|
|
FPGA LUT IMPLEMENTING A LOGIC FUNCTION AND DECODING A SET OF VARIABLES SIMULTANEOUSLYS.F. Tyurin, S.I. Sovetov Received: 10.07.2023 Received in revised form: 29.07.2023 Published: 22.12.2023
PDF |
Abstract |
Authors |
References |
Abstract: Programmable logic integrated circuits (FPGAs – Field-Programmable Gate Array) have been actively used in the design of digital equipment since the 1980s. Programmable, that is, "flexible" FPGA logic occupies the "golden mean" between a fully software implementation in processors, controllers, microcontrollers and custom, "hard" logic (ASIC - Application-specific integrated circuit). Semi-custom microcircuits, ULA – Uncommitted Logic Array, can only be configured in the factory. Despite the impressive successes, “there is no limit to perfection” of FPGAs, therefore, new approaches are still relevant, for example, in the direction of increasing the number of variables of the FPGA logic element, which is called LUT (Look Up Table), expanding functionality. The LUT computes only one boolean function for a given configuration, so, for example, to implement a decoder for a set of n variables, two to the power of n such LUTs are required. At the same time, such a decoding is implemented implicitly, without issuing a result, only the truth value of the disjunction of the given conjunctions of n variables is given. The aim of the study is to develop and analyze the proposed logical element LUT, which implements a given logical function and decrypts a set of variables at the same time. The research methodology is based on the scientific and methodological apparatus of discrete mathematics, mathematical logic and digital circuitry. As a result of the study, it is planned to obtain a method for implementing logical functions in the LUT with simultaneous decoding of a set of variables. The article proposes patentable technical solutions for logical LUT elements that implement a given logical function and decipher a set of variables at the same time. The results of circuit simulation, evaluation of implementation complexity and time delay in the number of transistors are presented. Examples of a specific implementation with increasing bit depth are considered. The results of circuit simulation, evaluation of implementation complexity and time delay in the number of transistors are presented.
Keywords: Logic Functions, FPGA, LUT, Decoding a Set of Variables.
Authors: Sergey F. Tyurin (Perm, Russian Federation) – Honored Inventor of the Russian Federation, Doctor of Technical Sciences, Professor, Professor at the Department of Automation and Telemechanics Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr., e-mail: tyurinsergfeo@yandex.ru), Professor at the Department of Software Computing Systems Perm State University (614990, Perm, 15, Bukireva str.).
Stanislav I. Sovetov (Perm, Russian Federation) – Graduate Student of the Department of Automation and Telemechanics Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr.,
e-mail: fizikoz@gmail.com).
References:
- Strogonov A., Tsybin S. Programmiruemaia kommutatsiia PLIS: vzgliad iznutri [Programmable switching FPGA: an inside look], available at: http://www.kit-e.ru/articles/plis/2010_11_56.php (accessed 17 November 2022).
- Vikhorev R. Universal logic cells to implement systems functions. Conference of Russian Young Researchers in Electrical and Electronic Engineering. IEEE, 2016, pp. 404-406. DOI: 10.1109/EIConRusNW.2016.7448197
- Vikhorev R. Improved FPGA logic elements and their simulation. Conference of Russian Young Researchers in Electrical and Electronic Engineering. IEEE, 2018, pp. 275-280. DOI: 10.1109/EIConRus.2018.8317080
- Skornyakova A.Yu., Vikhorev R.V. Self-timed LUT Layout Simulation. Conference of Russian Young Researchers in Electrical and Electronic Engineering. IEEE, 2020. pp. 176-179. DOI: 10.1109/EIConRus49466.2020.9039374
- Monther Abusultan, Sunil P. Khatri. A comparison of FinFET based FPGA LUT Texas A&M University, College Station, TX, USA. Published in ACM Great Lakes Symposium on VLSI 2014, available at: Designshttps://dl.acm.org/citation.cfm?doid=2591513.2591596 (accessed 18 November 2022). DOI: 10.1145/2591513.2591596
- Mead C.A., Conway L. Introduction to VLSI Systems, available at: https://www.researchgate.net/publication/23438249_Introduction_to_VLSI_systems (accessed 18 November 2022).
- Intel® Stratix® 10 Logic Array Blocks and Adaptive Logic Modules, available at: User Guidefile:///C:/Users/%D0%9F%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C/Downloads/ug-s10-lab-683699-666917.pdf (accessed 18 November 2022).
- Drozd O., Ivanova O., Zashcholkin K. et al. Checkability important for Fail-Safety of FPGA-based components in critical systems. Intelligent Information Technologies & Systems of Information Security (IntelITSIS) 2021: International, 24-26 March 2021. Khmelnytskyi, Ukraine: IEEE, 2021, pp. 471-480.
- Drozd O. Perebeinos, I., Martynyuk O., Zashcholkin K., Ivanova O., Drozd M. Hidden fault analysis of FPGA projects for critical applications. IEEE International Conference TCSET. Paper 142, Lviv-Slavsko, Ukraine, 2020. DOI: 10.1109/TCSET49122.2020.235591
- Strogonov A., Gorodkov P. Sovremennye tendentsii razvitiia PLIS: ot sistemnoi integratsii k iskusstvennomu intellektu [Modern trends in FPGA development: from system integration to artificial intelligence]. Elektronika: nauka, tekhnologiia, biznes, 2020, no. 4 (195), pp. 46-56.
- Arbuzov I., Strogonov A., Gorodkov P. Primer razrabotki proekta v bazise PLIS 5578TS024 [An example of project development based on FPGA 5578TS024]. Komponenty i tekhnologii, 2019, no. 7 (216). pp. 66-69.
- Strogonov A., Gorodkov P. Obzor PLIS kitaiskikh proizvoditelei [Review of FPGAs from Chinese manufacturers], available at: https://www.elibrary.ru/download/elibrary_48565021_33092934.pdf (accessed 17 November 2022).
- Strogonov A., Gorodkov P. PLIS kompanii Guangdong Gowin Semiconductor Corporation [FPGA from Guangdong Gowin Semiconductor Corporation]. Komponenty i tekhnologii, 2020, no. 1 (222), pp. 84-86.
- Tiurin S.F., Chudinov M.A. FPGA LUT s dvumia vykhodami dekompozitsii po Shennonu [FPGA LUT with two Shannon decomposition outputs]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 2019, no. 29, pp. 136-147.
- Tiurin S.F. Osobennosti arkhitektury Giperfleks [Features of the Hyperflex architecture]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Sistemnyi analiz i informatsionnye tekhnologii, 2018, no. 1, pp. 56-62.
- Danilova E.Iu. Diagnostirovanie logiki PLIS s novymi elementami [Checking FPGA logic with new elements]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 2019, no. 31, pp. 35-50.
- Danilova E.Y. FPGAs Logic Checking Method by Genetic Algorithms. Proceedings of the 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, EIConRus 2020, 2020, pp. 1787-1790.
- National Instruments. Multisim, available at: http://www.ni.com/multisim/ (accessed 18 November 2022).
- Microwind & Dsch Version 3.5, available at: https://www.yumpu.com/en/document/view/40386405/microwind-manual-lite-v35pdf-moodle (accessed 17 November 2022).
- Tyurin S.F. LUT's Sliding Backup. IEEE transactions on device and materials reliability, 2019, vol. 19, pp. 221-225. DOI: 10.1109/TDMR.2019.2898724
- Tyurin S.F. Green Logic: Green LUT FPGA Concepts, models and evaluations. Green IT Engineering: Components, Networks and Systems Implementation, 2017, vol. 105, pp. 241-261. DOI: 10.1007/978-3-319-55595-9
- Tyurin S.F., Vikhorev R.V. A Decoder - look up tables for FPGAs. IJC, Sep. 2021, vol. 20, no. 3, pp. 365-373. DOI: https://doi.org/10.47839/ijc.20.3.2282
DEVELOPMENT OF ELEMENTS OF THE AUTOMATED DESIGN SYSTEM OF SOLAR POWER PLANTSS.V. Mitrofanov, V.V. Petrov Received: 01.06.2023 Received in revised form: 20.07.2023 Published: 22.12.2023
PDF |
Abstract |
Authors |
References |
Abstract: The development of single-page HTML applications allows the user to obtain the required information without resorting to the purchase and installation of licensed software on a personal computer. One of the promising technologies for predicting the operation of a solar power plant is the design of a single–page HTML application using modern programming languages. The purpose of the study: to develop a single–page HTML application as an element of the solar power plant design system for the user to assess the feasibility of investing in their construction for anywhere in the world. The elements of the design system simplify and automate the process by having a user-friendly interface. Methods: modern technologies were used for software implementation: HTML5, BEM, CSS3, JavaScript, TypeScript, React, WebPack, Babel, Redux, Axios. Results: to solve the problem, the authors presented a mathematical model of the application, developed an architecture based on the architectural design pattern of flux, identified and described the main blocks and functional components of the application. A practical result was obtained in the form of a working system for computer–aided design of solar power plants in the format of a single-page HTML application. The advantage of this program lies in its convenient and intuitive interface, which allows you to perform calculations at any point with Internet access. Thanks to the cartographic interface, the user can select any geographical point where the solar power plant will be located and estimate the amount of electricity generation for this point. The estimation of electricity generation is carried out taking into account the optimal angle of inclination of the solar panels relative to the horizontal plane. Practical significance: the developed software allows you to quickly assess the efficiency of the solar station and choose the optimal location of the object.
Keywords: Single page application, react, redux, solar power plant, energy, renewable energy sources, automation, photovoltaic systems.
Authors: Sergey V. Mitrofanov (Orenburg, Russian Federation) – Ph. D. in Technical Sciences, Associate Professor of the Department of Electricity and Heat Power Engineering Orenburg State University (460018, Orenburg, 13, Pobedy ave., e-mail: mitser2002@mail.ru).
Vyacheslav V. Petrov (Orenburg, Russian Federation) – Student of the Orenburg State University (460018, Orenburg, 13, Pobedy ave., e-mail: pvv56@mail.ru).
References:
- Ob utverzhdenii osnovnykh napravlenii gosudarstvennoi politiki v sfere povysheniia energeticheskoi effektivnosti elektroenergetiki na osnove ispol'zovaniia vozobnovliaemykh istochnikov energii na period do 2035 goda: Rasporiazhenie Pravitel'stva Rossiiskoi Federatsii ot 08.01.2009 ¹ 1-r [On approval of the main directions of the state policy in the field of improving the energy efficiency of the electric power industry based on the use of renewable energy sources for the period up to 2035: Decree of the Government of the Russian Federation No. 1-r dated 08.01.2009], available at: https://docs.cntd.ru/document/902137809 (accessed 28 March 2023).
- Vozobnovliaemaia (“al'ternativnaia”) energetika [Renewable ("alternative") energy], available at: http://government.ru/news/44924/ (accessed 28 March 2023).
- Tiun'kov D.A., Sapilova A.A., Gritsai A.S. [et al.] Metody kratkosrochnogo prognozirovaniia vyrabotki elektricheskoi energii solnechnymi elektrostantsiiami i ikh klassifikatsiia [Methods of short-term forecasting of electric power generation by solar power plants and their classification]. Elektrotekhnicheskie sistemy i kompleksy, 2020, no. 3 (48), pp. 4-10. DOI: 10.18503/2311-8318-2020-3(48)-4-10
- Batayneh W., Bataineh A., Soliman I., Hafees S.A. Investigation of a single-axis discrete solar tracking system for reduced actuations and maximum energy collection. Automation in Construction, 2019, vol. 98, pp. 102-109.
- Khatib T., Deria R. East-west oriented photovoltaic power systems: model, benefits and technical evaluation. Energy Conversion and Management. East-west oriented photovoltaic power systems, 2022, vol. 266, 115810 p.
- Yadav S., Panda S.K., Hachem-Vermette C. Optimum azimuth and inclination angle of BIPV panel owing to different factors influencing the shadow of adjacent building. Renewable Energy, 2020, vol. 162, pp. 381-396.
- Babaev B.D. Raschet vyrabotki elektroenergii mestnoi solnechnoi elektrostantsiei pri optimal'nykh parametrakh [Calculation of electricity generation by a local solar power plant with optimal parameters]. Vestnik Dagestanskogo gosudarstvennogo universiteta. Estestvennye nauki, vol. 36, no. 3, pp. 21-28. DOI: 10.21779/2542-0321-2021-36-3-21-28
- Iudaev I.V., Daus Iu.V., Desiatnichenko D.A. [Otsenka grafikov potrebleniia elektricheskoi energii ob"ektov na sel'skikh territoriiakh kak nagruzki solnechnoi elektrostantsii [Assessment of electric power consumption schedules of facilities in rural areas as a load of a solar power plant]. Vestnik agrarnoi nauki Dona, 2018, no. S4, pp. 10-17.
- Shakirov V.A., Iakovkina T.N., Kurbatskii V.G. Metodika otsenki vyrabotki elektroenergii solnechnymi elektrostantsiiami s ispol'zovaniem dannykh mnogoletnikh nabliudenii meteostantsii [Methodology for Assessing Solar Power Generation Using Long-Term Meteorological Station Observations]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 2020, vol. 24, no. 4 (153), pp. 858-875. DOI: 10.21285/1814-3520-2020-4-858-875
- Sokut L.D., Ivanova E.V., Murovskii S.P., Ivanov S.V. Kombinirovannaia programma avtomatizirovannoi sistemy rascheta na EVM parametrov vetro-solnechnoi elektrostantsii [A combined program of an automated computer-based calculation system for the parameters of a wind and solar power plant]. Ekonomika stroitel'stva i prirodopol'zovaniia, 2019, no. 2 (71), pp. 159-167.
- Losev A.S., Massel' A.G. Prognozirovanie solnechnoi radiatsii i imputatsiia dannykh dlia tsifrovogo dvoinika solnechnoi elektrostantsii [Solar radiation prediction and data imputation for the digital twin of a solar power plant]. Informatsionnye i matematicheskie tekhnologii v nauke i upravlenii, 2022, no. 1 (25), pp. 91-101. DOI: 10.38028/ESI.2022.25.1.008
- Bukvina M.A., Bukvina E.A., Faleeva E.V. Razrabotka programmnogo obespecheniia, rasschityvaiushchego prikhod solnechnogo izlucheniia v tochku s zadannymi koordinatami dlia optimizatsii opredeleniia lokatsii stroitel'stva solnechnoi elektrostantsii [Development of software that calculates the arrival of solar radiation at a point with specified coordinates to optimize the location of the construction of a solar power plant]. Transport Aziatsko-Tikhookeanskogo regiona, 2020, no. 2 (23), pp. 10-14.
- Debrin A.S., Semenov A.F., Bastron A.V., Kuz'min P.N. Proektirovanie energoeffektivnykh FSES dlia avtonomnykh sistem elektrosnabzheniia sel'skokhoziaistvennykh potrebitelei Krasnoiarskogo kraia putem ispol'zovaniia grafo-semanticheskoi bazy dannykh energii solnechnogo izlucheniia [Designing energy-efficient FSS for autonomous power supply systems for agricultural consumers of the Krasnoyarsk Territory by using a grapho-semantic database of solar radiation energy]. Izvestiia Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2020, no. 3 (83), pp. 216-221.
- Konovalov Iu.V., Khaziev A.N. Raschet insoliatsii solnechnoi fotoelektricheskoi elektrostantsii s uchetom geolokatsionnykh i pogodnykh parametrov [Calculation of solar photovoltaic power plant insolation taking into account geolocation and weather parameters]. iPolytech Journal, 2022, vol. 26, no. 3, pp. 439-450. DOI: 10.21285/1814-3520-2022-3-439-450
- Kovalev V.Z., Paramzin A.O., Arkhipova O.V. Matematicheskoe modelirovanie fotoelektricheskikh panelei kak sostavliaiushchei kompleksa raspredelennoi generatsii [Mathematical modeling of photovoltaic panels as a component of a distributed generation complex]. Inzhenernyi vestnik Dona, 2022, no. 12 (96), pp. 155-169.
- Mohanty S., Patra P.K., Mohanty A., Viswavandya M., Ray P.K. Artificial intelligence based forecasting & optimization of solar cell model. Optik, 2019, vol. 181, pp. 842-852.
- Bakır H. Comparative performance analysis of metaheuristic search algorithms in parameter extraction for various solar cell models. Environmental Challenges, 2023, vol. 11, 100720 p.
- Tiun'kov D.A., Sapilova A.A., Gritsai A.S. [et al.]. Metody kratkosrochnogo prognozirovaniia vyrabotki elektricheskoi energii solnechnymi elektrostantsiiami i ikh klassifikatsiia [Methods of short-term forecasting of electric power generation by solar power plants and their classification]. Elektrotekhnicheskie sistemy i kompleksy, 2020, no. 3 (48), pp. 4-10. DOI: 10.18503/2311-8318-2020-3(48)-4-10
- Ramirez-Vergara J., Bosman L.B., Leon-Salas W.D., Wollega E. Ambient temperature and solar irradiance forecasting prediction horizon sensitivity analysis. Machine Learning with Applications, 2021, vol. 6, 100128 p.
- Arias Velásquez R.M. A case study of NeuralProphet and nonlinear evaluation for high accuracy prediction in short-term forecasting in PV solar plant. Heliyon, 2022, vol. 8, no. 9, P. e10639.
- Rodríguez F., Martín F., Fontán L., Galarza A. Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power. Energy, 2021, vol. 229, 120647 p.
- Kafka J.L., Miller M.A. A climatology of solar irradiance and its controls across the United States: Implications for solar panel orientation. Renewable Energy. A climatology of solar irradiance and its controls across the United States, 2019, vol. 135, pp. 897-907.
- Bentouba S., Bourouis M., Zioui N., Pirashanthan A., Velauthapillai D. Performance assessment of a 20 MW photovoltaic power plant in a hot climate using real data and simulation tools. Energy Reports, 2021, vol. 7, pp. 7297-7314.
- Mubarak H., Hammoudeh A., Ahmad S., Abdellatif A., Mekhilef S., Mokhlis H., Dupont S. A hybrid machine learning method with explicit time encoding for improved Malaysian photovoltaic power prediction. Journal of Cleaner Production, 2023, Vol. 382, 134979 p.
- Tekhnolain. Podbor solnechnoi elektrostantsii [Technoline. Selection of solar power plant], available at: https://e-solarpower.ru/kalkulyator-vyrabotki-sb/ (accessed 28 March 2023).
- Mitrofanov S.V., Petrov V.V. Programma dlia otsenki sroka okupaemosti solnechnykh panelei dlia chastnogo potrebitelia s proizvol'nym mestoraspolozheniem [A program for estimating the payback period of solar panels for a private consumer with an arbitrary location]. Svidetel'stvo o gosudarstvennoi registratsii programmy dlia EVM no. 2023665981 (2023).
- The power project, available at: https://power.larc.nasa.gov/ (accessed 28 March 28.03.2023).
METHOD OF DETECTION AND RECOGNITION BIOLOGICAL OBJECTS BY ITS OWN ELECTROMAGNETIC EMISSIONSA.A. Aleshkov, G.A. Tsvetkov Received: 30.06.2023 Received in revised form: 20.08.2023 Published: 22.12.2023
PDF |
Abstract |
Authors |
References |
Abstract: Detecting and recognizing intruders is the primary task of physical protection systems (PPS), which is solved by means of detection equipment (DE), which largely determines the reliability of the entire system and, consequently, the degree of protection of the object. Nevertheless, the functioning of PPS is often carried out in conditions of uncertainty and lack of information due to the significant limitations of the applied DE and inadequacy of their realized models of intruders, which determines the need to search for new universal directions of development of DE. As such a direction it is proposed to consider the method of detection and recognition of intruders by their own electromagnetic emissions in the form of broadband chaotic signals arising under the influence of an external informative electromagnetic field. Purpose: development of scientific and methodological apparatus of electromagnetic detection and recognition of biological objects by their own electromagnetic emissions. Results: the physical basis and the concept of electromagnetic detection of biological objects, as well as the mathematical model of this concept and the results of its analytical study are presented. Adequacy of the developed model and the presence of relationship between the characteristics and magnitude of the inherent radiation of the biological object and the intensity of the external electromagnetic field were confirmed by experimental studies. In addition, to increase the efficiency of the detection procedure and the implementation of the recognition procedure, the biobject was considered as an open biological system with certain chaotic modes. Studies confirmed the possibility of recognizing a biological object of a given class, including humans, by the broadband chaotic signals they emit in bifurcation mode under the influence of an external electromagnetic field, which allows the formation of a chaotic rhythm, whose parameters (period and amplitude of the oscillations, the average Hausdorff exponent) act as informative features of the biobject. According to the presented concept, each biological object has a unique electromagnetic image (the dependence of the parameters of the chaos-rhythm on the informative parameter of the external electromagnetic field). The description of this image for a human and provide its recognition.
Keywords: biological object, intruder, electromagnetic fields, detection and recognition, bioradioinformative technology, physical protection.
Authors: Andrey A. Aleshkov (Perm, Russian Federation) – Graduate Student of "Life Safety" department Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr., e-mail: xxg.Andrew.ru@mail.ru).
Gennady A. Tsvetkov (Perm, Russian Federation) – Doctor of Science, Senior Researcher, Professor of "Life Safety" department Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr., e-mail: zvetkov71043@mail.ru).
References:
- Aleshkov A.A., Tsvetkov G.A. Sovremennye problemy obespecheniia fizicheskoi bezopasnosti magistral'nykh truboprovodov [Modern problems of physical safety of trunk pipelines]. Tendentsii razvitiia nauki i obrazovaniia, 2021, no. 70-2, pp. 109-118. DOI: 10.18411/lj-02-2021-66
- Talarico L., Sorensen K., Reniers Genserik, Springael J. Pipeline Security. Securing Transportation Systems. 2015. pp. 281-311. DOI: 10.1002/9781119078203.ch15
- Aleshkov A.A., Tsvetkov G.A. Improving the efficiency of the physical protection system for oil and gas facilities (by the example of trunk pipelines). IOP Conference Series: Earth and Environmental Science. May, 2022, vol. 1021. IOP Publishing. 012031. DOI: 10.1088/1755-1315/1021/1/012031
- Halim S.Z., Yu M., Escobar H., Quddus N. Towards a causal model from pipeline incident data analysis. Process Safety and Environmental Protection, 2020, no. 143, pp. 348-360. DOI: 10.1016/j.psep.2020.06.047
- Komarov V.A., Semenova Z.V., Bronnikov D.A., Nigrei A.A. O strukture sistemy fizicheskoi zashchity magistral'nykh truboprovodov ot prednamerennykh ugroz. [On the structure of the system of physical protection of trunk pipelines against deliberate threats]. Vestnik PNIPU. Geologiia. Neftegazovoe i gornoe delo, 2019, no. 1 (19), pp. 87-100.
- Bondarchuk A.S. Sistema okhrany i oborony vazhnykh gosudarstvennykh ob"ektov i otsenka effektivnosti ee funktsionirovaniia [The system of protection and defense of important state facilities and assessment of the efficiency of its functioning]. Ed. V.P. Gerasimeni. Perm': Permskii voennyi institut vnutrennikh voisk MVD Rossii, 2011, 190 p.
- Vorona V.A., Tikhonov V.A. Tekhnicheskie sistemy okhrannoi i pozharnoi signalizatsii [Technical security and fire alarm systems]. Moscow: Goriachaia liniia-Telekom, 2012, 376 p. (Obespechenie bezopasnosti ob"ektov).
- Bondarchuk A.S., Zarubskii V.G., Basharin A.A. Metodika povysheniia effektivnosti funktsionirovaniia sistemy bezopasnosti ob"ektov osoboi vazhnosti [Methodology for improving the efficiency of the security system for facilities of special importance]. Nauchno-tekhnicheskii vestnik Povolzh'ia, 2022, no. 11, pp. 42-46.
- Khujamatov H., Maxkamov B., Akhmedov N., Lazarev N. Development of a security system based on Zigbee devices. International Conference on Information Science and Communications Technologies (ICISCT), 2022, pp. 1-5. DOI: 10.1109/ICISCT55600.2022.10147017
- Zhang Y., Qi F., Lv H., Liang F., Wang J. Bioradar technology: Recent research and advancements. IEEE Microwave Magazine, Aug, 2019, vol. 20, no. 8, pp. 58-73. DOI: 10.1109/MMM.2019.2915491
- Chubii A.D., Zhukov V.O. Opredelenie vozmozhnosti distantsionnoi personal'noi identifikatsii cheloveka po ego sobstvennym khaoticheskim elektromagnitnym izlucheniiam [Determination of possibility of remote personal identification of a person by his own chaotic electromagnetic radiations]. Perm': OAO SNIB “El'brus”, 2011.
- Deviatkov N.D., Betskii O.V., Golant M.B. Ispol'zovanie kogerentnykh voln v meditsine i biologii [The use of coherent waves in medicine and biology]. Mezhdunarodnaia infosistema po rezonansnym tekhnologiiam, 1998, no. 2.
- Nahar Sabikun, Phan T., Quaiyum Farhan, Ren Lingyun, Fathy A., Kilic O. An electromagnetic model of human vital signs detection and its experimental validation. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, pp. 338-349. DOI: 10.1109/JETCAS.2018.2811339
- Iashin S.A. [et al.]. Biorezonansnye effekty pri vozdeistvii elektromagnitnykh polei: fizicheskie modeli i eksperiment [Bioresonance effects under the influence of electromagnetic fields: physical models and experiment: a monograph]. Ed. A.A. Iashin; NII NMT, NITs “Matriks”. Moscow-Tver-Tula: Triada, 2007, 160 p.
- Subbotina T.I., Tsaregorodtsev I.A., Iashin A.A. Registratsiia medlenno meniaiushchikhsia sostavliaiushchikh integrativnogo elektromagnitnogo polia bioob"ekta [Registration of slowly changing components of the integrative electromagnetic field of a bioobject]. XVIII nauchnaia sessiia, posviashchennaia Dniu radio. Tula, 2001, 58 p.
- Chubii A.D., Zhukov V.O. Elektromagnitnyi obraz cheloveka na osnove normy khaotichnosti sobstvennykh izluchenii v usloviiakh vozdeistviia tekhnogennykh polei okruzhaiushchei sredy [Electromagnetic image of a person on the basis of the norm of randomness of own emissions under the influence of technogenic environmental fields]. Ezhegodnik Rossiiskogo natsional'nogo komiteta po zashchite ot nepozitsioniruiushchikh izluchenii. Moscow: ALLANA, 2006, pp. 172-198.
- Iashin S.A. Sistema registratsii sobstvennykh nizkointensivnykh elektromagnitnykh polei organizma cheloveka [System of registration of own low-intensity electromagnetic fields of human organism]. Vestnik novykh meditsinskikh tekhnologii, 2013, vol. 20, no. 3, pp. 157-163.
- Chubii A.D., Zhukov V.O., Tsvetkov G.A. Bioradioinformativnyi metod otsenki effektivnosti zashchity ot tekhnogennogo elektromagnitnogo izlucheniia [Bioradioinformative method for assessing the effectiveness of protection against anthropogenic electromagnetic radiation]. Problemy i perspektivy ratsional'nogo upravleniia ekspluatatsiei vooruzheniia: materialy IX mezhvuzovskogo. nauchno-tekhnicheskogo seminara (Permskii VI RV). Perm', 2002.
- Marchuk A.V. Osnovy teorii elektromagnitnoi identifikatsii biologicheskikh ob"ektov v ergaticheskikh sistemakh: preprint [Fundamentals of Theory of Electromagnetic Identification of Biological Objects in Ergatic Systems]. Perm': Ural'skoe otdelenie Rossiiskoi akademii nauk, 1998, 95 p.
- Chubii A.D., Zhukov V.O. Tekhnologiia likvidatsii khaosa sobstvennykh khaoticheskikh elektromagnitnykh izluchenii zhivykh organizmov (bioradioinformativnaia tekhnologiia) [Technology of liquidation of chaotic electromagnetic emissions of living organisms (bioradioinformative technology)]. Novye informatsionnye tekhnologii v meditsine, biologii, farmakologii i ekologii. IT+M&E', 2013, pp. 201-203.
- Polezhaev A.A., Borina M.Iu. Prostranstvenno-vremennye struktury v aktivnoi srede, vyzvannye diffuzionnoi neustoichivost'iu [Spatial and temporal structures in the active medium caused by diffusion instability]. Izvestiia vysshikh uchebnykh zavedenii. Prikladnaia nelineinaia dinamika, 2014, vol. 22, no. 2, pp. 116-130. DOI: 10.18500/0869-6632-2014-22-2-116-129
- Gryzlova O.Iu. Biorezonansnye effekty v estestvennykh i iskusstvennykh elektromagnitnykh poliakh kak faktor zhiznedeiatel'nosti [Bioresonance effects in natural and artificial electromagnetic fields as a factor of life activity]. Abstract of Ph. D. Tula, 2005, 19 p.
- Feder E. Fraktaly [Fractals]. Moscow: Mir, 1991, 254 p.
- Marchuk A.V., Tsvetkov G.A. Chelovek i sreda obitaniia: eshche odna skrytaia ugroza bezopasnosti [Man and habitat: another hidden security threat]. Problemy obespecheniia bezopasnosti v promyshlennosti, stroitel'stve i na transporte. Materialy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, 2010, pp. 84-91.
- Chubii A.D. Zakonomernosti i predely snizheniia zhiznesposobnosti i stareniia cheloveka v usloviiakh nevesomosti mnogoletnego kosmicheskogo poleta (bioradioinformativnaia tekhnologiia) [Laws and limits of the reduction of human vitality and aging in weightlessness of multi-year space flight (bioradioinformative technology)]. Novye informatsionnye tekhnologii v meditsine, biologii, farmakologii i ekologii. IT+M&E', 2015, pp. 322-327.
VIRTUAL COMBUSTION CHAMBER TEMPERATURE MEASUREMENT BASED ON FUZZY LOGICV.S. Nikulin, S.A. Storozhev Received: 04.08.2023 Received in revised form: 25.08.2023 Published: 22.12.2023
PDF |
Abstract |
Authors |
References |
Abstract: Virtual meters are software algorithms or models that are used to estimate or predict various parameters based on available data. They can be configured and adapted to various conditions, do not require a physical sensor, can process data in real time and are used to improve the efficiency of functioning and control of various technical objects in such industries as medicine, industry, energy and others. Despite the advantages, virtual temperature meters also have their limitations. They may be less accurate than physical sensors, especially in applications where high measurement accuracy is required. In addition, they can be sensitive to data quality and availability, so careful modeling and calibration is required to achieve the best results using modern approaches. Research goal: the creation of a virtual combustion chamber temperature meter based on fuzzy logic, which provides instantaneous measurement using the values of the gas turbine engine (GTE) parameters. Methods: a new approach to the construction of virtual meters based on fuzzy logic based on the optimization of computational resources is proposed. Simulation is carried out using the MatLab application package in the Simulink simulation environment. Experimental data were provided by one of the leading enterprises in the development and production of gas turbine engine control systems. Results: The developed virtual combustion chamber temperature meter based on fuzzy logic provides instant measurement based on the values of GTE parameters, while meeting the requirements for computational resources and accuracy. Significance: the results of the study can be used to build or modify GTE control systems. The use of a virtual combustion chamber temperature meter based on fuzzy logic instead of a thermocouple-based meter will significantly speed up the measurement process and, consequently, improve the main quality indicators of the GTE automatic control system.
Keywords: combustion chamber, gas turbine engine, virtual meter, chamber temperature, neuro-fuzzy inference system.
Authors: Vyacheslav S. Nikulin (Perm, Russian Federation) – Graduate Student of the Department of Automation and telemechanics of Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr.,
e-mail: kalif23@yandex.ru).
Sergey A. Storozhev (Perm, Russian Federation) – Graduate Student of the Department of Automation and telemechanics of Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr., e-mail: sastorozhev@pstu.ru).
References: 1. Safina E.F. Pirometr dlia izmereniia temperatury lopatki GTD [Pyrometer for measuring GTE blade temperature]. Mavliutovskie chteniia. Materialy XVI Vserossiiskoi molodezhnoi nauchnoi konferentsii; Ufa, 25-27 October 2022. Ufa: Ufimskii gosudarstvennyi aviatsionnyi tekhnicheskii universitet, 2022, vol. 3, pp. 58-64.
2. Nikulin V.S. [et al.] Adaptivnyi virtual'nyi izmeritel' vrednykh veshchestv v kamere sgoraniia GTD s primeneniem nechetkoi logiki [Adaptive virtual meter of harmful substances in the combustion chamber of a gas turbine engine using fuzzy technology]. Trudy Moskovskogo aviatsionnogo instituta: elektronnyi zhurnal, 2020, no. 116, available at: http://www.mai.ru/science/trudy/published.php?ID=48577
3. Smyshliaev A.O., Kutlin N.A., Gil'mutdinov A.M. Issledovanie soderzhaniia vrednykh vybrosov gazoturbinnykh ustanovok [Study of the content of harmful emissions from gas turbine plants]. Nauchnyi zhurnal, 2019, no. 6 (40), pp. 31-32.
4. Kessel'man M.G., Trofimov A.S., Chernyshov V.I., Semin A.A. Eksperimental'noe issledovanie termoelektricheskikh generatorov avtonomnogo pitaniia besprovodnykh datchikov SAU GTD [Experimental study of thermoelectric generators for autonomous power supply of wireless sensors of ACS GTE]. Sistemy avtomaticheskogo upravleniia aviatsionnymi silovymi ustanovkami. Sbornik nauchnykh trudov. Ed. O.S. Gurevich. Moscow: Tsentr. instituta aviatsionnogo motorostroeniia imeni P.I. Baranova, 2020, pp. 113-119.
5. Andrievskaia N.V., Andrievskii O.A., Kuznetsov M.D. [et al.] Neironechetkoe upravlenie vybrosami vrednykh veshchestv aviatsionnogo gazoturbinnogo dvigatelia [Neuro-Fuzzy Control of Emissions of Harmful Substances of an Aviation Gas Turbine Engine]. Mekhatronika, avtomatizatsiia, upravlenie, 2020, vol. 21, no. 6, pp. 348-355. DOI: 10.17587/mau.21.348-355
6. Gol'berg F.D., Gurevich O.S., Zuev S.A., Petukhov A.A. Primenenie bortovoi matematicheskoi modeli dlia upravleniia gazoturbinnym dvigatelem s dopolnitel'noi kameroi sgoraniia []. Vestnik Moskovskogo aviatsionnogo institute, 2019, vol. 26, no. 4, pp. 90-97. DOI: 10.34759/vst-2019-4-90-97
7. Temis Iu.M., Solov'eva A.V., Zhurenkov Iu.N. [et al.] Tsifrovoi dvoinik ustanovki dlia ispytanii tsentrobezhnogo kompressora malorazmernogo GTD [Digital twin of a small GTE centrifugal compressor test facility]. Aviatsionnye dvigateli, 2021, no. 1 (10), pp. 5-16. DOI: 10.54349/26586061_2021_1_5
8. Gurevich O.S. Upravlenie aviatsionnymi gazoturbinnymi dvigateliami [Aircraft Gas Turbine Engine Control]. Moscow: Moskovskii aviatsionnyi institut, 2001, 100 p.
9. Vasil'ev V.I., Il'iasov B.G. Intellektual'nye sistemy upravleniia i kontrolia GTD: problemy i perspektivy [Intelligent control and monitoring systems for gas turbine engines: problems and prospects]. Aviadvigateli
XXI veka. Materialy III Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii. Moscow: ÖÈÀÌ, 2010, pp. 854-855.
10. Kulikov G.G., Thompson H.A. Dynamic modeling of gas turbines: identification, simulation, condition monitoring and optimal control. Advances in Industrial Control. London: Springer-Verlag, 2004, 309 p.
11. Gol'berg F.D., Betenin A.V. Matematicheskie modeli gazoturbinnykh dvigatelei kak ob"ektov upravleniia [Mathematical Models of Gas Turbine Engines as Control Objects]. Moscow: Moskovskii aviatsionnyi institut, 1999, 80 p.
12. Khizhniakov Iu.N., Iuzhakov A.A., Titov Iu.K. Proektirovanie adaptivnogo nechetkogo reguliatora polozheniia dozatora VRD [A Way to Design an Adaptive Fuzzy Controller for the Dispenser Position of an Air-Breathing Engine]. Elektrotekhnika, 2018, no. 11, pp. 6-11.
13. Vereshchikov D.V., Voloshin V.A., Ivashkov S.S., Vasil'ev D.V. Primenenie nechetkoi logiki dlia sozdaniia imitatsionnoi modeli upravliaiushchikh deistvii letchika [Application of fuzzy logic to create a simulation model of the pilot's control actions]. Trudy Moskovskogo aviatsionnogo institute, 2018, no. 99, : http://trudymai.ru/
published.php?ID=91926
14. Storozhev S.A., Iuzhakov A.A., Khizhniakov Iu.N., Nikulin V.S. Selektivnoe upravlenie gazoturbinnym dvigatelem [Selective Control of a Gas-Turbine Engine]. Elektrotekhnika, 2020, no. 11, pp. 18-21.
15. Il'iasov B.G., Vasil'ev V.I., Denisova E.V., Saitova G.A. Samoorganizuiushchaiasia sistema upravleniia GTD [Self-organizing GTE control system]. Mekhatronika, avtomatizatsiia, upravlenie. Trudy Vtoroi Vserossiiskoi nauchno-tekhnicheskoi konferentsii s mezhdunarodnym uchastiem. Ufa, 2005, vol. 1, pp. 277-280.
16. Zhukovskaia E.P., Lebedev M.V. Diagnostika i rekonfiguratsiia podsistem upravleniia gazoturbinnym dvigatelem na osnove nechetkoi logiki [Diagnostics and reconfiguration of gas turbine engine control subsystems based on fuzzy logic]. Aviakosmicheskoe priborostroenie, 2002,
no. 3, pp. 40-44.
17. Kofman V.M. Matematicheskaia model' i programma na EVM dlia osredneniia parametrov neravnomernykh vozdushnykh i gazovykh potokov pri obrabotke rezul'tatov ispytanii GTD i ego uzlov [Mathematical model and computer program for averaging the parameters of non-uniform air and gas flows when processing the test results of gas turbine engines and its components]. Norwegian Journal of Development of the International Science, 2019, no. 26-1, pp. 41-54.
18. Cherkasov B.A. Avtomatika i regulirovanie vozdushno-reaktivnykh dvigatelei [Automation and regulation of jet engines]. Moscow: Mashinostroenie, 1988, 360 p.
19. Nikulin V.S. Modifikatsiia seti Anfis [Modification of the Anfis network]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 2022, no. 42, pp. 178-193. DOI: 10.15593/2224-9397/2022.2.09
20. Babanezhad M., Behroyan I., Marjani A., Shirazian S. Artificial intelligence simulation of suspended sediment load with different membership functions of ANFIS. Neural Computing & Applications, 2020. DOI: 10.1007/s00521-020-05458-6
21. Sadighi M., Motamedvaziri B., Ahmadi H., Moeini A. Assessing landslide susceptibility using machine learning models: a comparison between ANN, ANFIS, and ANFIS-ICA. Environmental Earth Sciences, 2020, vol. 79, no. 24, pp. 1-14. DOI: 10.1007/s12665-020-09294-8
22. Ignat'ev V.V., Solov'ev V.V. Razrabotka ANFIS-sistemy dlia upravleniia neustoichivym nelineinym tekhnicheskim ob"ektom [Development of an ANFIS-system for the control of an unstable non-linear technical object]. Aktual'nye nauchnye issledovaniia v sovremennom mire, 2021, no. 11-12 (79), pp. 94-99.
23. Gostev V.I. Nechetkie reguliatory v sistemakh avtomaticheskogo upravleniia [Fuzzy controllers in automatic control systems]. Kiev: Radiomator, 2008, 972 p.
24. Leonenkov A.V. Nechetkoe modelirovanie v srede MatLab i FuzzyTech [Fuzzy modeling in the MatLab and FuzzyTech]. Saint Petersburg: BKhV-Peterburg, 2005, 736 p.
25. Shtovba S.D. Proektirovanie nechetkikh sistem sredstvami MatLab [Designing fuzzy systems using MatLab]. Moscow: Goriachaia liniia-Telekom, 2007, 288 p.
RESEARCH OF SUPPORTS OF VL 110 KV MADE FROM DIFFERENT MATERIALSL.V. Bykovskaya, A.V. Shtramel Received: 15.05.2023 Received in revised form: 26.08.2023 Published: 22.12.2023
PDF |
Abstract |
Authors |
References |
Abstract: Widespread technical re-equipment of generating power plants, distribution networks and converter equipment is an extremely effective way to ensure uninterrupted power supply to all categories of reliability of power supply to consumers. Supports of 110 kV overhead transmission lines (overhead lines) are one of the most important elements of electrical networks. The key to successful modernization of overhead lines is the correct choice of the material from which the supports are made. The purpose of the study: to develop recommendations for the modernization of overhead power transmission poles. Methods: the traditional method of overhead line design, the program algorithm is based on the fuzzy output of Mamdani. Results: the analysis of scientific and technical literature in the field of the use of 110 kV overhead line supports made of various materials was carried out, and the main advantages and disadvantages of each type of supports considered were determined; double-chain routes of 110 kV overhead lines on reinforced concrete and composite supports were designed; an application program has been developed for the design of double-chain overhead lines, which makes it possible to simplify the initial choice of the minimum cross-section of the AC brand wire and the recommended support material, according to the values of the expected operating current, estimated service life and estimated cost of erecting one linear meter of the overhead line; an overview of the advantages of the introduction of composite supports has been carried out. Thus, during the overhaul of overhead lines, reconstruction of power transmission lines (transmission lines) with expired service life and during the construction of new electrical networks, it is advisable to use supports made of composite materials. Practical significance: the research results can be used in the design of double-chain overhead lines with a voltage of 110 kV.
Keywords: transmission line supports, composite supports, standard service life of supports, unified intermediate supports, fuzzy Mamdani output.
Authors: Lyudmila V. Bykovskaya (Orenburg, Russian Federation) – Ph. D. in Technical Sciences, Associate Professor of the Department of Automated Electric Drive, Electromechanics and Electrical Engineering of the Institute of Energy, Electronics and Communications of Orenburg State University (460018, Orenburg, 13, pr. Pobedi, e-mail: biklud@yandex.ru).
Artem V. Shtramel (Orenburg, Russian Federation) – Master's student of the Department of Electrical and Thermal Power Engineering of Orenburg State University (460018, Orenburg, 13, pr. Pobedi, e-mail: artem4804@gmail.com).
References:
- Urinson Ia.M., Kozhukhovskii I.S., Sorokin I.S. Reformirovanie rossiiskoi elektroenergetiki: rezul'taty i nereshennye voprosy [Reforming the Russian Electricity Industry: Results and Unresolved Issues]. Ekonomicheskii zhurnal Vysshei shkoly ekonomiki, 2020, no. 24 (3), pp. 323-339.
- Riazanov M.A. Sovremennoe sostoianie i perspektivy razvitiia elektroenergetiki v Kuzbasse [The current state and prospects for the development of the electric power industry in Kuzbass]. Nauchno-prakticheskie issledovaniia, 2020, no. 4-3 (27), pp. 103-104.
- Kachura S.V. Elektroenergetika Rossii: sovremennoe sostoianie, problemy i perspektivy razvitiia [Russian electric power industry: current state, problems and development prospects]. Uchenye zapiski Sankt-Peterburgskogo imeni V.B. Bobkova filiala Rossiiskoi tamozhennoi akademii, 2007, no. 2 (28), pp. 432-457.
- Korniukhova A.V. Sostoianie, problemy i perspektivy razvitiia elektroenergetiki Rossii [Status, problems and prospects for the development of the electric power industry in Russia]. Vestnik Rossiiskogo universiteta druzhby narodov, 2013, no. 2, pp. 48-60.
- Zhmurenkov Iu.S., Shamenok V.P., Kulik A.Iu. Opory vozdushnykh linii elektroperedach: naznachenie, vidy, materialy [Supports of overhead power lines: purpose, types, materials]. Aktual'nye problemy energetiki, 2017, pp. 129-132.
- Popov R.V., Savina N.V., Sorokin I.S. Opory vozdushnykh linii v elektricheskikh setiakh novogo pokoleniia [Supports of overhead lines in electric networks of a new generation]. Vestnik Amurskogo gosudarstvennogo universiteta. Estestvennye i ekonomicheskie nauki, 2014, no. 67, pp. 112-115.
- Dineka D.A. Sposob tekhnicheskogo obsluzhivaniia dereviannykh opor vozdushnykh linii elektroperedachi [Method for maintenance of wooden poles of overhead power lines]. Molodezh', nauka, kosmos. Sbornik trudov studentov nauchno-prakticheskoi konferentsii, posviashchennoi Dniu kosmonavtiki, 2021, pp. 137-140.
- Shergunova N.A. Propitannye dereviannye opory - ideal'nyi material dlia vozdushnykh linii elektroperedachi [Impregnated wooden poles are the ideal material for overhead power lines]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki, 2007, no. 2 (20), pp. 163-167.
- Sabitkaramov M.I. Osnovnye prichiny otkaza zhelezobetonnykh opor LEP i ikh avariinosti [The main reasons for the failure of reinforced concrete supports of power transmission lines and their accident rate]. Integratsiia nauki i obrazovaniia. Sbornik statei po materialam mezhdunarodnoi nauchno-prakticheskoi konferentsii, 2017, pp. 75-77.
- Solov'eva A.I., Karpov A.E. Kompozitnye materialy, ispol'zuemye v oblasti vosstanovleniia nesushchei sposobnosti zhelezobetonnykh opor linii elektroperedach [Composite materials used in the field of restoration of the bearing capacity of reinforced concrete poles of power lines]. Inzhenernyi vestnik Dona, 2022, no. 5 (89), pp. 412-421.
- Solov'eva A.I., Georgiev S.V. K voprosu usileniia i vosstanovleniia nesushchei sposobnosti zhelezobetonnykh opor linii elektroperedach i stolbov osveshcheniia [On the issue of strengthening and restoring the bearing capacity of reinforced concrete poles of power lines and lighting poles]. Stroitel'stvo i arkhitektura - 2022. Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii. Nal'chik, 2022, pp. 142-145.
- Kozhageldi B.Zh., Zhanpeisova A.O., Kushumkulov A.S., Abzalov Zh.M. Sravnitel'nyi analiz zhelezobetonnykh opor s kompozitnymi oporami LEP [Comparative analysis of reinforced concrete poles with composite poles for power transmission lines]. Vestnik Kazakhskoi akademii transporta i kommunikatsii imeni M. Tynyshpaeva, 2017, no. 1 (100), pp. 28-34.
- Chushkina V.V. Otsenka dolgovechnosti metallicheskikh konstruktsii opor linii elektroperedach [Assessment of the durability of metal structures of power transmission line poles]. Dolgovechnost' stroitel'nykh materialov, izdelii i konstruktsii. Materialy vserossiiskoi nauchno-tekhnicheskoi konferentsii, posviashchennoi 75-letiiu zasluzhennogo deiatelia nauki Rossiiskoi Federatsii, akademika RAASN, doktora tekhnicheskikh nauk, professora V.P. Seliaeva. Moscow, 2019, pp. 470-476.
- Feoktistov A.A. Otsenka tekhnicheskogo sostoianiia metallicheskikh opor vozdushnykh linii elektroperedachi [Assessment of the technical condition of metal poles of overhead power lines]. Innovatsionnye protsessy v nauchnoi srede. Materialy mezhdunarodnoi (zaochnoi) nauchno-prakticheskoi konferentsii, 2019, pp. 120-123.
- Bashirova E.M., Feoktistov A.A. Povyshenie ekspluatatsionnoi nadezhnosti metallicheskikh opor vozdushnykh linii elektroperedachi [Improving the operational reliability of metal poles of overhead power lines]. Energoeffektivnost' i energobezopasnost' proizvodstvennykh protsessov (EEPP-2019). Sbornik trudov. Tol'iatti, 2019, pp. 20-23.
- Bocharov Iu.N., Zhuk V.V. K voprosu o kompozitnykh oporakh vozdushnykh linii [To the question of composite supports of overhead lines]. Trudy Kol'skogo nauchnogo tsentra Rossiiskoi akademii nauk, 2012, no. 1 (8), pp. 78-85.
- Shpota A.A., Remesnik D.V. Kompozitnye opory [Composite supports]. Sovremennye innovatsii, 2015, no. 2 (2), pp. 37-40.
- Li Han-ming, Deng Shi-cong, Wei Qian-hu, Wu Yu-ning, Xiang Qi-qi. Research on composite material towers used in 110 kV overhead transmission lines. International Conference on High Voltage Engineering and Application. New Orleans, LA, 2010, pp. 572-575.
- Bykovskaia L.V., Shtramel' A.V. Sravnitel'nyi analiz opor linii elektroperedachi [Comparative analysis of transmission line towers]. Innovatsionnaia nauka, 2022, no. 4-2, pp. 44-46.
- Kriukov K.P., Novgorodtsev B.P. Konstruktsii i mekhanicheskii raschet linii elektroperedachi [Designs and mechanical calculation of power lines]. 2 nd ed. Leningrad: Energiia, 1979.
- Kozhevnikov A.N. Raschetno-eksperimental'naia otsenka tekhnicheskogo sostoianiia opor vozdushnykh linii elektroperedachi [Calculation and experimental assessment of the technical condition of overhead power transmission line supports]. Abstract of Ph. D. thesis. Novosibirsk, 2021, 222 p.
- Bykovskaia L.V., Shtramel' A.V. Vybor materiala opor vozdushnykh linii 110 kilovol't [The choice of material for overhead line supports 110 kV]. Innovatsionnaia nauka, 2023, no. 4-2, pp. 26-30.
- Semenova N.G., Vlatskaia L.A. Issledovanie i modelirovanie elektroenergeticheskikh sistem [Research and modeling of electric power systems]. Orenburg: Orenburgskii gosudarstvennyi universitet, 2022, 125 p.
- Bykovskaia L.V., Shtramel' A.V., Selin A.Iu. Preimushchestva i nedostatki razlichnykh tipov opor linii elektroperedachi [Advantages and disadvantages of different types of power transmission towers]. Èííîâàöèîííàÿ íàóêà, 2023, no. 4-2, pp. 22-26.
- Fursanov M.I., Sazonov P.A. Analiz effektivnosti primeneniia kompozitnykh opor v elektricheskikh setiakh Respubliki Belarus' [Analysis of the effectiveness of the use of composite poles in the electrical networks of the Republic of Belarus]. Energetika. Izvestiia vysshikh uchebnykh zavedenii i energeticheskikh ob"edinenii SNG, 2019, no. 1, pp. 15-23.
THREAT ASSESSMENT MODEL FOR SMART HOME SYSTEMSZ.A. Akhmarova, A.I. Zaitov, A.I. Tur Received: 15.05.2023 Received in revised form: 20.08.2023 Published: 22.12.2023
PDF |
Abstract |
Authors |
References |
Abstract: Home automation in modern conditions is an extremely flexible system that the user designs and configures independently, depending on their own needs. However, the inept use of such systems can become a source of a large number of threats. As a rule, it is rather problematic for an ordinary user to assess the risks and threats associated with the use of a smart house, and hiring specialists to solve such problems is quite costly. At the moment there is no ready-made threat assessment model designed for home automation systems, which is a serious barrier for people trying to understand this issue on their own. The purpose of this work is to development of an author's model for assessing threats to smart house systems and methods for its use. The result of the work is an expert system capable of giving advice to the user on measures to ensure the security of his automation tools. Results: The paper presents an algorithm for evaluating smart home threats, proposes a variant of current threats for home smart home systems, a threat assessment model, and also proposes an application implementation option for a user of a home automation system that acts as an assistant in setting up system security. This is aimed at solving the scientific and practical problem of simplifying and optimizing the process of assessing the level of security of a smart home system. The proposed model is formulated for a generalized case, but can be supplemented and modified for a specific case of operating a home automation system.
Keywords: smart home system, information security.
Authors: Zul'fiya A. Akhmarova (Perm, Russian Federation) – Student Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr., e-mail: ZAKhmarova@bK.ru).
Ayrat I. Zaitov (Perm, Russian Federation) – Student Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr.,
e-mail: Zaitov.airat2001@yandex.ru).
Aleksandr I. Tur (Tomsk, Russian Federation) – Ph. D. in Technical Sciences, Department of Automation and telemechanics Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr., e-mail: tur.aleksandr93@mail.ru).
References:
- Ovchinnikov N.A., Misiurina K.V., Rudikova M.N., Maksimova E.A. Formalizovannaia model' informatsionnoi bezopasnosti sistemy “Umnyi dom” [Formalized model of information security of the "Smart House" system]. Aprobatsiia, 2016, no. 1 (40), pp. 49-51.
- Sataev D.G. Ugrozy informatsionnoi bezopasnosti sistemy “Umnyi dom” [Threats to information security of the "Smart Home" system]. Elektronnyi nauchnyi zhurnal, 2019, no. 6 (26), pp. 24-28.
- Bondareva A.D. Model' narushitelia informatsionnoi bezopasnosti v sistemakh tipa “Umnyi dom” [Information security violator model in "Smart home" type systems]. Al'manakh nauchnykh rabot molodykh uchenykh universiteta informatsionnykh tekhnologii, mekhaniki i optiki. XLVII nauchnaia i uchebno-metodicheskaia konferentsiia universiteta informatsionnykh tekhnologii, mekhaniki i optiki; Saint Petersburg, 30 January - 02 February 2018. Saint Petersburg: Sankt-Peterburgskii natsional''nyi issledovatel''skii universitet informatsionnykh tekhnologii, mekhaniki i optiki, 2018, vol. 1, pp. 94-98.
- Melimov A.A. Ugrozy informatsionnoi bezopasnosti v avtomatizirovannykh sistemakh upravleniia tipa “Umnyi dom” [Threats to information security in automated control systems such as “Smart House”]. Bezopasnost' gorodskoi sredy. Materialy IV Mezhdunarodnoi nauchno-prakticheskoi konferentsii; Omsk, 16-18 November 2016. Omsk: Omskii gosudarstvennyi tekhnicheskii universitet, 2017, pp. 365-367.
- Filippov S.A., Salomasova I.A. Primenimost' “umnykh” kolonok v sistemakh tipa “Umnyi” dom [Applicability of “smart” speakers in systems such as “Smart” home]. Teoriia. Praktika. Innovatsii, 2019, no. 4 (40), pp. 29-37.
- Krupnik S.A. Revers inzhiniring protokola aktivatsii Iandeks.Stantsii [Reverse engineering of the Yandex.Station activation protocol], available at: https://habr.com/ru/articles/469435/ (accessed 14 May 2023).
- Belorusov D.I., Koreshkov M.S. Wi-Fi-seti i ugrozy informatsionnoi bezopasnosti Wi-Fi networks and information security threats]. Spetsial'naia tekhnika, 2009, no. 6, pp. 2-6.
- Beletova D.U., Molchanov A.N. Ispol'zovanie standarta IEEE 802.1x dlia zashchity ot NSD [Using the IEEE 802.1x standard for tamper protection]. Elektronnyi zhurnal: nauka, tekhnika i obrazovanie, 2017, no. 1 (10), pp. 6-15.
- Belova T.S., Klochko O.S. Bezopasnost' dannykh, peredavaemykh po seti Wi-Fi [Security of data transmitted over the Wi-Fi network]. Elektronnyi zhurnal: nauka, tekhnika i obrazovanie, 2016, no. 4 (9), pp. 54-61.
- Griazin D.S., Danilova A.A. Bezopasnost' povyshennogo urovnia v setiakh Zigbee [Advanced Security in ZIgbee Networks]. Perspektivy razvitiia informatsionnykh tekhnologii, 2014, no. 17, pp. 90-94.
- Lysov D.A., Filin A.A., Chaiko A.A. Organizatsiia bezopasnosti pri ispol'zovanii protokola besprovodnoi peredachi dannykh Zigbee [Organization of security when using the zigbee wireless data transfer protocol]. Moia professional'naia kar'era, 2020, vol. 3, no. 11, pp. 15-21.
- Desnitskii V.A., Kotenko I.V. Modelirovanie i analiz intsidentov bezopasnosti mobil'noi kommunikatsionnoi samoorganizuiushcheisia seti na baze protokola ZigBee [Modeling and analysis of security incidents of a mobile communication self-organizing network based on the ZigBee protocol]. Materialy Mezhdunarodnoi konferentsii po miagkim vychisleniiam i izmereniiam, 2017, vol. 2, pp. 39-42.
- Malykh D.A., Kirillova Iu.S. Sistema upravleniia ustroistvami “umnogo doma” s ispol'zovaniem golosovykh komand [Smart home device control system using voice commands]. Molodoi uchenyi, 2017, no. 19 (153), pp. 60-64.
- Eremenko V.O., Molodiakov S.A. Upravlenie umnym domom s pomoshch'iu dialogovykh komand golosovogo upravleniia [Smart home control with voice commands]. Sovremennye tekhnologii v teorii i praktike programmirovaniia. Sbornik materialov konferentsii; Saint Petersburg, 23 April 2020. Sankt-Peterburgskii politekhnicheskii universitet Petra Velikogo; Dell Technologies; EPAM Systems. Saint Petersburg: Politekh-press, 2020, pp. 17-18.
- Efremov V.M. K voprosu ispol'zovaniia golosovykh pomoshnikov v umnom dome [On the issue of using voice assistants in a smart home]. Liga molodykh uchenykh. Sbornik statei mezhdunarodnoi nauchno-prakticheskoi konferentsii; Penza, 27 March 2023. Penza: Nauka i prosveshchenie (IP Guliaev G.Iu.), 2023, pp. 27-29.
- Golosovoi pomoshchnik sekretar' [Voice assistant secretary]. Svidetel'stvo o gosudarstvennoi registratsii programmy dlia EVM no. 2020661551 (2020).
- Khaliullin A.V. Navyk Alisy na serverless v Yandex.Cloud [Alice's skill on serverless in Yandex.Cloud], available at: https://habr.com/ru/articles/570470/ (accessed 14 May 2023).
- Kliuev L.V. Kak ustroena Alisa. Lektsiia Iandeksa [How is Alice. Yandex lecture], available at: https://habr.com/ru/companies/yandex/articles/349372/ (accessed 14 May 2023).
- Andreev D.O., Grigor'ev I.I., Ismagilov R.M. [et al.] Modul' NeoMe dlia programmnogo produkta «Umnoe zerkalo» ArtikMe PRO [NeoMe module for the ArtikMe PRO Smart Mirror software product]. Svidetel'stvo o gosudarstvennoi registratsii programmy dlia EVM no. 2022610973 (2022).
- Agadzhanov M.V. Proekt Reflecty: zerkalo kak chast' umnogo doma [Reflecty project: a mirror as part of a smart home], available at: https://habr.com/ru/articles/392119/ (accessed 14 May 2023).
- Alexandrov V.A., Desnitsky V.A., Chaly D.Y. Design and security analysis of a fragment of internet of things telecommunication system. Àutomatic control and computer sciences, 2019, vol. 53, no. 7, pp. 851-856. DOI: 10.3103/S0146411619070241
- Kushnir I., Malykhin O. Functional and methodological subsystems of content transformations of operating systems for enterprises-stakeholders in the “smart House” projects. International Independent Scientific Journal, 2022, no. 41, pp. 10-15. DOI: 10.5281/zenodo.6980262
- Dokhnyak B., Vysotska V. Intelligent smart home system using amazon alexa tools // CEUR Workshop Proceedings: 3, Lviv-Shatsk, 05-06 June 2021. Lviv-Shatsk, 2021, pp. 441-464.
- Lin P.C., Yankson B., Chauhan V., Tsukada M. Building a speech recognition system with privacy identification information based on Google Voice for social robots. The Journal of Supercomputing, 2022, vol. 78, pp. 15060-15088. DOI: 10.1007/s11227-022-04487-3
- Gladence L.M., Anu V.M., Revathy S., Jeyanthi P. Security management in smart home environment. Soft Computing, 2021. DOI: 10.1007/s00500-021-06054-z
DEVELOPMENT OF AGILE AND LEAN METHODOLOGY IN AN AIRCRAFT ENGINE CONSTRUCTION ENTERPRISEA.G. Tashkinov Received: 01.07.2023 Received in revised form: 13.09.2023 Published: 22.12.2023
PDF |
Abstract |
Authors |
References |
Abstract: The fast-paced world needs a new kind of leadership and leadership. This thesis emphasizes the dynamism and innovative orientation of projects and programs for the development of the production and economic system, digital transformation of the enterprise based on the development of project management methodology. As the world rapidly transforms based on updated knowledge, a new generation of leaders with new competencies in the development and implementation of information and communication technologies is needed. Today, when managing projects, managers are faced with new requirements for high maneuverability, flexibility, and prompt provision of the main workshops of aircraft engine manufacturing enterprises with operational information, but quite effective and manageable. This project management based on flexible methodologies should contribute to the continuous improvement of operational efficiency of aircraft engine manufacturing enterprises. One of the solution methods, in our opinion, is the systematization of well-founded conceptual approaches to the development of the production and economic system for the development of project management methodology. Solving this problem will significantly improve the project activities of the enterprise, the innovative focus of projects and programs for the development of the production and economic system of aircraft engine manufacturing enterprises. Purpose of the study: to develop a project management methodology that involves a combination of classical and adaptive methodologies to create a hybrid model that best suits IT solutions. Methods: general methodological approaches to project management are considered, management tools of lean and active production methodologies are used. Results: conclusions were drawn during the research process. The main focus of the Lean methodology is on reducing costs in production, reducing losses while maximizing customer value. The Lean methodology is aimed at eliminating unnecessary defects, functions, procedures, etc. The Lean methodology has clear recommendations and descriptions for the use of certain tools. At the same time, Agile is a flexible methodology, a set of methods, values and principles focused on adaptability and readiness to change in conditions of uncertainty in order to improve the quality of the final product. By using Agile and Lean methodologies as part of the implementation of development projects in the main areas, we ensure the coordinated work of all structural divisions, which allows us to organize effective activities of the enterprise when making management decisions. The author has developed a project management methodology that allows improving the results of a problem-oriented project , providing greater flexibility, adaptability and quality of management decisions. The outcome of this study is a comparison of Agile and Lean methodologies and their impact on project constraints, as well as the number of empirical studies that support them. The results of this study can be used by researchers to identify research gaps and by practitioners to make informed decisions regarding the implementation of Agile and Lean methodologies.
Keywords: agile manufacturing, lean manufacturing, hybrid model, IT solutions, kanban, project management methodology, processes, production and economic system, aircraft engine manufacturing enterprise, sprint, scrum, results.
Authors: Aleksey G. Òashkinov (Perm, Russian Federation) – Head of the Coordinating Methodological Center for the Implementation of the Digital Economy, Perm plant Mashinostroitel; Associate Professor, Dept. of Economics and Management of Industrial Production Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr., e-mail: alekss.perm@gmail.com).
References:
- Bobovnikova A.O. Agile-strategii v upravlenii IT-proektami i ikh vklad v formirovanie biznes-strategii na rynke SShA [Agile strategies in IT project management and their contribution to the formation of a business strategy in the US market]. Finansovyi vestnik, 2023, no. 2 (61), pp. 85-89.
- Tashkinov A.G. Ispol'zovanie kontseptsii berezhlivogo i aktivnogo proizvodstva v kontekste upravleniia virtual'noi real'nosti v aviadvigatelestroitel'nom predpriiatii [Using the concept of lean and active production in the context of virtual reality management in an aircraft engine building enterprise]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Aerokosmicheskaia tekhnika, 2022, no. 71, pp. 201-209. DOI: 10.15593/2224-9982/2022.71.22
- Inozemtsev A.A., Usanin M.V., Mingalev S.V., Khudiakov D.S., Popov E.A., Pimenov K.N. Gazodinamicheskoe trekhmernoe modelirovanie raboty dvigatelia PD-14 na vzletnom rezhime [High fidelity 3D simulation of turbofan engine PD-14 on wing during take-off]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Aerokosmicheskaia tekhnika, 2022, no. 71, pp. 91-98. DOI: 10.15593/2224-9982/2022.70.10
- Eltyshev D.K. Intellektual'nye tekhnologii v organizatsii protsessa ekspluatatsii elektrotekhnicheskogo oborudovaniia [Intelligent technologies in the electrical equipment operation process organizatios]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 2022, no. 43, pp. 119-135. DOI: 10.15593/2224-9397/2022.3.07
- Antonov V.V., Konev K.A., Kulikov G.G. Sistema podderzhki priniatiia reshenii na osnove formalizovannoi tsifrovoi situatsionno-ontologicheskoi modeli audita kachestva [Decision support system based on a formalized digital situational-ontological model of quality audit]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 2022, no. 42, pp. 65-90. DOI: 10.15593/2224-9397/2022.2.04
- Kutergin V.A. Biznes-inzhiniring. Model'naia interpretatsiia upravleniia izmeneniiami [Business engineering. Model interpretation of change management]. Saint Petersburg: Lan', 2022, 396 p.
- Temichev A.A., Faizrakhmanov R.A. Analiticheskii obzor sredstv avtomatizatsii testirovaniia proizvoditel'nosti primenitel'no k sistemam monitoringa [Analytical review of performance testing automation tools as applied to monitoring systems]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 2015, no. 15, pp. 117-133.
- Poppendieck M., PoppendieckT. Lean software development: An agile toolkit. Addison-Wesley, Boston, 2003.
- Fogelstrom N.D., Gorschek T., Svahnberg M., Olsson P. The impact of agile principles on market-driven software product development. J. Softw. Maint. Evol.: Res. Pract., 2010, 22, pp. 53-80.
- Byrd Terry Anthony, Douglas E. Turner. Measuring the flexibility of information technology infrastructure: exploratory analysis of a construct. Journal of Management Information Systems, 2000, vol. 17, no. 1, pp. 167-208.
- Sutherland Jeff. Scrum: the art of doing twice the work in half the time hardcover. September 30, 2014.
- Cohn Ì. Agile. Project evaluation and planning. Alpine Publisher, 2016, 416 p.
- Stelman E. Understanding of Agile. Values, principals, methodology. Mann, 2017, 448 p.
- Cagan M. Inspired: how to create products customers love. SVPG Press, 2008, 242 p.
- Stellman Andrew, Greene Jennifer. Learning agile. Understanding scrum, XP, Lean, and Kanban. O'Reilly Media, 2014.
- Crowder James A., Friess Shelli. Agile project management: managing for success. Switzerland, Springer International Publishing, 2015.
- Bushuyev S., Wagner R. IPMA Delta and IPMA Organisational Competence Baseline (OCB): New approaches in the field of project management maturity. International Journal of Managing Projects in Business, 2014, vol. 7, iss. 2, pp. 302-310.
- Bushuev S.D., Bushueva N.S., Babaev I.A., Iakovenko V.B., Grisha E.V., Dziuba S.V., Voitenko A.S. Kreativnye tekhnologii upravleniia proektami i programmami [Creative technologies for project and program management]. Kiev: Sammit-kniga, 2010, 768 p.
- Matveev A.A., Novikov D.A., Tsvetkov A.V. Modeli i metody upravleniia portfeliami proektov [Models and methods of project portfolio management]. Moscow: PMSOFT, 2005, 206 p.
- Shestakova E.V., Sitzhanova A.M., Prytkov R.M. Gibkie tekhnologii upravleniia v promyshlennosti kak faktor ustoichivogo razvitiia regiona [Development of industrial enterprises based on flexible management technologies]. Upravlenie, 2022, vol. 10, no. 2, pp. 14-25.
- Manifesto for Agile Software Development (2001), available at: http://www.agilemanifesto.org (accessed 31 March 2023).
- Zhumasheva B.K., Akimov S.S. Razvitie i primenenie kart potoka sozdaniia tsennostei [Development and application of value stream map]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 2022, no. 44, pp. 118-150. DOI: 10.15593/2224-9397/2022.4.07
- Belysh K.V., Davydova N.S. Algoritm sostavleniia karty potoka sozdaniia tsennosti na promyshlennom predpriiatii [Algorithm for mapping the value stream in an industrial enterprise]. Vestnik Udmurtskogo universiteta. Ekonomika i pravo, 2015, no. 2-1, pp. 7-13.
- Vasil'eva S.E., Kraineva R.K., Bachinskii A.G. Upravlenie protsessami na osnove kartografirovaniia potoka sozdaniia tsennosti [Process management based on value stream mapping]. Azimut nauchnykh issledovanii: ekonomika i upravlenie, 2017, vol. 6, no. 2 (19), pp. 49-51.
- Tashkinov A.G. Ekonomika berezhlivogo proizvodstva na predpriiatiiakh mashinostroeniia [Economics of lean production at engineering enterprises]. Perm': Permskii natsional'nyi issledovatel'skii politekhnicheskii universitet, 2023, 203 p.
- Tashkinov A.G. Vliianie kompleksnogo vnedreniia berezhlivogo proizvodstva na effektivnost' razvitiia proizvodstvennoi sistemy predpriiatiia [The impact of the integrated implementation of lean production on the efficiency of the enterprise production system development]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Sotsial'no-ekonomicheskie nauki, 2022, no. 4, pp. 329-358.
- Royce Winston W. Managing the Development of Large Software Systems. Proceedings, IEEE WESCON, 1970.
- Tronina I.A., Semenikhina A.V., Tatenko G.I., Morozova O.I. Sovremennyi podkhod k vyboru i vnedreniiu ERP-sistemy na predpriiatii kak deistvennogo IT-resheniia v upravlenii biznesom [A Modern Approach the Selection and Implementation of an ERP System at an Enterprise as an Effective IT Solution in Business Management]. Izvestiia Iugo-Zapadnogo gosudarstvennogo universiteta. Ekonomika. Sotsiologiia. Menedzhment, 2023, vol. 13, no. 2, pp. 64-80.
- Chulanova O.L. Innovatsionnye tekhnologii upravleniia proektami: gibkaia metodologiia Agile manifesto [Chulanova Innovative project management technologies: flexible methodology Agile manifesto]. Vestnik Surgutskogo gosudarstvennogo universiteta, 2018, no. 1 (19), pp. 98-105.
- URL: https://scrumguides.org/ (accessed 31 March 2023).
- Rubin Kenneth S. Essential Scrum. A practical guide to the most popular agile process. New Jersey, Pearson Education, 2012.
- Hobbs Petit. Agile methods on large projects in large organizations. Project Management Journal, 2017, no. 48, pp. 3-19.
- Shestakova E.V., Sitzhanova A.M., Prytkov R.M. Formirovanie mekhanizma razvitiia predpriiatiia na osnove gibkikh tekhnologii upravleniia v promyshlennosti [Formation of an enterprise development mechanism based on flexible management technologies in industry]. Menedzhment v Rossii i za rubezhom, 2021, no. 6, pp. 37-46.
- Samatova T.B., Beliaeva Iu.E. Gibridnaia model' upravleniia neftegazovymi proektami [Hybrid model of oil and gas project management Social and economic systems]. Sotsial'nye i ekonomicheskie sistemy. Ekonomika, 2023, no. 4.2, pp. 101-115.
- Tashkinov A.G., Fofanov O.G. Realizatsiia proektnykh IT-reshenii dlia upravleniia instrumental'nym proizvodstvom v aviadvigatelestroitel'nom predpriiatii [Implementation of project IT-solutions for management of tool production in an aircraft engine construction enterprise]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 2022, no. 44, pp. 151-172. DOI: 10.15593/2224-9397/2022.4.08
SOLUTION OF INVERSE KINEMATICS PROBLEM FOR CAR ROBOTICS WHEELCHAIR LOADER WITH SPEED EXTENSION OPTIMIZATIONS.P. Kruglov, S.À. Ivanchenko Received: 06.06.2023 Received in revised form: 02.10.2023 Published: 22.12.2023
PDF |
Abstract |
Authors |
References |
Abstract: Creating a manipulator for loading and unloading a wheelchair into/from the trunk of a car is an important project, which aims to provide a disabled driver with freedom of movement without assistance. A number of tasks have already been solved to implement the project, including developing a manipulator design, creating a kinematic scheme, solving a direct extended kinematics problem, etc. In this research we will solve the inverse kinematics problem which is optimal in terms of performance. Purpose: to solve the inverse problem of kinematics of a special six-wheel manipulator, allowing to find the speed-optimal control laws with the necessary limitations to ensure the motion of the manipulator's seat along the assigned trajectory in the coordinate system, associated with the vehicle. Methods: the inverse problem of kinematics is solved by formation of two stages of manipulator control, building the Jacobi matrix, computation of its pseudo-transversion with obtaining the vectors of increment of control of minimal norm, on the basis of which the resultant control laws are determined. The optimality of such a solution in terms of speed has been proven. Results: The solution results are optimal, in terms of performance, control laws of the manipulator drives. Practical significance: The results obtained will be used to control the drives of the manipulator ensuring the movement of the wheelchair along the assigned trajectory taking into account the limitations and with a given angular position in the coordinate system, associated with the car.
Keywords: manipulator, wheelchair, kinematic relations, inverse kinematics problem, Jacobi matrix.
Authors: Sergey P. Kruglov (Irkutsk, Russian Federation) – Doctor of Technical Sciences, Professor of the Department of Automation of Production Processes Irkutsk State Railway University (664009, Irkutsk, 15, Chernyshevsky str., e-mail: kruglov_s_p@mail.ru).
Stepan A. Ivanchenko (Irkutsk, Russian Federation) – Graduate Student of the department Automation of production processes Irkutsk State Railway University (664056, Irkutsk, 15, Chernyshevsky str., e-mail: barrier.free.irkutsk@gmail.com).
References:
- Kruglov S.P., Ivanchenko S.A., Kovyrshin S.V. Reshenie priamoi rasshirennoi zadachi kinematiki dlia manipuliatora invalidnogo kresla [Solution of direct extended kinematics problem for wheelchair manipulator]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 2022, no. 41, 2022, available at: https://elibrary.ru/item.asp?id=48707454
- Timofeev A.V. Upravlenie robotami [Robot control]. Leningrad: Leningradskii universitet, 1986, 240 p.
- Aliab'ev M.O. Optimizatsiia raboty algoritma resheniia obratnoi zadachi kinematiki pri pomoshchi neironnykh setei [Optimization of the Kinematics Inverse Problem Solution Algorithm Using Neural Networks]. Nauka molodykh - budushchee Rossii. Sbornik nauchnykh statei 7-i Mezhdunarodnoi nauchnoi konferentsii perspektivnykh razrabotok molodykh uchenykh. Kursk, 2022, vol. 5, available at: https://elibrary.ru/item.asp?id=50050949
- Dema N.Iu., Ovcharov A.O. Issledovanie metodov resheniia obratnoi zadachi kinematiki dlia manipuliatorov izbytochnoi kinematiki [Investigation of Methods for Solving the Inverse Kinematics Problem for Redundant Manipulators]. Al'manakh nauchnykh rabot molodykh uchenykh universiteta ITMO XLVII nauchnoi i uchebno-metodicheskoi konferentsii. Saint Petersburg, 2018, vol. 1, available at: https://elibrary.ru/item.asp?id=41288041
- Dyda A.A., Os'kin D.A. Reshenie obratnoi zadachi kinematiki dlia manipuliatsionnogo robota metodom shtrafnykh funktsii [Solution of the Inverse Kinematics Problem for a Manipulation Robot Using Penalty Functions Method]. Fundamental'nye issledovaniia uchrediteli, 2015, no. 11-4, pp. 673-677, available at: https://www.elibrary.ru/item.asp?id=25098361
- Lomovtseva E.I., Chelnokov Iu.N. Reshenie obratnoi zadachi kinematiki stenfordskogo manipuliatora c primeneniem bikvaternionnoi teorii kinematicheskogo upravleniia [Solving the Inverse Kinematics Problem of the Stanford Manipulator Using Biquaternion Kinematic Control Theory]. Matematika. Mekhanika. Saratov: Saratovskii natsional'nyi issledovatel'skii gosudarstvennyi universitet imeni N.G. Chernyshevskogo, available at: https://www.elibrary.ru/item.asp?id=23617417
- Karginov L.A. Ierarkhicheskii podkhod k resheniiu obratnoi zadachi kinematiki [Hierarchical Approach to Solving the Inverse Kinematics Problem]. Nauka i obrazovanie: nauchnoe izdanie MGTU imeni N.E. Baumana, available at: https://www.elibrary.ru/item.asp?id=25837815
- Ryzhichenko A.I. Reshenie obratnoi zadachi kinematiki dlia shestistepennogo robota chislennym metodom [Solution of the inverse kinematics problem for a six-degree-of-freedom robot by numerical method]. Materialy XXVIII Mezhdunarodnoi innovatsionno-orientirovannoi konferentsii molodykh uchenykh i studentov, 2017, available at: https://www.elibrary.ru/item.asp?id=28346671
- Buss S.R. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE JRA, 2004, vol. 17, no. 1-19, 16 p.
- Chelnokov Iu.N. Bikvaternionnoe reshenie kinematicheskoi zadachi upravleniia dvizheniem tverdogo tela i ego prilozhenie k resheniiu obratnykh zadach kinematiki robotov-manipuliatorov [Biquaternion solution to the kinematic control problem of rigid body motion and its application to solving the inverse kinematics problems of manipulator robots]. Izvestiia Rossiiskoi akademii nauk. Mekhanika tverdogo tela, available at: https://www.elibrary.ru/item.asp?id=18879217
- Mal'tseva E.Sh., Shereuzhev M.A. Metod resheniia obratnoi zadachi kinematiki pal'tsa bionicheskogo proteza kisti na osnove adaptivnoi neironechetkoi sistemy vyvoda (Anfis) [Method for solving the inverse kinematics problem of a bionic hand prosthesis finger based on an adaptive neuro-fuzzy inference system (ANFIS)], available at: https://elibrary.ru/item.asp?id=43878606
- Serdar Kucuk, Zafer Bingul Inverse kinematics solutions for industrial robot manipulators with offset wrists. Applied Mathematical Modelling. 1 April 2014, vol. 38, iss. 7-8, pp. 1983-1999, available at: https://www.sciencedirect.com/science/article/pii/S0307904X13006264
- Yang Xiaohang, Zhao Zhiyuan, Xu Zichun, Li Yuntao, Zhao Jingdong, Liu Hong. General inverse kinematics method for 7-DOF offset manipulators based on arm angle parameterization. General inverse kinematics method for 7-DOF offset manipulators based on arm angle parameterization, available at: https://www.sciencedirect.com/science/article/pii/S009457652200563X
- Mihai Dupac Mathematical modeling and simulation of the inverse kinematic of a redundant robotic manipulator using azimuthal angles and spherical polar piecewise interpolation. Mathematics and Computers in Simulation, July 2023, vol. 209, pp. 282-298, available at: https://www.sciencedirect.com/science/article/pii/S0378475423000836
- Javier Alexis Abdor-Sierra, Emmanuel Alejandro Merchán-Cruz, Ricardo Gustavo Rodríguez-Cañizo. A comparative analysis of metaheuristic algorithms for solving the inverse kinematics of robot manipulators. Results in Engineering. December 2022, vol. 16, 100597 p., available at: https://sciencedirect.com/science/article/pii/S2590123022002675
- Zenkevich S.L., Iushchenko A.S. Osnovy upravleniia manipuliatsionnymi robotami [Fundamentals of Manipulative Robot Control]. 2nd ed. Moscow: Moskovskii gosudarstvennyi tekhnicheskii universitet im. N.E. Baumana, 2004, 480 p.
- Lewis F.L., Dawson D.M., Abdallah C.T. Robot manipulator control theory and practice. Second Edition, Revised and Expanded. Marcel Dekker, Inc. New York, Basel, 2004, 614 p.
- Zhil'tsov A.I., Zhukov V.S., Ryleev D.A. Upravlenie manipuliatorami s chislom stepenei svobody bolee shesti [Control of Manipulators with More than Six Degrees of Freedom]. Inzhenernyi zhurnal: nauka i innovatsii, 2013, iss. 10, pp. 1-11, available at: http://engjournal.ru/catalog/it/nav/1086.html
- Kondrashov D.A. Reshenie obratnoi zadachi kinematiki shestizvennogo manipuliatora s ispol'zovaniem metoda N'iutona-Rafsona [Solution of the inverse kinematics problem for a six-link manipulator using the Newton-Raphson method]. Nauchnyi potentsial molodezhi i tekhnicheskii progress. Sankt-Peterburg, 21 May 2021, available at: https://elibrary.ru/item.asp?id=46290599
- Karabanov G.S., Seliukov A.N., Krakhmalev O.N. Demonstratsiia resheniia obratnoi zadachi kinematiki na primere 6-DOF robota [Demonstration of the solution to the inverse kinematics problem using a 6-DOF robot as an example]. XXXIV Mezhdunarodnaia innovatsionnaia konferentsiia molodykh uchenykh i studentov po sovremennym problemam mashinovedeniia. Sbornik trudov konferentsii. Moscow: Institut mashinovedeniia imeni A.A. Blagonravova Rossiiskoi akademii nauk. Moscow, 2022, available at: https://elibrary.ru/item.asp?id=49872804
- Golomazdin P.I., Dmitrochenko O.N. Programmnaia realizatsiia resheniia obratnoi zadachi kinematiki shestizvennogo manipuliatora [Software Implementation of the Inverse Kinematics Problem Solution for a Six-Link Manipulator]. Avtomatizatsiia i modelirovanie v proektirovanii i upravlenii, 2022, no. 3 (17), available at: https://elibrary.ru/item.asp?id=49478231
- Korovin O.S. Obzor metodov resheniia obratnoi zadachi kinematiki dlia manipuliatora s izbytochnost'iu [Review of methods for solving the inverse kinematics problem for a manipulator with redundancy]. Politekhnicheskii molodezhnyi zhurnal, 2022, no. 12 (77), available at: https://elibrary.ru/item.asp?id=50172603
- Pontriagin L.S., Boltianskii V.G., Gamkrelidze R.V., Mishchenko E.F. Matematicheskaia teoriia optimal'nykh protsessov [Mathematical Theory of Optimal Processes]. Moscow: Glavnaia redaktsiia fiziko-matematicheskoi literatury, 1983.
- Moiseev N.N., Ivanilov Iu.P., Stoliarova E.P. Metody optimizatsii [Optimization methods]. Moscow: Nauka, 1980.
- Gantmakher F.R. Teoriia matrits [Theory of matrixes]. Moscow: Nauka, 1966.
USING EVOLUTIONARY ALGORITHMS TO IMPROVE THE MOVEMENT OF GROUND ROBOTSAL-Khafaji Israa M. Abdalameer, Wisam Ch. Alisaui, K.A. Djuraev, A.V. Panov Received: 13.06.2023 Received in revised form: 28.09.2023 Published: 22.12.2023
PDF |
Abstract |
Authors |
References |
Abstract: One of the main challenges in controlling ground robots, which are designed to move along the ground and interact with the environment and are currently used to solve a wide range of tasks, is the ability to navigate in difficult conditions and avoid obstacles. This study explores the application of an evolutionary algorithm to enhance the movement of ground robots in challenging environments. The algorithm generates diverse control schemes and evaluates their performance through simulations, with a focus on collision avoidance with obstacles. Purpose of the Study: the main objective is to assess the effectiveness of the evolutionary algorithm in producing improved control systems for ground robots. By iteratively breeding successful control schemes, the algorithm aims to optimize robot behavior in complex environments. Methods: the study implements the evolutionary algorithm for control system optimization, utilizing simulations to evaluate collision avoidance performance. Successful control schemes are selected for further refinement through breeding. Results: compelling results demonstrate the algorithm's efficacy in optimizing ground robot control systems. The iterative process improves adaptability, robustness, and exploration-exploitation trade-off. The algorithm handles complex performance parameters and large solution spaces effectively, making it suitable for diverse robot platforms and environments. Practical Significance: this research significantly enhances the adaptability, robustness, and exploration capacity of ground-based robots in challenging environments. By continuously refining control schemes based on real-world performance metrics, the algorithm improves the overall capabilities and performance of ground robots. The study holds promise for practical deployments that require precise navigation and obstacle avoidance. The study emphasizes considering computational intensities and the challenges of local optima, aiding researchers in making informed decisions when implementing evolutionary algorithms for specific robot tasks and environments. In conclusion, the study establishes evolutionary algorithms as a powerful tool for optimizing ground robot control systems. Further exploration is encouraged to unlock the algorithm's full potential and advance ground-based robotics across various applications.
Keywords: evolutionary algorithms, ground robots, complex environments, transportation, optimization algorithms, obstacle avoidance, control variables, stability.
Authors: AL-Khafaji Israa M. Abdalameer (Moscow, Russian Federation) – Graduate Studen MIREA – Russian Technological University, assistant teacher in Mustansiriyah University Iraq, Baghdad (107076, Moscow,
Stromynka str., 15, e-mail: Misnew6@gmail.com).
Wisam Ch. Alisaui (Moscow, Russian Federation) – Graduate Studen MIREA – Russian Technological University and teacher in University of Al-Qadisiyah, Iraq, Diwaniayh (107076, Moscow, Stromynka str., 15,
e-mail: wisam.chyad@qu.edu.iq).
Khalimjon A. Djuraev (Moscow, Russian Federation) – Graduate Studen MIREA – Russian Technological University, Senior Inspector of the Department of Work with Foreign Students at the MIREA – Russian Technological University (107076, Moscow, 15, Stromynka str., e-mail: djuraevx@mail.ru).
Alexander V. Panov (Moscow, Russian Federation) – Ph. D. in Technical Sciences, Associate Professor of the Department of Informatics and Computer Engineering at the Institute of Information Technologies of the MIREA – Russian Technological University (107076, Moscow,
20, Stromynka str., e-mail: Iks.ital@yandex.ru ).
References:
- Chen X., Liu X., Liu Y. A review of evolutionary algorithms for robot control. Swarm and Evolutionary Computation, 2017, 34, pp.1-16.
- Bhattacharya A., Das S. Evolutionary optimization of mobile robot navigation using artificial neural networks. IEEE Transactions on Evolutionary Computation, 201014(5), 906-919.
- Kannala J., Hämäläinen P. Evolutionary trajectory planning for mobile robots. IEEE Transactions on Evolutionary Computation, 2006, 10(3), pp. 277-287.
- Zhang L., Chen H., Liu Y. Optimization of fuzzy controllers for mobile robots using genetic algorithms. IEEE Transactions on Fuzzy Systems, 2007, 15(5), pp. 1035-1041.
- Kim J., Lee S. Evolutionary optimization of robot control parameters using a genetic algorithm. IEEE Transactions on Industrial Electronics, 2002, 49(4), pp. 961-968.
- Floreano D., Mondada F. Evolutionary robotics: the biology, intelligence, and technology of self-organizing machines. MIT Press, 2009.
- Li R., Hu H., Hu J. Evolutionary optimization of a robotic fish using a hybrid genetic algorithm. IEEE Transactions on Evolutionary Computation, 2014, 18(2), pp. 243-257.
- Nguyen D., Nguyen T., Lee D. Adaptive motion planning for autonomous robots using evolutionary algorithms. Robotics and Autonomous Systems, 2018, 105, pp. 11-21.
- Zhang L., Chen H., Liu Y. Evolutionary optimization of fuzzy controllers for a mobile robot. IEEE Transactions on Fuzzy Systems, 2007, 15(5), pp. 1035-1041.
- Chen C., Chen Y., Chen Y. Real-time obstacle avoidance using an evolutionary algorithm-based neural network. IEEE Transactions on Industrial Electronics, 2010, 57(12), pp. 4247-4255.
- Muñoz J., Alba J., Soto M. Evolutionary control of a quadrotor using particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2013, 17(4), pp. 531-547.
- Halgamuge S.K., Abbass H.A. A survey of evolutionary algorithms for dynamic optimization. Evolutionary Computation, 2000, 8(2), pp. 123-148.
- Deisenroth M.P., Faisal F., Rasmussen C.E. A survey of optimization by building and using probabilistic models. Foundations and Trends® in Machine Learning, 2013, 6(1), pp. 1-124.
- Tao Y, Wen Y, Gao H, Wang T, Wan J, Lan J. A path-planning method for wall surface inspection robot based on improved genetic algorithm. Electronics, 2022, Apr 8, 11 (8), 1192 p.
- Huang L. Obstacle Avoidance Trajectory Planning Method for Space Manipulator Based on Genetic Algorithm. In Application of Intelligent Systems in Multi-modal Information Analytics: the 4th International Conference on Multi-modal Information Analytics (ICMMIA 2022), 2022 Jun 12, Vol. 2, pp. 249-255.
- Cham: Springer International Publishing. Deb K., Kaelbling J., Kochenberger G. Optimization algorithms: A comprehensive survey. Swarm and Evolutionary Computation, 2014, 19, pp. 1-49.
- Pinciroli C., Beltrame G. Evolutionary Robotics: A Survey. ACM Computing Surveys (CSUR), 2017, 50(6), 77.
- Risi S., Togelius J. (). Neuroevolution in Games: State of the Art and Open Challenges. IEEE Transactions on Computational Intelligence and AI in Games, 2019, 11(3), pp. 1-22.
- Haykin S. Neural networks: A comprehensive foundation. Prentice Hall, 1994.
- Cristianini N., Shawe-Taylor J. Support vector machines. Cambridge University Press, 2000.
- Mitchell M. An introduction to genetic algorithms. MIT Press, 1998.
- Sutton R.S., Barto A.G. Reinforcement learning: An introduction. MIT Press, 1998.
- Li Y, Zhao J, Chen Z, Xiong G, Liu S. A robot path planning method based on improved genetic algorithm and improved dynamic window approach. Sustainability, 2023 Mar 6, 15(5), 4656.
- Qin H, Shao S, Wang T, Yu X, Jiang Y, Cao Z. Review of Autonomous Path Planning Algorithms for Mobile Robots. Drones, 2023 Mar 18, 7(3), 211.
- Palmieri G., Scoccia C. Motion planning and control of redundant manipulators for dynamical obstacle avoidance. Machines, 2021, 9(6), 121.
- Yokose Y. Energy-saving trajectory planning for robots using the genetic algorithm with assistant chromosomes. Artif. Life Robot, 2019, 25 (1), pp. 89-93, available at: https://doi.org/10.1007/s10015-019-00556-8
|
|