|
|
DEVELOPMENT OF AN EDUCATIONAL AND RESEARCH COMPLEX «INTELLIGENT MEANS OF CONTROL OF MODES OF POWER SUPPLY SYSTEMS»M.G. Bashirov, I.G. Yusupova, O.G. Volkova, M.F. Shvan, N.N. Daminov, K.K. Kuznetsov, T.R. Sagitov Received: 09.11.2023 Received in revised form: 01.12.2023 Published: 12.01.2024
PDF |
Abstract |
Authors |
References |
Abstract: The energy system of most industrially developed countries is being transformed into an intelligent energy system with the introduction of digital technologies. Training of specialists in the field of intelligent control systems for operating modes of electric power complexes dictates the need to develop educational laboratory installations from domestic manufacturers with elements of artificial intelligence. The purpose of the project is to develop an educational and research complex with elements of artificial intelligence for performing laboratory work in the discipline «Intelligent means of controlling the modes of power supply systems». Methods: a method for calculating network parameters in complex networks was used. When developing the software part, flexible methodology (AGILE) was used. When developing a neural network algorithm, a supervised learning approach and a regression algorithm were used. Results: when carrying out the work, measurements were taken of the parameters of the initial data of physical laboratory stands «Model of an electrical system with a complex load unit» of LabSys LLC, «Automation of electric power systems» of LabSys LLC. A digital twin of the laboratory stand was created, supplemented with virtual objects of electric power systems with adjustable parameters and means of controlling the modes of power supply systems. A neural network was trained to recognize the mode of the power supply system corresponding to minimal losses during the transmission of electricity. Practical significance: the educational and research complex includes educational and methodological support for full-time, remote and mixed implementation of laboratory and practical work in the discipline «Intelligent means of controlling the modes of power supply systems». The digital twin of the educational and research complex allows you to gain knowledge, skills and abilities in the design, programming and operation of intelligent control systems in the electric power industry. The neural network allows you to optimize losses at the current values of the parameters of the complex load.
Keywords: electric power industry, neural network, digital twin, active-adaptive electrical network, power losses, intelligent control.
Authors: Mussa G. Bashirov (Salavat, Russian Federation) – Doctor of Technical Sciences, Professor, Head of the Department of Electrical Equipment and Automation of Industrial Enterprises Institute of Petroleum Refining and Petrochemistry of Ufa State Petroleum Technical University (branch in Salavat) (453250, Salavat, 22B, Gubkin str., e-mail: eapp@yandex.ru).
Il'vina G. Yusupova (Salavat, Russian Federation) – Ph. D. in Technical Sciences, Associate Professor Department of Electrical Equipment and Automation of Industrial Enterprises Institute of Petroleum Refining and Petrochemistry of Ufa State Petroleum Technical University (branch in Salavat) (453250, Salavat, 22B, Gubkin str., e-mail: ilvina011@mail.ru).
Ol'ga G. Volkova (Salavat, Russian Federation) – Assistant Department of Electrical Equipment and Automation of Industrial Enterprises Institute of Petroleum Refining and Petrochemistry of Ufa State Petroleum Technical University (branch in Salavat) (453250, Salavat, 22B,
Gubkin str., e-mail: olya2700@list.ru).
Mariya F. Shvan (Salavat, Russian Federation) – Assistant Department of Electrical Equipment and Automation of Industrial Enterprises Institute of Petroleum Refining and Petrochemistry of Ufa State Petroleum Technical University (branch in Salavat) (453250, Salavat, 22B,
Gubkin str., e-mail: shvan.2011@yandex.ru).
Nargiz N. Daminov (Salavat, Russian Federation) – Master Degree Student Department of Electrical Equipment and Automation of Industrial Enterprises Institute of Petroleum Refining and Petrochemistry of Ufa State Petroleum Technical University (branch in Salavat) (453250, Salavat, 22B, Gubkin str., e-mail: nagix230@gmail.com).
Kirill V. Kuznetsov (Salavat, Russian Federation) – Master Degree Student Department of Electrical Equipment and Automation of Industrial Enterprises Institute of Petroleum Refining and Petrochemistry of Ufa State Petroleum Technical University (branch in Salavat) (453250, Salavat, 22B, Gubkin str., e-mail: kuzrik123@mail.ru).
Timur R. Sagitov (Salavat, Russian Federation) – Master Degree Student, Department of Electrical Equipment and Automation of Industrial Enterprises Institute of Petroleum Refining and Petrochemistry of Ufa State Petroleum Technical University (branch in Salavat) (453250, Salavat, 22B, Gubkin str., e-mail: temur199989@mail.ru).
References:
- Morshin A.V. Glubinnoe mashinnoe obuchenie [Deep machine training]. Izvestiia Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2019, no. 3, pp. 270-273.
- Shen Z, Arraño-Vargas F., Konstantinou G. Artificial intelligence and digital twins in power systems: Trends, synergies and opportunities. Digital Twin, 2022, pp. 2-14. DOI: 10.12688/digitaltwin.17632.1
- Koshcheev M.I., Lariukhin A.A., Slavutskii A.L. Ispol'zovanie adaptivnykh neiroalgoritmov dlia raspoznavaniia anomal'nykh rezhimov sistem vtorichnogo oborudovaniia elektroenergetiki [The use of adaptive neural algorithms for recognizing anomalous modes of secondary equipment systems in the electric power industry]. Vestnik Chuvashskogo universiteta, 2019, no. 1, pp. 47-58.
- Eltyshev D.K. Intellektual'nye tekhnologii v organizatsii protsessa ekspluatatsii elektrotekhnicheskogo oborudovaniia [Intelligent technologies in the electrical equipment operation process organizatios]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 2022, no. 43, pp. 119-135. DOI: 10.15593/2224-9397/2022.3.07
- Zhang G., Huo C., Zheng L., Li X. An architecture based on digital twins for smart power distribution system. Proceedings of the 2020 3rd International conference on artificial intelligence and big data (ICAIBD), 2020, pp. 29-33. DOI: 10.1109/ICAIBD49809.2020.9137461
- Andryushkevich S.K., Kovalyov S.P., Nefedov E. Composition and application of power system digital twins based on ontological modeling. IEEE 17th International conference on industrial informatics (INDIN), Helsinki, Finland, 2019, pp. 1536-1542. DOI: 10.1109/INDIN41052.2019.8972267
- Liksina E.V., Bershadskaia E.G. Avtomatizatsiia protsessa razrabotki virtual'nykh laboratorii [Automation of the process of developing virtual laboratories]. Studencheskii nauchnyi forum. Materialy ÕI Mezhdunarodnoi studencheskoi nauchnoi konferentsii, 2019, no. 3, pp. 28-30, available at: https://scienceforum.ru/2019/article/2018017317 (accessed 20 October 2023).
- Shinkevich A.I., Nurgaliev R.K. Osobennosti upravleniia neftekhimicheskim proizvodstvom v industrii 4.0 [Features of the management of petrochemical production in industry 4.0]. Sovremennye naukoemkie tekhnologii, 2021, no. 3, pp. 119-124.
- Shpak P.S., Sycheva E.G., Merinskaia E.E. Kontseptsiia tsifrovykh dvoinikov kak sovremennaia tendentsiia tsifrovoi ekonomiki [The concept of digital twins as a modern trend in the digital economy]. Vestnik Omskogo universiteta. Ekonomika, 2020, Vol. 18, no. 1, pp. 57-68.
- Kislitsyn N.A., Akchurin D.Sh., Bashirov M.G. Laboratornyi kompleks na osnove mikroprotsessornykh sredstv kompanii “Oven” [Laboratory complex based on microprocessor facilities of “Owen” company]. Iuzhno-Sibirskii nauchnyi vestnik, 2021, no. 2 (36), pp. 109-114.
- Bashirov M.G., Akchurin D.Sh., Kostikov I.I., Nikolaev K.G. Uchebnyi imitatsionno-modeliruiushchii kompleks na osnove PLK BAZIS-100 [Educational simulation and modeling complex based on PLC BAZIS-100]. Avtomatizatsiia v promyshlennosti, 2021, no. 9, pp. 30-35.
- Bashirov M.G., Khafizov A.M., Adel'guzhin R.R. Tsifrovoi dvoinik laboratornogo kompleksa s reguliatorom na osnove nechetkoi logiki [Digital twin of a laboratory complex with a controller based on fuzzy logic]. Iuzhno-Sibirskii nauchnyi vestnik, 2023, no. 3 (49), pp. 108-113.
- Petrukhin M.Iu., Vasil'eva M.Iu., Kadyrova G.K. Tsifrovoi dvoinik laboratorii sistem upravleniia khimiko-tekhnologicheskimi protsessami [Digital twin of the laboratory of control systems for chemical technological processes]. Sovremennye naukoemkie tekhnologii, 2021, no. 6-1, pp. 84-90.
- Khisamov N.A., Zhurba Ia.S., Bashirov M.G. Primenenie neirosetei v diagnostike agregatov s chastotno-reguliruemym privodom [Application of neural networks in the diagnostics of units with variable frequency drive]. Molodye issledovateli - regionam. Materialy mezhdunarodnoi nauchnoi konferentsii, 17 April 2023, Vologda. Vologda: Vologodskii gosudarstvennyi universitet, 2023, pp. 82-85.
- Ivshin I.V., Galiautdinova A.R., Vladimirov O.V. et al. Intellektual'naia sistema otsenki tekhnicheskogo sostoianiia transformatornoi podstantsii 35/6(10) kV [The intelligent system for assessing the technical condition a transformer substation of 35/6(10) kV]. Izvestiia vysshikh uchebnykh zavedenii. Problemy energetiki, 2022, vol. 24, no. 2, pp. 24-34. DOI: 10.30724/1998-9903-2022-24-2-24-35
- Fedotov A.I., Vagapov G.V., Abdullazianov A.F., Shariapov A.M. Tsifrovaia sistema monitoringa povrezhdenii na liniiakh elektroperedachi [Digital power lines faults monitoring system]. Izvestiia vysshikh uchebnykh zavedenii. Problemy energetiki, 2021, vol. 23, no. 1, pp. 146-155. DOI: 10.30724/1998-9903-2021-23-1-146-155
- Reyes A., Hernández Ya., Buen P. et al. Intelligent Tutoring and Training Tools for the Electric Power Sector Developed at IIE. Research in Computing Science, 2012, no. 47, pp. 81-93. DOI: 10.13053/rcs-47-1-8
- Pileggi P., Verriet J., Broekhuijsen J. et al. A Digital twin for cyber-physical energy systems. 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), Montreal, QC, Canada, 2019, pp. 1-6. DOI: 10.1109/MSCPES.2019.8738792
- Bashirov M.G., Shvan M.F., Akhmetshina E.I., Khakimov A.F. Razrabotka tsifrovogo dvoinika uchebnogo laboratornogo kompleksa [Development of a digital twin of the training laboratory complex]. Components of Scientific and Technological Progress, no. 6, 2023, pp. 138-141.
- Bashirov M.G., Akchurin D.Sh., Konovalov E.A. Razrabotka tsifrovykh dvoinikov ob"ektov elektroenergetiki i virtual'nogo uchebno-issledovatel'skogo kompleksa dlia podgotovki spetsialistov v oblasti elektrosnabzheniia [Development of digital counterparts of electric power facilities and a virtual educational and research complex for training specialists in the field of power supply]. Fedorovskie chteniia - 2021. Materialy LI Mezhdunarodnoi nauchno-prakticheskoi konferentsii, 17-19 November 2021 Moscow. Moscow: Moskovskii energeticheskii institut, 2021, pp. 65-72.
- Chen X., Qu G., Tang Y. et al. Reinforcementlearning for selective key applications in power systems: Recentadvances and future challenges. IEEE Transactions on Smart Grid, 2022. DOI: 10.1109/TSG.2022.3154718
- Sun X., Qiu J. Two-stage volt/var control in active dis-tribution networks with multi-agent deep reinforcement learningmethod. IEEE Transactions on Smart Grid, 2021, vol. 12, no. 4, pp. 2903-2912. DOI: 10.1109/TSG.2021.3052998
- Cao D., Zhao J., Hu W. et al. Deep reinforcement learning enabled physical-model-free two-timescale voltage control method for active distribution systems. IEEE Transactions on Smart Grid, 2021, vol. 13, no. 1, pp. 149-165. DOI: 10.1109/TSG.2021.3113085
- Jin N., Yang F., Mo Y. et al. Highly accurate energy consumption forecasting model based on parallel LSTM neural networks. Adv. Eng. Informatics, 2022, no. 51, 101442 p. DOI: 10.1016/j.aei.2021.101442
- Pavlov N.V. Razrabotka mul'tiagentnoi sistemy upravleniia elektricheskimi rezhimami elektrotekhnicheskogo kompleksa neftegazodobyvaiushchego predpriiatiia s raspredelennoi generatsiei [Development of multiagent control system for electric modes of the electrotechnical complex at oil and gas producing enterprise with microgrid]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 2022, no. 42, pp. 151-177. DOI: 10.15593/2224-9397/2022.2.08
- Boltunov A.P., Voloshin A.A., Voloshin E.A. Razrabotka intellektual'noi sistemy prognozirovaniia nagruzki potrebitelei v mikrogrid-sistemakh [Development of an intelligent system for microgrid consumers power load forecasting]. Elektroenergetika glazami molodezhi. Materialy XI Mezhdunarodnoi nauchno-tekhnicheskoi konferepntsii, 15-17 September 2020, Stavropol'. Stavropol': Severo-Kavkazskii federal'nyi universitet, 2020, pp. 74-78.
- Khafizov Sh.F., Voloshin A.A., Voloshin E.A. Razrabotka raspredelennoi intellektual'noi sistemy upravleniia nagruzkoi v mikroenergosistemakh [Development of a distributed intelligent system for load management in micro energy systems]. Elektroenergetika glazami molodezhi. Materialy XI Mezhdunarodnoi nauchno-tekhnicheskoi konferepntsii, 15-17 September 2020, Stavropol'. Stavropol': Severo-Kavkazskii federal'nyi universitet, 2020, vol. 2, pp. 203-206.
- Kurbatov A. Virtual'nyi inzhener pomozhet proektirovat' energoob"ekty [A virtual engineer will help design energy facilities], available at: https://inscience.news/ru/article/nti/9377 (accessed: 12 October 2023).
- Buduma N., Lokasho N. Osnovy glubokogo obucheniia. Sozdanie algoritmov dlia iskusstvennogo intellekta sleduiushchego pokoleniia [Fundamentals of deep learning. Designing Next-Generation Machine Intelligence Algorithms]. Ed. A. Sozykin. Moscow: Mann, Ivanov i Ferber, 2020, 304 p.
LAY-OUT DEVELOPMENT OF MULTIFUNCTIONAL LOGIC ELEMENT FOR FPGAS.I. Sovetov Received: 11.09.2023 Received in revised form: 06.10.2023 Published: 12.01.2024
PDF |
Abstract |
Authors |
References |
Abstract: The use of programmable logic integrated circuits (FPGAs) is becoming more common due to the growing interest in machine learning and augmented reality technologies, which place high demands on computing resources. The performance of an FPGA is determined by its architecture, which affects chip characteristics such as performance, footprint, and power consumption. The versatility of FPGAs is achieved due to the possibility of reprogramming their basic logic element. A typical basic logical element includes truth tables (Look-up Tables or LUTs). The more basic logic elements are used to create an FPGA, the larger the die area becomes. Each base gate contains a truth table that performs a single logic operation. However, since not all transistors in the LUT are used, this can result in inefficient use of on-chip space. In earlier studies, a solution has been proposed that allows a single truth table to perform multiple functions at the same time. This leads to a decrease in the number of required basic elements and, consequently, to a decrease in the area occupied on the FPGA chip. The aim of the study is to develop the topology of the LUT truth table of the basic FPGA logic element, which implements several functions simultaneously for a different number of variables. Research methods are based on modeling the developed topologies of the proposed LUT with the measurement of characteristics in terms of chip area, the number of transistors used, power consumption and maximum delay. The simulation of the proposed LUT was carried out in the Microwind ASIC design system for three, four, five, and six variables, in which two to four functions are implemented. As a result of the study, the efficiency of the proposed LUT topology for three, four, five, and six variables has been demonstrated. The dependences of the area, the number of used transistors, power and delay on the number of implemented functions are given. It also compares the performance with the simulation of the known LUT, which implements only one function.
Keywords: FPGA, LUT, transmitting transistors, truth table, logic function, topology.
Authors: Stanislav I. Sovetov (Perm, Russian Federation) – Graduate Student of the Department of Automation and Telemechanics Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr.,
e-mail: fizikoz@gmail.com).
References:
- Zhou Y., Jiang J. An FPGA-based accelerator implementation for deep convolutional neural networks. Proc. 4th Int. Conf. Comput. Sci. Netw. Technol. (ICCSNT), Harbin, China, Dec. 2015, pp. 829-832, available at: http://ieeexplore.ieee.org/document/7490869/
- Ma Y., Cao Y., Vrudhula S., Seo J.-S. An automatic RTL compiler for high-throughput FPGA implementation of diverse deep convolutional neural networks. Proc. 27th Int. Conf. Field Program. Logic Appl. (FPL), Ghent, Belgium, Sep. 2017, pp. 1-8, available at: http://ieeexplore.ieee.org/document/8056824/
- Guimarães G.F., Lima J.P.S.M., Teixeira J.M.X.N., Silva G.D., Teichrieb V., Kelner J. FPGA infrastructure for the development of augmented reality applications. Proc. 20th Annu. Conf. Integr. Circuits Syst. Design (SBCCI), 2007, pp. 336-341, available at: http://dl.acm.org/citation.cfm?doid=1284480.1284568
- Drozd O., Ivanova O., Zashcholkin K. et al. Checkability Important for Fail-Safety of FPGA-based Components in Critical Systems. Intelligent Information Technologies & Systems of Information Security (IntelITSIS) 2021: International, 24-26 March 2021: proceedings. Khmelnytskyi, Ukraine: IEEE, 2021, pp. 471-480.
- Drozd O., Perebeinos I., Martynyuk O., Zashcholkin K., Ivanova O., Drozd M. Hidden fault analysis of FPGA projects for critical applications. IEEE International Conference TCSET. Lviv-Slavsko, Ukraine, 2020, Paper 142. DOI: 10.1109/TCSET49122.2020.235591
- Strogonov A., Gorodkov P. Sovremennye tendentsii razvitiia PLIS: ot sistemnoi integratsii k iskusstvennomu intellektu [Modern trends in FPGA development: from system integration to artificial intelligence]. Elektronika: Nauka, tekhnologiia, biznes, 2020, no. 4 (195), pp. 46-56.
- Fohl W., Hemmer D. An FPGA-based virtual reality audio system. J. Audio Eng. Soc., to be published, available at: https://www.vsemanticscholar.org/paper/An-FPGA-Based-Virtual-Reality-Audio-System-Fohl-Hemmer/ed51d68682b2227a95771f477e7be5e53278dc9e
- Arbuzov I., Strogonov A., Gorodkov P. Primer razrabotki proekta v bazise PLIS 5578TS024 [An example of project development based on FPGA 5578TS024]. Komponenty i tekhnologii, 2019, no. 7 (216), pp. 66-69.
- Tiurin S.F., Chudinov M.A. FPGA LUT s dvumia vykhodami dekompozitsii po Shennonu [FPGA LUT with two Shannon decomposition outputs]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 2019, no. 29, pp. 136-147.
- Tiurin S.F. Osobennosti arkhitektury Giperfleks [Features of the Hyperflex architecture]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Sistemnyi analiz i informatsionnye tekhnologii, 2018, no. 1, pp. 56-62.
- Feng W., Greene J., Mishchenko A. Improving FPGA performance with a S44 LUT structure. Proc. ACM/SIGDA Int. Symp. FieldProgram. Gate Arrays, Feb. 2018, pp. 61-66, available at: https://dl.acm.org/doi/10.1145/3174243.3174272
- Ahmed E., Rose J. The effect of LUT and cluster size on deepsubmicron FPGA performance and density. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Mar. 2004, vol. 12, no. 3, pp. 288-298, available at: http://ieeexplore.ieee.org/document/1281800/
- Anderson J.H., Wang Q., Ravishankar C. Raising FPGA logic density through synthesis-inspired architecture. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Mar. 2012, vol. 20, no. 3, pp. 537-550, available at: http://ieeexplore.ieee.org/document/5711708/
- Strogonov A., Tsybin S. Programmiruemaia kommutatsiia PLIS: vzgliad iznutri [Programmable switching FPGA: an inside look], available at: http://www.kit-e.ru/articles/plis/2010_11_56.php (accessed 17 November 2022).
- Vikhorev R. Universal logic cells to implement systems functions. Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2016, pp. 404-406. DOI: 10.1109/EIConRusNW.2016.7448197
- Tyurin S.F. Green Logic: Green LUT FPGA Concepts, Models and Evaluations. Green IT Engineering: Components, Networks and Systems Implementation, 2017, vol. 105, pp. 241-261. DOI: 10.1007/978-3-319-55595-9
- Vikhorev R. Universal logic cells to implement systems functions. Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2016, pp. 404-406. DOI: 10.1109/EIConRusNW.2016.7448197
- Vikhorev R. Improved FPGA logic elements and their simulation. Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2016, pp. 275-280. DOI: 10.1109/EIConRus.2018.8317080
- Tiurin S.F., Prokhorov A.S. Programmiruemoe logicheskoe ustroistvo [Programmable logic device]. Patent Rossiiskaia Federatsiia no. 2637462 (2017).
- Ñîâåòîâ Ñ.È., Òþðèí Ñ.Ô. Ìåòîä ñèíòåçà ëîãè÷åñêîãî ýëåìåíòà, ðåàëèçóþùåãî íåñêîëüêî ôóíêöèé îäíîâðåìåííî. Russ. Technol. J., 2023, no. 11 (3), pp. 46-55, available at: https://doi.org/10.32362/2500-316X-2023-11-3-46-55
- National Instruments, available at: http://www.ni.com/multisim/ (accessed 17 November 2022).
- Microwind & Dsch Version 3.8, available at: https://www.microwind.net/ (accessed 10 May 2023).
REDUCING ELECTRICITY LOSSES IN A NETWORK SECTION BY OPTIMIZING THE VOLTAGE LEVEL USING THE METHOD OF PENALTY FUNCTIONSN.E. Konoplev, B.S. Kompaneets Received: 23.10.2023 Received in revised form: 01.12.2023 Published: 12.01.2024
PDF |
Abstract |
Authors |
References |
Abstract: Losses of electricity during transmission are inevitable and standardized. Excessive losses are a direct economic loss for network companies, so reducing losses is an important task, for which many methods have been developed. The article presents current methods for reducing electricity losses. Despite the widespread use of various methods of combating electricity losses, their level in the electrical networks of the Russian Federation remains quite high. Electricity losses are divided into commercial and technical. Technical losses consist of load power losses and no-load losses. When adjusting the voltage level, these losses change. Purpose: development a method for reducing electricity losses by selecting the optimal voltage of the electrical network using the method of penalty functions. Methods: creation of a special algorithm to determine the optimal voltage level of the electrical network, ensuring a reduction in electricity losses during its transmission and distribution. Optimization is carried out by the method of penalty functions. Results: an analysis was made of the dependence of electricity losses on the voltage level in the electrical network. As the voltage increases, load losses increase, and no-load losses decrease and vice versa. Thus, by regulating the voltage within the permissible range, it is possible to reduce electricity losses. This paper presents an algorithm for selecting the optimal voltage using the penalty function method, which ensures a minimum of electricity losses. An objective function and a penalty function have been developed. A calculation of one feeder of a 10 kV electrical network was carried out, power flows at the beginning and end of the line, voltages at network nodes, as well as load losses and no-load losses in each element of the electrical network under consideration were determined. The optimal voltage was selected for three different modes. The possibility of reducing the level of electricity losses when using this optimization method is shown. Practicalrelevance: the developed method can be implemented and used by electric power companies to reduce electricity losses in high voltage electrical networks.
Keywords: energy efficiency, power losses, voltage regulation, optimization, power supply, penalty functions, electric networks.
Authors: Nikita E. Konoplev (Barnaul, Russian Federation) – Graduate Student of the department of Electrification of production and life of Altai State Technical University named after. I.I. Polzunov (656038, Barnaul, 46,
Lenin ave., e-mail: nikita_konoplev_e51@mail.ru).
Boris S. Kompaneets (Barnaul, Russian Federation) – Ph. D. in Technical Sciences, Associate Professor, Head of the Department of Electrification of Production and Life at Altai State Technical University named after. I.I. Polzunov (656038, Barnaul, 46, Lenin ave., e-mail: kompbs@mail.ru).
References:
- Kazybekova B.A., Sulaimanov B.B. Technical and commercial energy losses in the power supply system and the use of technical means to identify sources of losses. Izvestiya VUZov (Kyrgyzstan), 2011, no. 4, pp. 17-18.
- Zhelezko Iu.S. Vybor meropriiatii po snizheniiu poter' elektroenergii v elektricheskikh setiakh [Selection of measures to reduce electricity losses in electrical networks]. Moscow: Energoatomizdat, 1989, 174 p.
- Konoplev N.E., Kompaneets B.S. Analiz primeneniia metodov i sposobov regulirovaniia napriazheniia v tseliakh snizheniia poter' elektroenergii [Analysis of the application of methods and methods of voltage regulation in order to reduce electricity losses]. Intellektual'naia energetika - 2022. Sbornik materialov Vserossiiskoi nauchno-tekhnicheskoi konferentsii, Barnaul, 22 September 2022. Eds. S.O. Khomutov S.A., V.I. Stashko. Barnaul: Mezhregional'nyi tsentr elektronnykh obrazovatel'nykh resursov, 2022, pp. 304-307.
- Tiguntsev S.G. Development of measures to reduce grid energy losses in the Namangan Region of Uzbekistan. iPolytech Journal, 2022, no. 26 (3), pp. 508-518. DOI: 10.21285/1814-3520-2022-3-508-518
- Mal'tsev E.N. Analiz organizatsionnykh meropriiatiia po snizheniiu poter' elektroenergii v sel'skikh elektricheskikh setiakh [Analysis of organizational measures to reduce electricity losses in rural electrical networks]. Energiia molodosti. Sbornik statei po itogam nauchno-prakticheskoi konferentsii studentov elektroenergeticheskogo fakul'teta, Stavropol', 21 September 2018. Stavropol': AGRUS, 2018, vol. 3, pp. 105-115.
- Zotov S.I. Poteri elektroenergii, ikh posledstviia i metody snizheniia [Electricity losses, their consequences and reduction methods]. Molodezhnye issledovaniia i initsiativy v nauke, obrazovanii, kul'ture, politike. Sbornik materialov KhIII Vserossiiskoi molodezhnoi nauchno-prakticheskoi konferentsii, Birobidzhan, 26-27 April 2018. Birobidzhan: Priamurskii gosudarstvennyi universitet imeni Sholom-Aleikhema, 2018, pp. 25-30.
- Poteri elektroenergii v setiakh [Electricity losses in the networks]. Rosseti Sibir', 2023, available at: https://www.rosseti-sib.ru/potrebitelyam/peredacha-elektricheskoy-energii-doc/obem-peredan-noy-elektroenergii-dlya-tsenoobrazovaniya/poteri-elektroenergii-v-setyakh (accessed 22 August 2023).
- Smirnov A.S. Snizhenie poter' elektroenergii. Optimizatsiia rezhima seti i primenenie tsifrovykh tekhnologii [Reducing energy losses. Optimization of network mode and use of digital technologies]. Elektroenergiia. Peredacha i raspredelenie, 2021, no. 1 (20), pp. 14-18.
- Gadzhiev M.G. Povyshenie tochnosti ucheta poter' moshchnosti na koronu pri operativnoi optimizatsii rezhima EES: spetsial'nost' 05.14.02 “Elektricheskie stantsii i elektroenergeticheskie sistemy” [Increasing the accuracy of accounting for power losses due to corona during operational optimization of the regime of electric power systems]. Ph. D. thesis. Moscow, 2012, 135 p.
- Domyshev A.V. Optimizatsiia normal'nykh elektricheskikh rezhimov elektro-energeticheskikh sistem pri operativnom i avtomaticheskom upravlenii: spetsial'nost' 05.14.02 “Elektricheskie stantsii i elektroenergeticheskie sistemy” [Optimization of normal electrical modes of electric power systems with operational and automatic control]. Ph. D. thesis. Irkutsk, 2020, 188 p.
- Frolov V.Y., Korotkov A.V. On increasing the accuracy of determining the standard electricity losses and the structure of actual losses. Scientific and Technical Statements of the St. Petersburg State Polytechnic University, 2012, no. 1 (142), pp. 41-44.
- Shvedov G.V., Shchepotin A.S. Analysis of errors in the calculation of load losses of electricity in the wires of overhead power lines. Herald MPEI, 2019, no. 6, pp. 75-85.
- Savina N.V. Metody rascheta i analiza poter' elektroenergii v elektricheskikh setiakh [Methods for calculating and analyzing electricity losses in electrical networks]. Blagoveshchensk: Amurskii gosudarstvennyi universitet, 2014, 150 ñ.
- Shvedov G.V. Poteri elektroenergii pri ee transporte po elektricheskim setiam: raschet, analiz, normirovanie i snizhenie [Electricity losses during its transport through electrical networks: calculation, analysis, rationing and reduction]. Ed. Iu.S. Zhelezko. Moscow: Moskovskii energeticheskii institut, 2013, 424 p.
- Pytlak P., Musilek P., Lozowski E., Toth J. Modelling precipitation cooling of overhead conductors. Electric Power Systems Research, 2011, no. 81 (12), pp. 2147-2154. DOI: 10.1016/j.epsr.2011.06.004
- Vyrva A.A., Goryunov V.N., Girshin S.S., Bubenchikov A.A. Refinement of formulas for the analysis of wire temperature in the problems of calculation of power losses. Omsk Scientific Herald, 2010, no. 1, pp. 120-126.
- Douglass D., Chisholm W., G. Davidson, Grant I., Lindsey K., Lancaster M., Lawry D., Waltz P. Real-Time Overhead Transmission-Line Monitoring for Dynamic Rating. IEEE Transactions on Power Delivery, 2016, no. 31 (3), pp. 921p927. DOI: 10.1109/TPWRD.2014.2383915
- Shchepotin A.S. Povyshenie tochnosti raschetov nagruzochnykh poter' elektroenergii v provodakh vozdushnykh linii elektroperedachi: spetsial'nost' 05.14.02 “Elektricheskie stantsii i elektroenergeticheskie sistemy” [Increasing the accuracy of calculations of load losses of electricity in overhead power transmission lines]. Ph. D. thesis. Moscow, 2021, 173 p.
- Mishchenko R.V. Razrabotka programmnogo obespecheniia dlia resheniia zadach kompleksnym metodom shtrafnykh funktsii [Development of software for solving problems using the complex method of penalty functions]. Rossiiskaia nauka v sovremennom mire. Sbornik statei XLIII Mezhdunarodnoi nauchno-prakticheskoi konferentsii, Moskva, 15 ianvaria 2022. Moscow: OOO “Aktual'nost'.RF”, 2022, pp. 58-65.
- Egorova G.E., Zaitseva T.S. Razrabotka po dlia resheniia zadach metodom shtrafnykh funktsii [Development of software for solving problems using the penalty function method]. Interekspo Geo-Sibir', 2020, vol. 7, no. 1, pp. 84-87.
- Kharchistov B.F. Metody optimizatsii [Optimization methods]. Taganrog: Taganrogskii gosudarstvennyi radiotekhnicheskii universitet imeni V.D. Kalmykova, 2004, 140 p.
- Filippova T.A., Sidorkin Iu.M., Rusina A.G. Optimizatsiia rezhimov elektrostantsii i energosistem [Optimization of power plant and energy systems modes]. Novosibirsk: Novosibirskii gosudarstvennyi tekhnicheskii universitet, 2016, 356 p.
- Konoplev N.E., Kompaneets B.S., Nefedov S.F. Development of an algorithm for selecting the optimal voltage of an electric grid section based on the penalty functions method. International Conference on Industrial Engineering, Applications and Manufacturing, 2023, pp. 13-17. DOI: 10.1109/ICIEAM57311.2023.10139150
- Khairullin R.Zh. Razrabotka metodik rascheta poter' elektricheskoi energii v setiakh 6(10) kV s primeneniem sovremennykh programmnykh kompleksov [Development of methods for calculating electrical energy losses in 6(10) kV networks using modern software systems]. Studencheskii vestnik, 2021, no. 46-8 (191), pp. 86-87.
- Levchuk V.E. Avtomatizatsiia podgotovki dannykh elektricheskoi seti dlia raschetov [Automation of electrical network data preparation for calculations]. Aktual'nye problemy nauki i tekhniki - 2018. Materialy natsional'noi nauchno-prakticheskoi konferentsii, Rostov-na-Donu, 12-14 March 2018. Rostov-na-Donu: Donskoi gosudarstvennyi tekhnicheskii universitet, 2018, 274 p.
- Ageev V.A., Rep'ev D.S., Kargin D.N. Poteri elektroenergii. Metody rascheta tekhnicheskikh poter' elektroenergii [Electricity losses. Methods for calculating technical losses of electricity]. Mezhdunarodnyi zhurnal informatsionnykh tekhnologii i energoeffektivnosti, 2022, vol. 7, no. 3-1 (25), pp. 55-60.
- Abdukaiumova A.R. Ispol'zovanie nadstroiki “Poisk resheniia” programmy Excel dlia resheniia zadach lineinogo programmirovaniia [Using the Excel Solution Add-in to Solve Linear Programming Problems]. Materialovedenie, 2019, no. 1 (29), pp. 3-6.
- GOST 32144-2013. Elektricheskaia energiia. Sovmestimost' tekhnicheskikh sredstv elektromagnitnaia. Normy kachestva elektricheskoi energii v sistemakh elektrosnabzheniia obshchego naznacheniia: natsional'nyi standart RF: data vvedeniia 2014-07-01 [GOST 32144-2013. Electrical energy. Electromagnetic compatibility of technical equipment. Standards for the quality of electrical energy in general purpose power supply systems. National standard of the Russian Federation]. Federal'noe agentstvo po tekhnicheskomu regulirovaniiu. Moscow: Standartinform, 2014, 19 p.
JUSTIFICATION OF THE CHOICE OF SIMULATOR FOR RESEARCH OF AUTONOMOUS CONTROL OF UNMANNED DUMP TRUCKI.S. Syrkin, D.M. Dubinkin, V.Yu. Sadovets Received: 23.10.2023 Received in revised form: 01.12.2023 Published: 12.01.2024
PDF |
Abstract |
Authors |
References |
Abstract: The development and implementation of an unmanned mining dump truck into open-pit mining technology is an integral part on the path to creating an automated mining enterprise. It does not seem possible to adapt existing systems that ensure vehicle movement in unmanned mode for a mining dump truck due to the design features and operating conditions. In this situation, the developer of a control system for an unmanned mining dump truck should be helped by a simulator that allows them to simulate the operating conditions and design features of a mining dump truck in terms of installing sensors on board. Purpose of the work: to justify the choice of a simulator for conducting a study of the operation and interaction of autonomous control systems of an unmanned mining dump truck based on multi-criteria analysis. To carry out multi-criteria analysis, alternatives are assessed against a number of criteria using the TOPSIS method. The most accessible simulators of the control system for unmanned vehicles were selected as alternatives, and the formed requirements for the control system for an unmanned mining dump truck were used as evaluation criteria. Distinctive features of the placement of sensors on a mining dump truck have been identified, as well as features of the environment during its movement, on the basis of which the requirements for the simulator used in training neural network algorithms for control systems of created unmanned mining dump trucks have been formulated. Results: based on the obtained analysis results, the CARLA simulator was selected for further scientific research in the development of a mining dump truck control system. It is worth noting that this simulator allows you to create terrain maps and simulate the operating conditions of a mining dump truck at a mining enterprise. One of the main tasks of further research in this area is to determine the influence of the number and installation locations of sensors on the field of view around an unmanned mining dump truck, as well as to prepare data for training neural networks and the environment perception subsystem.
Keywords: autonomous control, simulator, unmanned dump truck.
Authors: Ilya S. Syrkin (Kemerovo, Russian Federation) – Ph. D. in Technical Sciences, Associate Professor Department of Information and Automated Production Systems Kuzbass State Technical University named after T.F. Gorbachev (650000, Kemerovo, 28, Vesennaya str., e-mail: syrkin@kuzstu.ru).
Dmitry M. Dubinkin (Kemerovo, Russian Federation) – Ph. D. in Technical Sciences, Associate Professor, Associate Professor of the Department of Mining Machines and Complexes Kuzbass State Technical University named after T.F. Gorbachev (650,000, Kemerovo, 28, Vesennaya str., e-mail: ddm.tm@kuzstu.ru).
Vladimir Yu. Sadovets (Kemerovo, Russian Federation) – Ph. D. in Technical Sciences, Associate Professor Department of Information and Automated Production Systems Kuzbass State Technical University named after T.F. Gorbachev (650000, Kemerovo, 28, Vesennaya str., e-mail: svyu.pmh@kuzstu.ru).
References:
- Dubinkin D.M., Aksenov V.V., Pashkov D.A. Tendentsii razvitiia bespilotnykh kar'ernykh samosvalov [Trends in the development of unmanned mining dump trucks]. Ugol', 2023, no. 6 (1168), pp. 72-79. DOI: 10.18796/0041-5790-2023-6-72-79
- Chicherin I.V., Fedosenkov B.A., Syrkin I.S. et al. Kontseptsiia upravleniia bespilotnymi transportnymi sredstvami v usloviiakh otkrytykh gornykh rabot [The concept of driving unmanned vehicles in open-pit mining]. Izvestiia vysshikh uchebnykh zavedenii. Gornyi zhurnal, 2020, no. 8, pp. 109-120. DOI: 10.21440/0536-1028-2020-8-109-120
- Chicherin I.V., Fedosenkov B.A. Formirovanie signalov tekushchikh traektorii v avtomatizirovannoi sisteme modal'nogo upravleniia dvizheniem bespilotnykh transportnykh sredstv v usloviiakh otkrytykh gornykh rabot [Generation of signals of current trajectories in an automated modal motion control system for unmanned vehicles in open-pit mining]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Upravlenie, vychislitel'naia tekhnika i informatika, 2021, no. 4, pp. 35-44. DOI: 10.24143/2072-9502-2021-4-35-44
- Shadrin S.S., Ivanov A.M., Varlamov O.O. Experimental autonomous road vehicle with logical artificial intelligence. Journal of Advanced Transportation, 2017, vol. 2017, 2492765 p. DOI: 10.1155/2017/2492765
- Increasing the technical level of mining haul trucks / Yu. Voronov, A. Voronov, S. Grishin, A. Bujankin. E3S Web of Conferences: the Second International Innovative Mining Symposium, Kemerovo, 20-22 November 2017. Kemerovo: EDP Sciences, 2017, vol. 21. DOI: 10.1051/e3sconf/20172103015
- Best open-source autonomous driving datasets, 2023, available at: https://medium.com/analytics-vidhya/15-best-open-source-autonomous-driving-datasets-34324676c8d7
- Folkers A., Rick M., Buskens C. Controlling an autonomous vehicle with deep reinforcement learning. 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 06.2019. DOI: 10.1109/ivs.2019.8814124
- Basu I. et al. Application of Reinforcement Learning for Control of Autonomous Vehicles. 2022 Interdisciplinary Research in Technology and Management (IRTM), 2022, pp. 1-3. DOI: 10.1109/IRTM54583.2022.9791531
- Zhao J., Qu T., Xu F. A deep reinforcement learning approach for autonomous highway driving. IFAC-PapersOnLine, 2020, vol. 53, no. 5, pp. 542-546, available at: https://www.sciencedirect.com/science/article/pii/S240589632100272X; 3rd IFAC Workshop on Cyber-Physical & Human Systems CPHS 2020. DOI: 10.1016/j.ifacol.2021.04.142
- Elallid Ben B. et al. DQN-based reinforcement learning for vehicle control of autonomous vehicles interacting with pedestrians, 2022, no. 11.
- Boashash B., Khan N., Touati S. et al. Measures, performance assessment, and enhancement of TFDs. Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, 2015, pp. 387-452. DOI: 10.1016/B978-0-12-398499-9.00007-8
- Sadovets V.Iu. Anan'ev K.A., Pashkov D.A. Vybor metoda otsenki krepevozvodiashchego modulia geokhoda [Choosing a method for evaluating the geohod mounting module]. Prirodnye i intellektual'nye resursy Sibiri. Sibresurs 2014. Materialy XV Mezhdunarodnoi nauchno-prakticheskoi konferentsii, Kemerovo, 06-07 November 2014. Kemerovo: Kuzbasskii gosudarstvennyi tekhnicheskii universitet imeni T.F. Gorbacheva, 2014, 62 p.
- Gudvin G.K., Grebe S.F., Sal'gado M.E. Proektirovanie sistem upravleniia [Design of control systems]. Moscow: BINOM. Laboratoriia znanii, 2004, 911 p.
- Dosovitskiy A. et al. CARLA: An open urban driving simulator. Proceedings of the 1st Annual Conference on Robot Learning, 2017, pp. 1-16.
- Simcenter Prescan software, 2023, available at: https://plm.sw.siemens.com/en-US/simcenter/autonomous-vehicle-solutions/prescan/ (accessed 10 October 2023).
- Best A. et al. AutonoVi-Sim: autonomous vehicle simulation platform with weather, sensing, and traffic control. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018, pp. 1161-11618. DOI: 10.1109/CVPRW.2018.00152
- Wang T.-H. et al. Learning interactive driving policies via data-driven simulation. 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022.
- Koenig N., Howard A. Design and use paradigms for Gazebo, an open-source multirobot simulator. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 2004, vol. 3, pp. 2149-2154. DOI: 10.1109/IROS.2004.1389727
- Wu C. et al. Flow: Architecture and benchmarking for reinforcement learning in traffic control. CoRR, 2017, vol. abs/1710.05465, arXiv: 1710.05465, available at: http://arxiv.org/abs/1710.05465
- AVSanbox, 2023, available at: https://www.avsandbox.com/ (accessed 10 October 2023).
- Cognata, 2023, available at: https://www.cognata.com/ (accessed 10 October 2023).
- Ansys Autonomous Vehicle Simulation. - 2023, available at: https://www.ansys.com/products/av-simulation (accessed 10 October 2023).
- Morai, Simulation Platform for Everything, 2023, available at: https://www.morai.ai/ (accessed 10 October 2023).
- Alkhanova G. et al. Model of an automated educational and methodological complex based on a semantic network. Journal of Theoretical and Applied Information Technology, 2021, vol. 99, no. 24, pp. 5713-5723. – URL: www.scopus.com
- VISTA simulator. API documentation. - 2023, available at: https://vista.csail.mit.edu/api_documentation/index.html (accessed 10 October 2023).
THE DOMINANT OF INCREASING THE EFFICIENCY OF AIR-COOLING DEVICES FOR THE OIL AND GAS COMPLEXV.N. Makarov, R.I. Khairulin2, N.V. Makarov, R.G. Akhmetov, N.N. Talankin Received: 13.11.2023 Received in revised form: 01.12.2023 Published: 12.01.2024
PDF |
Abstract |
Authors |
References |
Abstract: The basis of the nature-like proportionality in the article is based on the scientific hypothesis about the dominant ratio of the velocity circulation and acceleration of the flow flowing around the profile of the fan impeller blade, as an aerodynamic analogy of the energy conversion mechanism of the rotating fan working flow and the "waving wing" of birds. The purpose of the study: to develop a methodology for designing aerodynamically adaptive fans with a dominant natural similarity for air cooling devices in order to increase the competitiveness of enterprises in the oil and gas industry of the Russian Federation. Methods: the novelty of the research made it possible, on the basis of the above hypothesis using Helmholtz, Cauchy, Kelvin theorems, hydrodynamic analogy of geometric and kinematic diffusivity, modification of the Zhukovsky-Chaplygin-Kutta formula in relation to profiles with sources on their surface, to obtain a mathematical model for calculating additional circulation and the coefficient of nature-like proportionality from the source parameters. Fans created on the basis of the principle of nature-like proportionality are characterized by the fact that they adequately and simultaneously with minimal energy costs create the necessary parameters of cooling air in heat exchangers, implement the concept of optimal ecological technology of subsurface use. Results: it has been experimentally shown that the coefficient of natural proportionality is an analogue of the integral aerodynamic quality of the fan impeller blade profile. The use of the developed mathematical model made it possible to design a profile with distributed sources that has a 45% higher value of the coefficient of nature-like proportionality and, accordingly, the integral coefficient of aerodynamic quality in the range of operating modes of the angle of attack from 0° to 20°.
Keywords: nature-like proportionality, profile, grid, fan, energy efficiency, jet flow control, circulation, source, adaptability, dominant.
Authors: Nikolay V. Makarov (Yekaterinburg, Russian Federation) – Ph. D. in Technical Sciences, Associate Professor, Head of the Department of Mining Mechanics Ural State Mining University (620144, Yekaterinburg,
30, Kuibyshev str., e-mail: mnikolay84@mail.ru).
Vladimir N. Makarov (Yekaterinburg, Russian Federation) – Doctor of Engineering, Professor at the Department of Mining Mechanics Ural State Mining University (620144, Yekaterinburg, 30, Kuibyshev str., e-mail: uk.intelnedra@gmail.com).
Nikolay N. Talankin (Yekaterinburg, Russian Federation) – Graduate Student of the Department of Mining Mechanics Ural State Mining University (620144, Ekaterinburg, 30, Kuibysheva str., e-mail: bakalavr19952020@yandex.ru).
Rustam G. Akhmetov (Zhitikara, Republic of Kazakhstan) – Chief Mechanic JSC "Kostanay Minerals" (110700, Zhitikara, 67, Lenin str.,
e-mail: info@km.kz).
Rustam I. Khairulin (Yekaterinburg, Russian Federation) – Director Housing Development Fund "Uraltransgaz-Zhilstroy" (620026, Yekaterinburg, 95, Kuibysheva str.).
References:
- Rubtsova I.E., Mochalin D.S., Kriukov O.V. Osnovnye napravleniia i zadachi energosberezheniia pri rekonstruktsii KS. Energosberezhenie i avtomatizatsiia elektrooborudovaniia kompressornykh stantsii [The main directions and tasks of energy saving in the reconstruction of CS. Energy saving and automation of electrical equipment of compressor stations]. Ed. O.O. Kriukov. N. Novgorod: Vektor TiS, 2012, vol. 3, 572 p.
- Abakumov A.M., Stepashkin I.P. Research of the adaptive automatic control system at the natural gas air - cooling unit. IEEE Xplore, 2017. DOI: 10/1109/ ICIEAM.2017.8076297
- Makarov V.N., Makarov N.V., Ugol'nikov A.V., Arslanov A.A. Matematicheskaia model' upravleniia lokal'noi diffuzornost'iu adaptivnykh shakhtnykh turbomashin [Mathematical model of control of local diffusivity of adaptive mine turbomachines]. Gornyi informatsionno-analiticheskii biulleten', 2021, no. 11-1, pp. 248-257. DOI: 10.25018/0236_1493_2021_111_0_239
- Osnovnye konkurentnye preimushchestva AVO gaza tipa “Aisberg” [The main competitive advantages of AVO gas type "Iceberg"]. Voronezh: Nauchnaia kniga, 2019, pp. 60-70.
- Makarov N.V., Makarov V.N., Ugol'nikov A.V., Nosyrev M.B. Obosnovanie parametrov i sozdanie vysokoekonomichnykh ventiliatornykh ustanovok apparatov vozdushnogo okhlazhdeniia [Justification of parameters and creation of highly economical fan installations of air cooling devices]. Ustoichivoe razvitie gornykh territorii, 2022, no. 1 (51), pp. 117-125.
- Novakovsky N.S., Bautin S.P. Numerical simulation of shock-free strong compressionof ld gas layer. Journal of Physics: Conference Series, 2017, vol. 894, no. 1, 012067 p. DOI: 10.1088/1742-6596/894/1/12067
- Khvorov G.A. Iumashev M.V. Analiz energosberegaiushchikh tekhnologii po materialam okhlazhdeniem gaza na osnove apparatov vozdushnogo okhlazhdeniia v trasporte gaza PAO “Gazprom” [Analysis of energy-saving technologies based on gas cooling materials based on air cooling apparatuses in the gas transport of Gazprom PJSC]. Territoriia Neftegaz, 2016, no. 9, pp. 3-12.
- Kychkin A., Nikolaev A. IOT-based mine ventilation control system architecture with digital twin. 2020 Internation Conference on Indystrial Engineering, Applications and Manufacturing, ICIEAM 2020, Sochi, 18-22 May 2020. New York: IEEE, 2020, Art. 9111995, 5 p.
- Abakumov A.M., Stepashkin I.P. Research of the adaptive automatic control system at the natural gas air - cooling unit. IEEE Xplore. 2017. DOI: 10/.1109/ICIEAM.2017.8076297
- Kalinin A.F., Fomin A.V. Otsenka effektivnosti rezhimov raboty AVO [Evaluation of the efficiency of AVO operating modes]. Trudy Rossiiskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina, 2011, no. 4 (265), pp. 131-139.
- Ianvarev I.A. Kombinirovannyi sposob regulirovaniia temperaturnykh rezhimov modul'noi ustanovki vozdushnogo okhlazhdeniia gaza [Combined method of temperature control of modular gas air cooling unit]. Omskii nauchnyi vestnik, 2014, no. 22 (130), pp. 161-165.
- Shabanov V.A., Pashkin V.V., Ivashkin O.N. Analiz poter' elektroenergii v elektroprivode apparata vozdushnogo okhlazhdeniia gaza [Analysis of electricity losses in the electric drive of the gas air cooling unit]. Elektrotekhnicheskie i informatsionnye kompleksy i sistemy, 2014, vol. 10, no. 1, pp. 18-24.
- Makarov N.V., Makarov V.N., Ugol'nikov A.V., Nosyrev M.B. Optimizatsiia parametrov ventiliatornykh ustanovok apparatov vozdushnogo okhlazhdeniia gaza [Optimization of parameters of fan installations of gas air cooling devices. Sustainable development of mountain territories]. Ustoichivoe razvitie gornykh territorii, 2021, vol. 13, no. 3 (49), pp. 433-440. DOI: 10.211777/1998-4502-2021-13-3-433-440
- Kosarev N.P., Makarov V.N., Makarov N.V., Bel'skikh A.M. Optimizatsiia parametrov ventiliatornykh ustanovok dlia AVO gaza [Optimization of parameters of fan installations for AVO gas]. Izvestiia vysshikh uchebnykh zavedenii. Gornyi zhurnal, 2021, no. 8, pp. 45-54. DOI: 10.21440/0536-1028-2021-8-45-54
- Davydov S.Y., Valiev N.G., Tayger V.M. Effect of the flow of transported bulk. Materual on design features of a belt conveyor. Refractories and Indystrual Ceramics, 2019, no. 60 (1), pp. 10-13.
- Khvorov G.A., Iumashev M.V. Analiz energosberegaiushchikh tekhnologii po materialam okhlazhdeniia gaza na osnove apparatov vozdushnogo okhlazhdeniia v transporte gaza PAO “Gazprom” [Analysis of energy-saving technologies based on gas cooling materials based on air cooling devices in gas transport of Gazprom PJSC]. Territoriia neftegaz, 2016, no. 91, pp. 127-132.
- Kornilov G., Gazizova O., Bunin A., Bulanov M., Karyakin A.L. Improving the quality of the oxygen-converter shop of metallurgical production. Proceeding - ICOECS 2019: 2019 International Conference on Electrotechical Complexes and Systems, 2019, 8949928 p.
- Makarov N.V., Makarov V.N. Razrabotka additivnoi matematicheskoi modeli i sozdanie na ee osnove vysokonapornykh adaptivnykh ventiliatorov mestnogo provetrivaniia [Development of an additive mathematical model and creation on its basis of high-pressure adaptive fans of local ventilation]. Challenges for Development in Mining Science and Mining Industry. IOP Conf. Series: Earth and Environmental Science, 2019, no. 262, 012045 p. DOI: 10.1088/1755-1315/262/1/012045
- Makarov N.V., Makarov V.N., Lifanov A.V., Ugol'nikov A.V., Tauger V.M. Modifikatsiia vikhrevoi teorii krugovykh reshetok turbomashin [Modification of the vortex theory of circular gratings of turbomachines]. GIAB, 2019, no. 10, pp. 206-214. DOI: 10.25018/0236-1493-2019-09-0-184-194
- Torshizi S.A.M., Benisi A.H., Durali M. Multilevel Optimization of the Spiltter Blade Profile in the Impeller of a Centrufugal Compressor. Scientia Irenica, 2017, no. 24, pp. 707-714.
- Makarov V.N., Makarov N.V., Churakov E.O., Molchanov M.V. Matematicheskaia model' aktivnogo upravleniia tsirkuliatsionnym techeniem v shakhtnykh ventiliatorakh [Mathematical model active control of the circulation flow in shaft fans]. GIAB, 2021, no. 11-1, pp. 239-247. DOI: 10.25018/0236_1493_2021_111_0_239
- Loitsanskii L.G. Mekhanika zhidkosti i gaza [Mechanics of liquid and gas]. 7nd ed. Moscow: Drofa, 2003, 840 p.
- Makarov N.V., Makarov V.N., Franyuk E.E. Development of mathematical model of circular grill of piece-smooth profiles and creation on its basis of gas-sucting fans. 2019 IOP Conf. Ser.: Earth Environ. Sci. 272 032075. DOI: 10.1088/1755-1315/272/3/032075
- IoT-based mine ventilation control system architecture with digita; twin / A. Kychkin, A.Nikolaev // 2020 International Conferense on Industrial Engineering, Applications and Manufacturing (ICIEAM) = ICIEAM 2020: proceedings, Sochi, Russian Federatoin, 18-22 May 2020. – New York: IEEE, 2020. – Art.0111995. – 5 p.
- Torshizi S.A.M., Benisi A., Durali M. Multilevel optimization of the splitter blade profile in the impeller of a centrifugal compressor. Scientia Iranica, 2017, no. 24, pp. 707-714.
- Vanchin A.F. Metody otsenki raboty apparatov vozdushnogo okhlazhdeniia gaza pri roznykh variantakh vkliucheniia ventiliatorov [Methods of evaluating the operation of gas air cooling devices with multiple options for turning on fans]. Neftegazovoe delo. Elektronnyi nauchnyi zhurnal, 2018, no. 3, available at: https://eduherald.ru/ru/article/view?id=19749
- Migachev A.A., Potemkin V.A., Stepashkin I.P. Parametricheskaia identifikatsiia apparata vozdushnogo okhlazhdeniia gaza kak ob"ekta upravleniia [Parametric identification of the gas air cooling apparatus as a control object]. Aktual'nye issledovaniia gumanitarnykh, estestvennykh, obshchestvennyi nauk. Materialy VIII Vserossiiskoi s mezhdunarodnym uchastiem nauchno-prakticheskoi konferentsii. Novosibirsk: OOO “TsRNSI”, 2016, pp. 23-28.
- Nikolaev A.V. Energy-efficient air conditioning in shallow mines. Gornyi Zhurnal, 2017, no. 3, pp. 71-74.
- Brusilovskii I.V. Aerodinamicheskie skhemy i kharakteristiki osevykh ventiliatorov [Aerodynamic schemes and characteristics of axial fans]. Moscow: Mashinostroenie, 1986, 240 p.
- Wang P. Multi - objective design of a transonic turbocharger compressor with reduced noise and increased efficiency. Ph. D. Thesis. UCL University, London, 2017, 213 p.
- Brusilovskii I.V. Aerodinamicheskii raschet osevykh ventiliatorov [Aerodynamic calculation of axial fans]. Moscow: Mashinostroenie, 1986, 288 p.
- Wu D., Yin K., Yin Q., Zhang Õ., Cheng J.., Ge D., Zhang P. Reverse circulation drilling method based on a supersonic nozzle for dust control. Applied sciences (Switzerland), 2017, vol. 7, no. 1, pp. 5-20. DOI: 10.3390/APP7010005
- Torshizi S.A.M., Benisi A.H., Durali M. Numerical Optimization and Manufacturing of the Impeller of a Centrifugal Compessor by Variation of Spiler Blades. ASMVE Turbo Expo: Turbomachinesy Technical Conference and Exposition, Scoil, 13-17 June 2016, pp. 1-7.
- Reverse circulation drilling method based on a supersonic nozzle for dust control / D. Wu, K. Yin, Q. Yin, Zhang, J. Cheng., Ge, P. Zhang // Applied sciences (Switzerland). – 2017. – Vol. 7, no. 1. – P. 5–20. DOI: 10.3390/APP7010005
- MAO Y.F. Numerical Study of Correlation between the Surge of Centrifugal Compressor and the Pipind System. Ph. D, Thesis, {I’an Jiaodong University, Xi’an. (In Chenese) (2016).
- Ivanov A.V., Strizhenok A.V. Efficiency of Dust Suppression with Aerosol Gung=s-Fogging Machines with Air-and-Fluid Jets. Journal of Mining Science, 2017, vol. 53, no. 1, pp. 176-180. DOI: 10.1134/S1062739117011994
- Kovshov S.V., Kocshov V.P. Aerotechnogenic evaluation of the drilling rig operator workplace at the open-pit coal mine. Ecology, Enviromnet and Conservation, 2017, vol. 23, no. 2, pp. 897-902.
CALCULATION AND DESIGN OF A UNIVERSAL ENGINE FOR INSTALLING AN ELECTRIC CENTRIFUGAL PUMP FOR OIL PRODUCTIONM.A. Zaborovtseva, E.A. Chabanov, E.V. Chabanova, K.A. Konev Received: 29.11.2023 Received in revised form: 06.12.2023 Published: 12.01.2024
PDF |
Abstract |
Authors |
References |
Abstract: Nowadays, oil plays a big role in everyday life. The issue of increasing the efficiency of oil production is becoming more and more relevant every year in Russia and around the world and today is one of the important tasks. An oil field usually has many different wells with different flow rates, diameters and depths. Oil also has different viscosities and different dynamic liquid levels. These circumstances significantly complicate the process of oil production, especially if there are a large number of wells, due to the need to calculate and design a specific pumping unit for each of them, driven by a specific, also calculated and designed, engine. This article proposes a progressive way to solve the problem that has arisen, practically not presented in the literature before. The purpose of the research: to investigate the possibility and feasibility of using a universal engine for installing an electric centrifugal pump for the purpose of oil production at any type of wells that exist in the field, as well as to carry out its calculation and design. Methods: taking into account the results of the study and assessment of the state of the oil industry, an analysis of the functioning of a real oil field is carried out in order to determine the feasibility of using a universal engine in its wells. The parameters are calculated and the standard size of a pumping unit for oil production is selected for the subsequent design of a universal asynchronous motor. Results: research has confirmed that the use of a universal asynchronous motor in oil production at various wells is advisable. The use of such an engine will reduce material and financial costs for logistics, maintenance and repair of equipment used in oil production fields. Practical significance: based on real data from the oil and gas production shop No. 8 of Lukoil-Perm LLC, which represents well parameters and oil characteristics, the installations of an electric centrifugal pump and the corresponding parameters of asynchronous motors were calculated, and the parameters and characteristics of a universal asynchronous motor and Its design was carried out in order to increase the efficiency of oil production.
Keywords: oil production, well, asynchronous motor, electrical network, installation of an electric centrifugal pump, universal electric motor.
Authors: Marina A. Zaborovtseva (Perm, Russian Federation) – process engineer, PJSC “Perm Research and Production Instrument-Making Company” (614007, Perm, 25 Oktyabrya str., 106, e-mail: kolpma@yandex.ru).
Evgenii A. Chabanov (Perm, Russian Federation) – Ph. D. in Technical Sciences, Associate Professor, Associate Professor of Department of Electrical Engineering and Electromechanics Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr., e-mail: ceapb@mail.ru).
Evgeniia V. Chabanova (Perm, Russian Federation) – Ph. D. in Pedagogical Sciences, Associate Professor, Associate Professor of Department of Automobiles and Technological Machines Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr., e-mail: jentosina@yandex.ru).
Konstantin A. Konev (Perm, Russian Federation) – Graduate Student of Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr.,); leading power engineer of LUKOIL-PERM (614068, Perm, Lenina str. 62, e-mail: looking_99@mail.ru).
References:
- Antoniadi D.G. et al. Sovremennye tekhnologii intensifikatsii dobychi vysokoviazkoi nefti i otsenka effektivnosti ikh primeneniia [Modern technologies for intensifying the production of high-viscosity oil and assessing the effectiveness of their application]. Moscow, Vologda: Infra-Inzheneriia, 2019, 420 p.
- Urazakov K.R., Mukhin I.A., Bakhtizin R.N., Komkov A.G. Shtangovaia nasosnaia ustanovka [Rod pumping unit]. Patent Rossiiskaia Federatsiia no. 2620183 (2017).
- Konev K.A., Furina A.O., Korotaev A.D., Chabanov E.A. Tsilindricheskii lineinyi ventil'nyi dvigatel' dlia dobychi nefti besshtangovym metodom [Cylindrical linear valve motor for oil production using the rodless method]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 2021, no. 39, pp. 150-168. DOI: 10.15593/2224-9397/2021.3.08
- Chabanov E.A., Oparin D.A., Korotaev A.D. et al. Opyt razrabotki lineinykh elektrodvigatelei v PNIPU [Experience in the development of linear electric motors at PNRPU]. Elektrotekhnicheskie kompleksy i sistemy: materialy I Vserossiiskaia konferentsiia po elektricheskim mashinam v ramkakh Mezhdunarodnoi nauchno-prakticheskoi konferentsii; Ufa, 15-16 December 2022. Ufa: Ufimskii universitet nauki i tekhnologii, 2022, vol. 2, pp. 544-532.
- Chabanov E.A., Korotaev A.D., Oparin D.A. et al. Raschet kharakteristik dvukhinduktornogo lineinogo asinkhronnogo dvigatelia [Calculation of the characteristics of a two-inductor linear asynchronous motor]. Elektrotekhnika, 2022, no. 11, pp. 18-22. DOI: 10.53891/00135860_2022_11_18
- Chabanov E.A., Korotaev A.D., Oparin D.A., Pogudin A.L., Kuleshov P.V. Calculation of the Characteristics of a Two-Inductor Linear-Induction Motor (Asynchronous Motor). Russian Electrical Engineering, 2022, vol. 93, no. 11, pp. 697-701. DOI: 10.3103/S1068371222110037
- Korotaev A.D., Chabanov E.A., Oparin D.A. Raschet magnitnogo polia v bokovykh zonakh lineinogo asinkhronnogo dvigatelia s uchetom vliianiia lobovykh chastei obmotki induktora [Calculation of the magnetic field in the side zones of a linear asynchronous motor taking into account the influence of the frontal parts of the inductor winding]. Elektrotekhnika, 2022, no. 11, pp. 28-32. DOI: 10.53891/00135860_2022_11_28
- Korotaev A.D., Chabanov E.A., Oparin D.A. Calculation of the Magnetic Field in the Side Zones of a Linear Asynchronous Motor Taking into Account the Influence of the Frontal Parts of the Inductor Winding. Russian Electrical Engineering, 2022, vol. 93, no. 11, pp. 708-711. DOI: 10.3103/S1068371222110074
- Shaposhnikov V.V., Tokarev R.O., Korotaev A.D., Chabanov E.A. Raschet tiagovogo usiliia tsilindricheskogo lineinogo ventil'nogo dvigatelia dlia privoda plunzhernogo nasosa [Calculation of the traction force of a cylindrical linear valve motor for driving a plunger pump]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 2019, no. 32, pp. 183-198.
- Chirkov D.A., Korotayev A.D., Chabanov E.A. Improving the efficiency of an electric drive with a cylindrical linear alternating current electronic engine. International Journal of Power Electronics and Drive Systems, 2022, vol. 13, no. 1, pp. 58-67. DOI: 10.11591/ijpeds.v13.i1.pp58-67
- Fisenko V.N. Zhiznennyi tsikl pogruzhnykh tsentrobezhnykh nasosov v vodozabornykh skvazhinakh [Life cycle of submersible centrifugal pumps in water wells]. Vodosnabzhenie i sanitarnaia tekhnika, 2017, no. 7, pp. 54-63.
- Khabibullin M.Ia. Issledovanie vliianiia rezhimnykh parametrov raboty tsentrobezhnogo pogruzhnogo nasosa na ego nadezhnost' [Study of the influence of operating parameters of a centrifugal submersible pump on its reliability]. Oborudovanie i tekhnologii dlia neftegazovogo kompleksa, 2018, no. 2, pp. 57-59.
- Molchanov A.G. Gidroprivodnye shtangovye skvazhinnye nasosnye ustanovki [Hydraulic rod well pumping units]. Moscow: Nedra, 1982, 245 p.
- Khabibullin M.Ia. Ustanovki dlia dobychi nefti s pogruzhnymi dvigateliami [Installations for oil production with submersible motors]. Ufa: Ufimskii gosudarstvennyi neftianoi tekhnicheskii universitet, 2018, 105 p.
- Burmakin A.M. Nizkoskorostnoi dugostatornyi asinkhronnyi dvigatel' dlia stankov-kachalok malodebitnykh neftianykh skvazhin [Low-speed arc motor asynchronous motor for pumping machines of low-yield oil wells]. Ph. D. thesis. Ekaterinburg, 2011, 22 p.
- Sistemy upravleniia elektrotsentrobezhnymi nasosami [Control systems for electric centrifugal pumps], available at: https://studref.com/403413/tehnika/sistemy_upravleniya_elektrotsentrobezhnymi_nasosami (accessed 20 November 2023).
- Beliaev E.F., Tsylev P.N., Shchapova I.N., Shchapov V.A. Pogruzhnye asinkhronnye elektricheskie dvigateli s uluchshennymi ekspluatatsionnymi kharakteristikami [Submersible asynchronous electric motors with improved performance characteristics]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo, 2016, vol. 15, no. 18, pp. 71-79. DOI: 10.15593/2224-9923/2016.18.8
- Mishchenko I.T. Raschety pri dobyche nefti i gaza [Calculations for oil and gas production]. Moscow: Neft' i gaz, 2008, 296 p.
- Mishchenko I.T. Skvazhinnaia dobycha nefti [Borehole oil production]. Moscow: Neft' i gaz, 2015, 816 p.
- Bolovin E.V., Glazyrin A.S. Metod identifikatsii parametrov pogruzhnykh asinkhronnykh elektrodvigatelei ustanovok elektroprivodnykh tsentrobezhnykh nasosov dlia dobychi nefti [Method for identifying the parameters of submersible asynchronous electric motors for installations of electric centrifugal pumps for oil production]. Izvestiia Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2017, vol. 328, no. 1, pp. 123-131.
- Katsman M.M. Elektricheskie mashiny [Electrical engines]. Moscow: KnoRus, 2020, 479 p.
- Vol'dek A.I., Popov V.V. Elektricheskie mashiny. Mashiny peremennogo toka [Electrical engines. AC engines]. Saint Petersburg: Piter, 2008, 350 p.
- Pogruzhnoi elektrodvigatel' PED skhema printsip raboty [raboty [Submersible electric motor SEM: diagram, operating principle], available at: https://remnabor.net/pogruzhnoy-elektrodvigatel-ped-shema-printsip-raboty (accessed 20 November 2023).
- Potapkin V.A., Rotych R.V., Nazikian G.A., Rozhkov V.I. Konstruktsiia i raschet trekhfaznykh asinkhronnykh elektrodvigatelei [Design and calculation of three-phase asynchronous electric motors]]. Novocherkassk, 2009, 171 p.
- Kopylov I.P., Klokov B.K., Morozkin V.P., Tokarev B.F. Proektirovanie elektricheskikh mashin [Design of electrical machines]. Ed. I.P. Kopylov. 4nd ed. Moscow: Vysshaia shkola, 2005, 767 p.
- Solov'ev V.A. Raschet kharakteristik trekhfaznogo asinkhronnogo dvigatelia: metodicheskie ukazaniia k samostoiatel'noi rabote studentov po distsiplinam “Elektrotekhnika i elektronika”, “Osnovy privoda” [Calculation of the characteristics of a three-phase asynchronous motor]. Moscow: Moskovskii gosudarstvennyi tekhnicheskii universitet imeni N.E. Baumana, 2014, 44 p.
PROCUREMENT MANAGEMENT IN ERP CLASS INFORMATION SYSTEMS BASED ON INTEGRATION WITH E-COMMERCE PROCESSESD.A. Tretyakov, V.A. Semenov Received: 31.10.2023 Received in revised form: 30.11.2023 Published: 12.01.2024
PDF |
Abstract |
Authors |
References |
Abstract: E-commerce is one of the highest priority areas in trade, the development of which has been facilitated by the Internet. Significant benefits are provided to both producers and consumers through the sale of goods via the Internet. For manufacturers, one of the priority areas in business management is the ability to sell goods online. The expansion of the customer base, the entry into new sales markets, the collection of analytics, and the making of objective management decisions are enabled as a result. For consumers, the availability of real-time access to the catalog and delivery times of goods is considered to be important, especially for large enterprises, given the significant dependence of business efficiency on delivery times. One of the key trends in the development of the sale of goods via the Internet is the integration of e-commerce and ERP-class information systems, which enables the automation of current business processes and the more efficient management of company resources. Purpose: An analytical review and study of the current level of integration between ERP and e-commerce. The results of the literature review are presented, aiming to examine the current state of the level of integration between the two management tools, providing improvements in the efficiency of procurement activity management, resource planning, and service consumer operations. Additionally, possible methods of integrating ERP and e-commerce, their advantages, disadvantages, and integration requirements have been analyzed. Practical relevance: the establishment of insufficient elaboration of the tasks of integration between e-commerce and standard modules of an ERP-class information system, which is necessary for the implementation of applied software development.
Keywords: ERP, E-commerce, CRM, SCM, SRM, B2B.
Authors: Denis A. Tretyakov (Perm, Russian Federation) – Graduate Student of Department of radio electronics and information protection Perm State University (614068, Perm, 15, Bukireva str., e-mail: denisqie@icloud.com).
Vitaly A. Semenov (Perm, Russian Federation) – Doctor of Physical and Mathematical Sciences, Professor Department of radio electronics and information protection Perm State University (614068, Perm, 15, Bukireva str., e-mail: semenov@psu.ru).
References:
- Topic: e-commerce worldwide, available at: https://www.statista.com/topics/871/online-shopping/ (accessed 03 October 2023).
- Liu Ts. Tsifrovizatsiia upravleniia B2B prodazhami [Digitalization of B2B sales management]. Russian Economic Bulletin, 2023, vol. 6, no. 3, pp. 231-239.
- Kulik V.V., Leonov S.A. Elektronnaia kommertsiia i biznes-modeli b2b, b2c [E-commerce and b2b, b2c business models]. Ekonomika, upravlenie, finansy i turizm. Sbornik nauchnykh trudov po materialam Mezhdunarodnoi nauchno-prakticheskoi konferentsii. Moscow, 2022, pp. 21-28.
- Golovenchik G.G. Sushchnost', klassifikatsiia i osobennosti elektronnoi kommertsii [Essence, classification and features of e-commerce]. Nauka i Innovatsii, 2020, no. 4 (206), pp. 39-45.
- Dobrina M.V., Alekseiko M.D., Tsesko E.E. Rynok elektronnoi kommertsii: sushchnost' i napravleniia sovershenstvovaniia [E-Commerce Market: Essence and Directions for Improvement]. Elektronnyi biznes: problemy, razvitie i perspektivy: materialy XVII Vserossiiskoi nauchno-prakticheskoi internet-konferentsii. Ed. V.V. Davnis. Voronezh, 2019, pp. 119-122.
- Golovenchik G.G. Sushchnost', klassifikatsiia i osobennosti elektronnoi kommertsii [Essence, classification and features of e-commerce]. Nauka i Innovatsii, 2020, no. 5 (207), p. 49-56.
- Federal'nyi zakon ot 05.04.2013 ¹ 44-FZ - redaktsiia ot 28.04.2023 [Federal Law of 04/05/2013 No. 44-FZ from 04/28/2023], Kontur.Normativ, available at: https://normativ.kontur.ru/document?moduleId=1&documented=448138 (accessed 21 May 2023).
- Federal'nyi zakon ot 21.07.2005 ¹ 94-FZ - redaktsiia ot 02.07.2013 [Federal Law of 07/21/2005 No. 94-FZ from 07/02/2013]. Kontur.Normativ, available at: https://normativ.kontur.ru/document?moduleId=1&documentId=206125 (accessed 21 May 2023).
- Federal'nyi zakon ot 18.07.2011 N 223-FZ - Redaktsiia ot 05.12.2022 [Federal Law of 07/18/2011 No. 223-FZ from 12/05/2022]. Kontur.Normativ, available at: https://normativ.kontur.ru/document?moduleId=1&documentId=445524 (accessed 21 May 2023).
- Makeeva T.S. Elektronnaia kommertsiia: chto eto, printsip raboty, vidy elektronnoi kommertsii [E-commerce: what is it, how it works, types of e-commerce]. Aktual'nye voprosy sovremennoi ekonomiki, 2023, no. 2, pp. 20-25.
- Liker J. Dao Toyota: 14 printsipov menedzhmenta vedushchei kompanii mira [The Toyota Way: 14 management principles for the world's leading company]. Moscow: Tochka, 2018, 400 p.
- Matuzenko E.V., Glazunova O.A., Izvarin A.A. CRM-sistemy kak kliuchevoi instrument povysheniia effektivnosti deiatel'nosti internet-torgovli [CRM systems as a key tool for increasing the efficiency of online trading]. Vestnik Belgorodskogo universiteta potrebitel'skoi kooperatsii, ekonomiki i prava, 2021, no. 4 (89), pp. 236-249.
- Golubeva O.L. Analiz funktsional'nykh vozmozhnostei sovremennykh ERP-sistem [Analysis of the functionality of modern ERP systems]. Upravlenie v sovremennykh sistemakh, 2022, no. 3 (35), pp. 43-58.
- Chudov A.V. Vnedrenie CRM (customer relationship management). Preimushchestva i nedostatki [Implementation of CRM (customer relationship management). Advantages and disadvantages]. Modernizatsiia rossiiskoi ekonomiki: prognozy i real'nost'. Sbornik nauchnykh trudov III Mezhdunarodnoi nauchno-prakticheskoi konferentsii. Saint Petersburg: Sankt-Peterburgskii universitet tekhnologii upravleniia i ekonomiki, 2017, pp. 676-678.
- Xin G., Quan L. Research on Implementation of Operation-type CRM in the Environment of E-commerce. International Conference on Information Management, Innovation Management and Industrial Engineering (ICIII), 2010, pp. 511-514.
- Shirochenko N.V., Prutkovenko P.E. Upravlenie otnosheniiami s postavshchikami na baze resheniia SAP SRM [Supplier relationship management based on SAP SRM solution]. Aktual'nye voprosy prava, ekonomiki i upravleniia. Sbornik statei XIII Mezhdunarodnoi nauchno-prakticheskoi konferentsii. Penza: Nauka i prosveshchenie, 2018, pp. 83-85.
- Klochkovich A.V. SRM-sistema v sovremennoi ekonomike Rossii [RM system in the modern Russian economy]. Nauchnyi elektronnyi zhurnal Meridian, 2020, no. 3 (37), pp. 78-80.
- Vakhitov R.A., Logunova N.Iu. Korporativnye informatsionnye sistemy upravleniia tsepiami postavok [Corporate Supply Chain Management Information Systems]. Saint Petersburg: Sankt-Peterburgskii gosudarstvennyi lesotekhnicheskii universitet imeni S.M. Kirova, 2023, pp. 35-37.
- Kartsan P.I. Kontseptsiia SCM i osnova uspeshnogo upravleniia tsepiami [The SCM concept and the basis for successful chain management]. Reshetnevskie chteniia. Materialy XXVI Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posviashchaetsia pamiati general'nogo konstruktora raketno-kosmicheskikh sistem akademika M.F. Reshetneva. Krasnoiarsk: Sibirskii gosudarstvennyi universitet nauki i tekhnologii imeni akademika M.F. Reshetneva, 2022, pp. 552-554.
- Sirotkin A.A. Tsifrovizatsiia upravleniia tsepiami postavok [Igitalization of supply chain management]. Istoriia i perspektivy razvitiia transporta na severe Rossii, 2020, no. 1, pp. 134-138.
- Denisov D.Iu. Sovremennye informatsionnye sistemy podderzhki upravlencheskikh reshenii [Modern information systems for supporting management decisions]. Voprosy innovatsionnoi ekonomiki, 2021, vol. 11, no. 4, pp. 1427-1438.
- Vorob'eva V.R., Romaniuk V.B., Khudiakov D.V. Upravlenie tsepiami postavok (SCM - supply chain management) [Supply chain management (SCM - supply chain management)]. Informatsionnye tekhnologii v nauke, upravlenii, sotsial'noi sfere i meditsine. Sbornik nauchnykh trudov III Mezhdunarodnoi nauchnoi konferentsii. Tomsk: Natsional'nyi issledovatel'skii Tomskii politekhnicheskii universitet, 2016, pp. 640-643.
- Tod N.A. Primenenie logisticheskikh tekhnologii v tsepi postavok [Application of logistics technologies in the supply chains]. Logisticheskie sistemy v global'noi ekonomike, 2022, no. 12, pp. 266-269.
- Wang Y., Shi Y. Analysis on the integration of ERP and e-commerce. AIP Publishing, 2017, vol. 1864, no. 1, available at: https://pubs.aip.org/aip/acp/article/1864/1/020137/628526/Analysis-on-the-integration-of-ERP-and-e-commerce (accessed 21 May 2023).
- Jiang Y. Integration of CRM and ERP in e-commerce environment. International Conference on Management and Service Science, 2009, pp. 1-4.
- Santos F., Martinho R. Architectural Challenges on the Integration of e-Commerce and ERP Systems: A Case Study. 23rd International Conference on Enterprise Information Systems (ICEIS 2021), 2021, pp. 313-319.
- Osipov Ia.V. Kontseptsiia korporativnogo marketpleisa promyshlennogo predpriiatiia [The concept of corporate marketplace of an industrial enterprise]. Korporativnaia Ekonomika, 2022, no. 2 (30), pp. 14-25.
- Khlebovich D.I., Kordina I.V. Spetsializirovannyi marketpleis kak perspektivnyi format elektronnoi kommertsii [Specialized marketplace as a promising format of e-commerce]. Beneficium, 2023, no. 1 (46), pp. 51-59.
- Lu J. ERP and e-commerce association study. Proceedings of the International Conference on Education, Management and Information Technology. Zhengzhou: Atlantis Press, 2015, pp. 656-660.
- Zykova T.B., Morozova M.K. Preimushchestvo i nedostatki sistemy upravleniia zatratami “Tochno v srok” [Advantages and Disadvantages of Just-in-Time Cost Management System]. Sovremennye aspekty ucheta, analiza i audita. Materialy Regional'noi nauchno-prakticheskoi konferentsii. Krasnoiarsk: Sibirskii gosudarstvennyi universitet nauki i tekhnologii imeni akademika M.F. Reshetneva, 2022, pp. 35-38.
RANKING OF OILFIELD CONSUMERS BY PRIORITY OF OUTAGES WHEN THERE IS A SHORTAGE OF ACTIVE POWER IN THE POWER SYSTEM, TAKING INTO ACCOUNT THE POSSIBLE RISK OF FAILURES OF ELECTRICAL GRID EQUIPMENTV.V. Sushkov, V.R. Sushkova, N.N. Samokhina Received: 27.11.2023 Received in revised form: 06.12.2023 Published: 12.01.2024
PDF |
Abstract |
Authors |
References |
Abstract: Currently, automatic frequency shedding (AFS) is used, which, when there is a shortage of active power in the power system, works by sequentially disconnecting specified load volumes (clusters). Reduction of risk of erroneous determination of cluster size is achieved by comparison and ranking of power supply objects by reliability and efficiency of their operation. The difficulties of ranking are due, first of all, to the diversity of types, and secondly, to the difference in units and the variability of data. The purpose of the study is to develop a methodology for calculating the priority of disconnecting oilfield consumers when there is a shortage of active power in the energy system, taking into account the possible risk of failures of electrical grid equipment. Methods: the initial information is the statistical data of operation on failures of the main electrical network equipment. Assessment of probabilities and time of staying in various states of disturbance of normal power supply mode (NPSM) in the absence of a technological reserve is performed on the basis of stochastic Markov circuit model. Results: a graph of the Markov process of the occurrence of NPSM with a predefined state space was developed.
A methodology has been developed for calculating the priority of disconnecting consumers when there is a shortage of active power in the power system, based on a ranking approach. This technique allows you to rank objects of the same name and establishes the relationship of features by calculated rank correlation coefficients. A quantitative assessment of integral indicators was carried out, including a number of cumulative data, the processing of which is difficult. To calculate the final integral indicator of the priority of disconnections of oilfield consumers in the event of a shortage of active power in the energy system, an integral indicator was used, which is the relative sum of ranks. Practical relevance: the developed methodology realizes the possibility of creating a programmable AFS, which allows you to more accurately determine the value of disconnected load and apply the concept and technology of the Smart Grid system, which will not overestimate the value of disconnected load and reduce losses in production technology by 7–9 %.
Keywords: oilfield consumers, priority of outages, shortage of active power, technical condition index (TCI), reliability category, final integral indicator.
Authors: Valery V. Sushkov (Nizhnevartovsk, Russian Federation) – Doctor of Technical Sciences, Professor, Professor of the Department of Energy Nizhnevartovsk State University (628605, Nizhnevartovsk, 11, Dzerzhinsky str., e-mail: sushkovvv50@mail.ru).
Victoria R. Sushkova (Tyumen, Russian Federation) – Graduate Student of the Electrical Power Engineering Department of the Tyumen Industrial University (625027, Tyumen, 70, Melnikaite str., e-mail: vikyantropova@yandex.ru).
Natalya N. Samokhina (Nizhnevartovsk, Russian Federation) – Candidate of Philosophical Sciences, Associate Professor, Associate Professor of the Department of Mass Communications and Tourism of the Nizhnevartovsk State University (628605, Nizhnevartovsk, Mira str., 3b, e-mail: sgnt@nvsu.ru).
References:
- Jalilov R.B., Sitdikov R.A. Graph-analytical method for studying the reliability of electric power systems. Problems of energy and resource saving, Tashkent, 2017, vol. 1-2, pp. 23-29.
- Ershov M., Komkov A., Melik-Shaknazarova I. Categorization of reliability of electrical appliances based on risk assessment. E3S Web of Conferences, 2020, 01024 p. DOI: 10.1051/e3sconf/202021601024
- Gaha M., Chabane B., Komljenovic D., Côté A., Hébert C., Blancke O., Delavari A., Abdulnour G. Global Methodology for Electrical Utilities Maintenance Assessment Based on Risk-Informed Decision Making. Sustainability, 2021, no. 13 (16), pp. 1-23. DOI: 10.3390/su13169091
- Soldusova E.O., Goldshtein V.G., Inahodova L.M., Kazantzev A.A., Pronichev A.V. Analysis of distribution network regimes using innovative electrical equipment. International Youth Scientific and Technical Conference Relay Protection and Automation, RPA 2018, 2018, 8537202 p. DOI: 10.1109/RPA.2018.8537202
- Sushkov V.V., Antropova V.R., Losev F.A., Sukhachev I.S. The scheduling of the alarm limit mode energy consumption taking into account the ability of oilfield consumers to be stable at sudden deficiency of active power in the power system. 14th International IEEE Scientific and Technical Conference Dynamics of Systems, Mechanisms and Machines, Dynamics 2020 - Proceedings, 2020, 14, 9306187 p.
- Beshelev S.D., Gurvich F.G. Ekspertnye otsenki [Expert assessments]. Moscow: Nauka, 1973, 154 p.
- Burba A.V., Binkauskas B.-Iu.B. Raschety pokazatelei nadezhnosti v elektricheskikh setiakh s pomoshch'iu protsessov Markova [Calculations of reliability indicators in electrical networks using Markov processes]. Trudy AN Litovskoi SSR, 1976, series B, vol. 73 (2), pp. 173-179.
- Novoselov Iu.B., Fraishteter V.P., Sushkov V.V. Instruktsiia po otkliucheniiam elektroustanovok neftianykh promyslov Zapadnoi Sibiri. Rukovodiashchii dokument RD39-0147323-802-89-R [Instructions for disconnecting electrical installations of oil fields in Western Siberia. Guiding document RD39-0147323-802-89-R]. Tiumen': Giprotiumenneftegaz, 1990, 65 p.
- Kendal M. Rangovye korreliatsii [Rank correlations]. Moscow: Statistika, 1975, 177 p.
- Korolev S.G., Sin'chugov F.I. Normirovanie nadezhnosti elektricheskikh setei energosistem i sistem elektrosnabzheniia potrebitelei [Standardization of reliability of electrical networks of energy systems and power supply systems for consumers]. Elektricheskie stantsii, 1987, no. 5, pp.44-49.
- Nazarov A.A, Kavchenkov V.P. Razrabotka metodiki otsenki nadezhnosti i prioritetnosti remontov v regional'noi energosisteme s uchetom vozmozhnogo riska [Development of a methodology for assessing the reliability and priority of repairs in the regional power system, taking into account possible risks]. Elektroenergiia. Peredacha i raspredelenie, 2020, no. 3, pp. 50-57.
- Novoselov Iu.B., Rosliakov V.P., Sushkov V.V. Metodika opredeleniia ushcherba ot pereryva elektrosnabzheniia pogruzhnykh ustanovok dobychi nefti [Methodology for determining damage from interruption of power supply to submersible oil production installations]. Mashiny i neftianoe oborudovanie, 1981, no. 4, pp. 4-6.
- Prikaz Minenergo Rossii ot 6 iiunia 2013 g. ¹ 290 “Ob utverzhdenii pravil razrabotki i primeneniia grafikov avariinogo ogranicheniia rezhima potrebleniia elektricheskoi energii (moshchnosti) i ispol'zovaniia protivoavariinoi avtomatiki” [Order of the Ministry of Energy of the Russian Federation dated July 26, 2017 no. 676 “On approval of the methodology for assessing the technical condition of main technological equipment and power transmission lines of power stations and electrical networks”]. Moscow, 2013.
- Prikaz Minenergo RF ot 26.07.2017 ¹ 676 “Ob utverzhdenii metodiki otsenki tekhnicheskogo sostoianiia osnovnogo tekhnologicheskogo oborudovaniia i linii elektroperedachi elektricheskikh stantsii i elektricheskikh setei” [Order of the Ministry of Energy of the Russian Federation dated August 3, 2018 no. 630 “On approval of requirements for ensuring the reliability of electric power systems, reliability and safety of electric power facilities and power receiving installations”]. Moscow, 2017, available at: https://base.garant.ru/ 71779722/
- Prikaz Minenergo RF ot 03.08.2018 ¹ 630 “Ob utverzhdenii trebovanii k obespecheniiu nadezhnosti elektroenergeticheskikh sistem, nadezhnosti i bezopasnosti ob"ektov elektroenergetiki i energoprinimaiushchikh ustanovok” [Order of the Ministry of Energy of the Russian Federation dated July 12, 2018 no. 548 “Rules for preventing the development and elimination of violations of the normal mode of the electrical part of power systems and electric power facilities”]. Moscow, 2018, available at: https://base.garant.ru/72032950/
- Prikaz Minenergo RF ot 12.07.2018 ¹ 548 “Pravila predotvrashcheniia razvitiia i likvidatsii narushenii normal'nogo rezhima elektricheskoi chasti energosistem i ob"ektov elektroenergetiki” [Order of the Ministry of Energy of the Russian Federation dated July 12, 2018 no. 548 “Rules for preventing the development and elimination of violations of the normal mode of the electrical part of power systems and electric power facilities”]. Moscow, 2018, available at: https://www.garant.ru/products/ipo/ prime/doc/71924756/
- Romanov V.S., Gol'dshtein V.G. Metod analiza vidov i posledstvii potentsial'nykh otkazov dlia povysheniia nadezhnosti i effektivnosti predpriiatii neftedobychi [A method for analyzing the types and consequences of potential failures to improve the reliability and efficiency of oil production enterprises]. Dispetcherizatsiia i upravlenie v elektroenergetike. Materialy XIII Vserossiiskoi otkrytoi molodezhnoi nauchno-prakticheskoi konferentsii. Kazan', 2018, pp. 205-209.
- Romanov V.S., Gol'dshtein V.G., Vasil'eva N.S. Razrabotka metodiki otsenki nadezhnosti i prioritetnosti remontov dlia elektrooborudovaniia neftianoi promyshlennosti s uchetom vozmozhnogo riska [Development of a methodology for assessing the reliability and priority of repairs for electrical equipment in the oil industry, taking into account the possible risk]. Elektroenergiia. Peredacha i raspredelenie, 2021, no. 3 (66), pp. 106-116.
- Standart organizatsii OAO “SOEES” STO 59012820.29.240.001-2010 Tekhnicheskie pravila organizatsii v EES Rossii avtomaticheskogo ogranicheniia snizheniia chastoty pri avariinom defitsite aktivnoi moshchnosti (avtomaticheskaia chastotnaia razgruzka) [Organizational standard of JSC “SOEES” STO 59012820.29.240.001-2010 Technical rules for organizing in the Unified Energy System of Russia automatic limitation of frequency reduction in the event of an emergency deficit of active power (automatic frequency unloading)]. Moscow, 2009.
- Sushkov V.V. Fraishteter V.P. Novoselov Iu.B. Opredelenie ushcherba ot narusheniia elektrosnabzheniia ob"ektov neftedobychi Zapadnoi Sibiri [Determination of damage from power supply failure of oil production facilities in Western Siberia]. Promyshlennaia energetika, 1993, no. 2, pp. 16-19.
- Sushkov V.V., Pukhal'skii A.A. Opredelenie trebovanii k nadezhnosti elektrosnabzheniia ob"ektov v neftedobyche Zapadnoi Sibiri [Determination of requirements for the reliability of power supply to oil production facilities in Western Siberia]. Promyshlennaia energetika, 1996, no. 1, pp. 11-14.
- Farkhadzade E.M., Muradaliev A.Z., Abdullaeva S.A. Otsenka, sravnenie i ranzhirovanie pokazatelei operativnoi nadezhnosti vozdushnykh LEP elektroenergeticheskikh sistem [Assessment, comparison and ranking of operational reliability indicators of air power transmission lines of electric power systems]. Glavnyi energetik, 2022, no. 8, pp. 12-21.
- Farkhadzade E.M., Muradaliev A.Z., Abdullaeva S.A., Nazarov A.A. Metody i algoritmy otsenki operativnoi nadezhnosti vozdushnykh LEP elektroenergeticheskikh sistem [Methods and algorithms for assessing the operational reliability of air power lines of electric power systems]. Izvestiia Rossiiskoi akademii nauk. Energetika, 2022, no. 6, pp. 68-80.
- Farkhadzade E.M., Farzaliev Iu.Z., Muradaliev A.Z., Abdullaeva S.A. Sovershenstvovanie metodov povysheniia nadezhnosti ob"ektov elektroenergeticheskikh sistem [Improving methods for increasing the reliability of electrical power system facilities]. Elektrichestvo, 2016, no. 8, pp. 18-28.
- Farkhadzade E.M., Farzaliev Iu.Z., Muradaliev A.Z., Ismailova S.M. Metody i algoritmy sravneniia i ranzhirovaniia nadezhnosti i ekonomichnosti raboty ob"ektov elektroenergeticheskikh sistem [Methods and algorithms for comparing and ranking the reliability and economy of operation of electrical power system facilities]. Elektrichestvo, 2017, no. 8, pp. 4-13.
- Endreni Dzh. Modelirovanie pri raschetakh nadezhnosti v elektroenergeticheskikh sistemakh [Modeling for reliability calculations in electrical power systems]. Ed. Iu.N. Rudenko. Moscow: Energoatomizdat, 1983, 336 p.
DEVELOPMENT OF ELECTRIC DRIVE SYSTEM FOR CONSTRUCTION MACHINE "PILE DRIVER"K.A. Konev, A.G. Smykov, E.A. Chabanov, D.A. Oparin Received: 26.11.2023 Received in revised form: 07.12.2023 Published: 12.01.2024
PDF |
Abstract |
Authors |
References |
Abstract: In the construction industry, work is constantly underway to construct buildings designed for various purposes in the residential and industrial sectors, trade, transport, etc. The basis of any construction project is the foundation, which can be of different types, in particular, pile. The piles provide excellent stability on a variety of soils. The pile driver construction machine, which has various drive systems, is widely used for driving piles. Each type of pile driver construction machine is designed for certain technical and economic conditions and has its own disadvantages and advantages. The article examines the possibility of using a non-standard drive control system for the pile driver construction machine and evaluates the feasibility of its use. Purpose of the research: calculation and design of a cylindrical linear valve motor installed on the mast of the pile driver construction machine, which is proposed to be used as an electric drive for a jackhammer for driving piles into the ground. Methods: based on the results of a comparative analysis of all types of pile driver construction machines, a cylindrical linear valve motor is calculated using the MathCAD environment, as well as a modernized calculation to ensure the required traction force. Results: the calculation of the required traction force of a cylindrical linear valve motor with permanent magnets has been carried out, and a sketch of the electric motor located on the mast of the pile driver construction machine is presented. An electric motor control system has been developed. Practical significance: the proposed electric drive system completely eliminates all the disadvantages of standard pile driver construction machines. The traction force required to lift the hammer is achieved by reducing the weight of the hammer and its metal content. This eliminates the need for mechanisms that play a key role in the operation of standard construction machines. The control system for the electric drive of the machine and the algorithm for its normal operation when driving piles and in emergency mode are presented.
Keywords: cylindrical linear valve motor, drive system, copter, traction force, design.
Authors: Konstantin A. Konev (Perm, Russian Federation) – Graduate Student of Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr.,); leading power engineer of LUKOIL-PERM (614068, Perm, Lenina str. 62, e-mail: looking_99@mail.ru).
Anton G. Smykov (Perm, Russian Federation) – Specialist of the Department of RCT&ES Perm National Research Polytechnic University (614990, Perm, Komsomolsky prospect, 29, e-mail: goodlaike@yandex.ru).
Evgenii A. Chabanov (Perm, Russian Federation) – Ph. D. in Technical Sciences, Associate Professor, Associate Professor of the Department of Electrical Engineering and Electromechanics Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr., e-mail: ceapb@mail.ru).
Denis A. Oparin (Perm, Russian Federation) – Senior lecturer of the Department of Electrical Engineering and Electromechanics Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr.,
e-mail: dlowarp@gmail.com).
References:
- 1. Obrudovanie dlia pogruzheniia svai [Equipment for driving piles], URL: http://les-collegelik.ru
- 2. Shulakov N.V. Elektricheskie mashiny [Electrical machines]. Perm': Permskii gosudarstvennyi tekhnicheskii universitet, 2008, 325 p.
- 3. Vol'dek A.I. Elektricheskie mashiny [Electric cars]. Leningrad: Energiia, 1978, 832 p.
- 4. Konev K.A., Furina A.O., Chabanov E.A. Zamena elektricheskogo dvigatelia v otboinom molotke [Replacing the electric motor in a jackhammer]. InnoTech-2021 - XIII Mezhdunarodnaia nauchno-prakticheskaia konferentsiia; Perm', 15 November - 24 December 2021. Perm': Permskii natsional'nyi issledovatel'skii politekhnicheskii universitet, 2021.
- 5. Kliuchnikov A.T., Korotaev A.D., Shutemov S.V. Modelirovanie tsilindricheskogo lineinogo asinkhronnogo dvigatelia [Modeling of a cylindrical linear asynchronous motor]. Elektrotekhnika, 2013, no. 11, pp. 14-17. Klyuchnikov A.T., Korotaev A.D., Shutemov S.V. Modeling of a cylindrical linear AC electronic motor. Russian Electrical Engineering, 2013, vol. 84, iss. 11, pp. 606-609.
- 6. Ogarkov E.M., Shutemov S.V., Burmakin A.M. Opredelenie glavnykh razmerov lineinykh asinkhronnykh elektrodvigatelei s odnostoronnim induktorom [Determination of the main dimensions of linear asynchronous electric motors with a one-way inductor]. Izvestiia vysshikh uchebnykh zavedenii. Elektromekhanika, 2014, no. 4, pp. 97-100.
- 7. Chirkov D.A., Korotaev A.D., Kliuchnikov A.T. Raschet osnovnykh parametrov tsilindricheskogo lineinogo ventil'nogo dvigatelia po skheme zameshcheniia [Calculation of the main parameters of a cylindrical linear valve motor using an equivalent circuit]. Avtomatizatsiia v elektroenergetike i elektrotekhnike. Materialy II Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii; Perm', 21–22 aprelia 2016. Perm': Permskii natsional'nyi issledovatel'skii politekhnicheskii universitet, 2016, pp. 144-149.
- 8. Shulakov N.V., Shutemov S.V. Metod rascheta elektromagnitnykh protsessov v tsilindricheskom lineinom ventil'nom dvigatele [Method for calculating electromagnetic processes in a cylindrical linear valve motor]. Elektrotekhnika, 2014, no. 11, pp. 18-22. Shulakov N.V., Shutemov S.V. A method for calculating the electromagnetic processes in a cylindrical linear electronic motor. Russian Electrical Engineering, 2014, vol. 85, no. 11, pp. 663-667. DOI: 10.3103/S1068371214110121
- 9. Konev K.A., Furina A.O., Korotaev A.D., Chabanov E.A. Tsilindricheskii lineinyi ventil'nyi dvigatel' dlia dobychi nefti besshtangovym metodom [Cylindrical linear valve motor for oil production using the rodless method]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 2021, no. 39, pp. 150-168. DOI: 10.15593/2224-9397/2021.3.08
- 10. Korotaev A.D., Shulakov N.V., Shutemov S.V. Eksperimental'nye issledovaniia tsilindricheskogo lineinogo ventil'nogo elektrodvigatelia [Experimental studies of a cylindrical linear valve electric motor] Aktual'nye problemy energosberegaiushchikh elektrotekhnologii APEET-2014. Sbornik trudov mezhdunarodnoi nauchno-tekhnicheskoi konferentsii; Ekaterinburg, 17-20 March 2014. Ekaterinburg: UrFU, 2014, pp. 198-200.
- 11. Kliuchnikov A.T., Korotaev A.D., Shulakov N.V., Shutemov S.V. Tsilindricheskii lineinyi ventil'nyi elektrodvigatel' dlia pogruzhnogo besshtangovogo nasosa [Cylindrical linear valve electric motor for a submersible rodless pump]. Avtomatizatsiia v elektroenergetike i elektrotekhnike. Materialy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii; Perm', 24-25 September 2015. Perm': Permskii natsional'nyi issledovatel'skii politekhnicheskii universitet, 2015, pp. 158-162.
- 12. Shulakov N.V., Shutemov S.V. Primenenie tsilindricheskogo lineinogo ventil'nogo dvigatelia v kachestve privoda plunzhernykh neftedobyvaiushchikh agregatov [Application of a cylindrical linear valve motor as a drive for plunger oil production units]. Avtomatizatsiia v elektroenergetike i 109 elektrotekhnike. Materialy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii; Perm', 21-22 April 2016. Perm': Permskii natsional'nyi issledovatel'skii politekhnicheskii universitet, 2016, pp. 161-167.
- 13. Shulakov N.V., Shutemov S.V. Perspektivy ispol'zovaniia tsilindricheskogo lineinogo ventil'nogo dvigatelia v kachestve privoda plunzhernykh neftedobychnykh agregatov [Prospects for using a cylindrical linear valve motor as a drive for plunger oil production units]. Fundamental'nye issledovaniia. Penza: Akademiia estestvoznaniia, 2016, no. 12, pp. 795-799.
- 14. Shutemov S.V. Issledovanie tsilindricheskogo lineinogo ventil'nogo elektrodvigatelia dlia pogruzhnogo besshtangovogo nasosa [Study of a cylindrical linear valve electric motor for a submersible rodless pump]. Fundamental'nye issledovaniia. Penza: Akademiia estestvoznaniia, 2016, no. 12, pp. 800-805.
- 15. Razmery info, razmery otboinykh molotkov [Dimensions info, dimensions of jackhammers], available at: http://razmery.info (accessed 14 April 2023).
- 16. Korotaev A.D., Kliuchnikov A.T., Shutemov S.V., Baibakov M.S. Algoritm upravleniia tsilindricheskim lineinym ventil'nym dvigatelem s postoiannymi magnitami [Control algorithm for a cylindrical linear valve motor with permanent magnets]. Avtomatizatsiia v elektroenergetike i elektrotekhnike, 2015, vol. 1, pp. 184-189.
- 17. Shutemov S.V., Baibakov M.S., Korotaev A.D., Kliuchnikov A.T. Sistema upravleniia tsilindricheskim lineinym ventil'nym dvigatelem vozvratno-postupatel'nogo dvizheniia [Control system for a cylindrical linear valve motor of reciprocating motion]. Informatsionno-izmeritel'nye i upravliaiushchie sistemy, 2015, no. 9, pp. 64-69.
- 18. Timashev E.O., Chirkov D.A., Korotaev A.D. Rabochie kharakteristiki tsilindricheskogo lineinogo ventil'nogo dvigatelia [Performance characteristics of a cylindrical linear valve motor]. Elektrotekhnika, 2018, no. 11, pp. 27-31. Timashev E.O., Chirkov D.A., Korotaev A.D. Operating Characteristics of a Cylindrical Linear Induction Motor. Russian Electrical Engineering, 2018, vol. 89, no. 11, pp. 643-647. DOI: 10.3103/S1068371218110135
|
|