm | 0.161 0.309 0.397 0.476 0.549 0.675

For p =40 mmHg the difference in the values of the deflection, obtained with linear

and nonlinear theories, is about 9 %. This difference increases with the intraocular pressure.

We also analyse the stress-strain state of the Lamina Cribrosa using the new refined
iterated theory [11], based on the following hypotheses:
the transverse tangential and normal stresses are distributed along the shell thickness
according to the quadratic and cubic laws, respectively;
along the shell thickness the tangential and normal components of the displacement vector
have the polynomial distributions of the third and the second powers, respectively.

This theory takes into account the rotation of the fibres, their bending and also the
change of the fibre lengths.

Following [11], let us introduce for convenience the following variables
* El\/’ v * EZ

= = JET=—2
Ez(l_") 1-v 1-2v'v"

The plate is again under the uniform normal pressure p . Therefore,

\%

1, =15, =0,06,=—p , 67 =—p* for z=%h/2.

It is supposed [11] that

Up =U Py +71P, +01P, + 1Py,

Up =W Py +73P +03P,,
where P, are the Legendre’s polynomials:
Py=1, P =22, P, :6;—22—%, P, :2‘;—53—%

The boundary conditions are

r=R:w =0,u =0, y; =0,

r=8:T,=0, M, =0, N, =0.
Substituting the deformation and strains in the form of the linear combinations of the

Legendre‘s polynomials and using the accepted hypothesis, one can get the system of
equations [11]
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One can find u”, y; and then w" from equations (9).

Table 3.
o, mmHg w(3), mm
1 2 3
20 0.219 0.213 0.183
30 0.328 0.309 0.274
40 0.438 0.397 0.366
60 0.656 0.548 0.548
80 0.875 0.675 0.731
100 1.094 0.782 0.914

The maximum displacements of the Lamina Cribrosa with El =122Pa, q=7,
k =1, obtained from the linear (column 1) and nonlinear (column 2) Ambartsumyan’s theory
of plates and the refined theory (column 3) [11] are given in Table 3.

It is interesting to compare the results, obtained from the linear and nonlinear
Ambartsumyan’s theories of plates and the refined theory, represented in [11]. Both theories
give close results for w~ (2 +4)h when the difference in results is not more than 8-9 %. The
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results almost perfectly coincide: if the displacement in the centre of plate is w ~ 3h, then the
difference in results is only 1-2 %.

We assume for the shear modulus G’(r) in the plates normal to the plane of isotropy
that G'(r)=KkE,(r). It is noted in [10], that the value of E,(r)/G'(r) effects significantly on
the stress-strain state of anisotropic plate, and this effect increases with E; /G’.

Experimental data [1, 2] permit to assume that shear modulus G for plane of isotropy
is greater than the shear modulus G’ for planes, which are perpendicular to the plane of
isotropy. (If E;(r)/G'(r)=2, the shear moduli in the plane of isotropy and planes

perpendicular to this plane are equal.)
The maximum displacements of the Lamina Cribrosa obtained from the refined theory

[11] for E; =12.2 MPa, q =7 and different E;(r)/G'(r) are given in Table 4.

Table 4.
p/w@d) | E;/G'=2 | E//G'=3 | E;/G'=4
10 0.116 0.141 0.165
20 0.232 0.281 0.331
30 0.348 0.422 0.496
40 0.464 0.563 0.661

One can see that the value of the displacement increase when shear stiffness decreases.

The results of the calculation prove the existence of the essential shear deformation
and compression of axons. Moreover the shear deformations are greater than the compressive
deformation in two orders. In Fig. 2 the vertical sections of the canals of the deformed plate is
plotted. Five canals are chosen on the equal intervals from the centre of the plate to its edge,
the centres of the canals are on the same radius.

If the microtubuli uniformly cover the entire plate, then the modulus of elasticity is
constant, and in this case the deformed lattice plate under pressure 50 mm Hg has the shape
shown in Fig. 3.

If the number of microtubuli (or their total area) increases approaching the edge of the
plate (that is typical for the most of the people [1-3]), then the modulus of elasticity decreases
away from the centre of the plate and in this case the deformed lattice plate has the form
plotted in Fig. 4.

The solutions for the Lamina Cribrosa with different degrees of nonuniformity (but
constant average modulus of elasticity) show that the greater degrees of nonuniformity lead to
the greater shear deformation of the Lamina Cribrosa.
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Fig. 3.

Fig. 4.

In the centre of the plate the deformations are insignificant, i.e. two-three orders less
than the deformations at the edge. The deformations of canals attain the maximum in the
interval between 2/3R and R from the plate centre. So, under increasing of the intraocular
pressure the shear and compression of axons, which lead to the atrophy of the optic nerve
fibres, occur initially near the edge of the plate.

The problem on the deformation of the Lamina Cribrosa was considered in [13]. The
Lamina Cribrosa was considered as uniform and isotropic in [13] and the authors undertook
an attempt to take into account the influence of the tensile forces, which act upon the Lamina
Cribrosa from the scleral eye shell. We assume that this effect is not essential, since the
Lamina Cribrosa is significantly softer (E/E; =10) and 4-5 times thinner than sclera. And

as it was noticed according to the experimental data the increasing of pressure does not cause
the increase in the size of the scleral canal.

The authors of [13] also suppose that at the edge of the Lamina Cribrosa the stresses
in the Lamina Cribrosa and in the scleral shell are equal to each other, though for the 2D
problem the stress-couples should be equalised.
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O OE®OPMALMU PELLETYATOWU MITACTUHKU IMA3A NPU
M3MEHEHWN BHYTPUTTIA3HOIO OABJIEHUA

C.M. Bayap, E.B. BopoHkoBa (CaHkT-leTepbypr, Poccus)

Pemeryarass mutacTMHKa TJa3a — OTO 4YacTh CKJEphl, ocialieHHas OOJbIIUM
KOJIMYECTBOM OTBEPCTHUM. DKCIEPUMEHTAIIbHBIE JaHHBIE MOKAa3bIBAOT, YTO MPHU MOBBIIEHUN
BHYTPHIJIA3HOTO [ABJICHUS SIBJICHUS, BEAyIIMe 3a CO0OH arpouio 3pHTEIHHOTO HEpBa,
MPOUCXOJAT WUMEHHO B 0O0JacTH pemnieTyaTol MIACTUHKUA. B cBS3u ¢ 3TUM wu3ydaeTcs
HaNpsHKEHHO-IeOPMHUPOBAHHOE COCTOSHHE PEUIeTYaTON TUIACTHHKH TJla3a MPH W3MEHEHHH
BHYTPUIJIA3HOTO JABJICHHUS.

Pemeruatas miacTUHKa paccMaTpuUBaeTcsd KaK HEOAHOPOJHAs TpaHCBEpCaIbHO—
U30TPOMHAs Kpyrjas IJIaCTHHKA C 3alleMJIEHHBIM KpaeMm. 3ajada o mporube Takou
IJJACTUHKUA TI0J] JIEWCTBUEM HOPMAJbHOIO [ABJIICHUS PEIIAETCS B paMKaxX JUHEUHOW U
T€OMETPUUYECKH HETWHEWHON oOrmieit yrouneHHor Teopun C.A. AmOapiyMsHa, a TakXe IO
HOBOM yTOYHEHHON WTEpalMOHHOW TeopuH JaedopManmii aHW30TPONHBIX IIIACTHH,
npemiokeHHorn B MoHorpadpum B.A. PoamonoBoi, b.®. TuraeBa, K.®. UYepnsixa.
Henuneiinast reopust C.A. AMOapiymMsiHa U HOBasl YTOUHEHHAsi UTEPALlMOHHAsI TEOPUS at0T
ONM3KUE Pe3yNbTaThI - UX PA3HOCTh HE TpeBocxomuT 8-9 % mpu nporudax nopsaka 2h —4h.

PacyeTsl moka3bpIBalOT, YTO B LIEHTPE IIACTUHBI JeopMaIlii He3HAYUTENbHBI, OHU Ha
JIBa-TpH TIOPsIIKa MEHbIIIe, 4eM Ha Kpato. Hanbonpime nedopmanun kaHaaoB HAOIIOIAIOTCS
Ha paccrosHusx oT 2/3R 10 R OT IeHTpa IUTACTHHBI, MOJTOMY IPH BO3pPACTAaHUU
BHYTPUIJIA3HOTO JIAaBJIEHUsI aTpodus HEPBHO-3PUTENBHBIX BOJIOKOH, BBI3BaHHAS CIABHTOM
BOJIOKOH M MX CHABJIMBAHHEM, IPOMCXOINUT B MEPBYIO OuYepeb BOIM3U Kpas MIIACTHUHBI, YTO
COOTBETCTBYET XapaKTEPHOMY CYKEHMIO TOJISl 3pEHUSI IIPH II1ayKOMeE.

Ecnmu ymcno "orBepcTtuwit" (MM TUIONIaAb, UMH 3aHUMaeMas) YBEIIMYHMBACTCS TIPH
OpUOMKEHUH K Kpalo IUJIACTUHBI, YTO XapakTEpHO JUIsl OOJBIIMHCTBA JIIOAEH, TO
IpernoiaraeTcsa, 4To MOAYJb YIPYrocTH YObIBaeT NpHU MNPUONMKEHHH K Kparo. Takoe
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CTPOCHHE pEIIeTYaTON IUIACTHHBI BEACT K OOJBIIMM JAepopMaIusM CIBUTA W, TaKUM
o0pa3oM, Kk OoJIbIIIeMY HapYIIEHUIO 3PUTEIbHBIX QYHKIIMN Ha niepudepun. buodm. 13.

KiroueBble citoBa: peuicTtyarasia IINIaCTUHKA, I'NIAYKOMad, BHYTPHUIJIA3HOC HABJICHHC, TCOpPHU
IJIaCTUH
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