FEATURES OF SINGLE- AND MULTICOMPONENT GAS HYDRATES FORMATION

E.P. Zaporozhets, N.A. Shostak

Kuban State Technical University (2 Moskovskaya str., Krasnodar, 350072, Russian Federation)

ОСОБЕННОСТИ ГИДРАТООБРАЗОВАНИЯ ОДНО- И МНОГОКОМПОНЕНТНЫХ ГАЗОВ

Е.П. Запорожец, Н.А. Шостак

Кубанский государственный технологический университет (350072, Россия, г. Краснодар, ул. Московская, 2)

Received / Получена: 09.06.2016. Accepted / Принята: 29.08.2016. Published / Опубликована: 30.09.2016

Key words:
gas, hydrate cavity, hydrate formation, hydrate forming system, hydrates, crystalline structures, ice-like associates, multi-component gases, one component gases, molecular absorption, thermobaric conditions, manmade hydrates, hydrate cavities formation, crystalline structures formation, ice-like associates formation.

Природные гидраты являются одной из форм существования газа в недрах Земли и перспективным источником углеводородного газа. Оценка техногенных гидратов в нефтяной и газовой промышленности в основном негативна. Их отложение в призабойных зонах и стволах скважин осложняет добычу углеводородов, уменьшая их дебиты. В системах сбора нефти и газа гидраты при определенных термобарических условиях отлагаются на стенках трубопроводов и повышают их гидравлическое сопротивление, тем самым увеличивая энергетические затраты. Присутствие гидратов в потоках извлекаемого из недр флюида повышает износ сборных коллекторов, уменьшая их ресурс.

The article contains modern concepts of single- and multi-component gas hydrates formation (natural and oil), which occur in natural and technical systems. Authors hope that the paper will be useful to a wide range of readers, especially students and staff of higher education institutions of oil and gas profile, as well as professionals, industrial activity of whom is connected with production, collection, preparation and transportation of natural and oil gases.

Based on the systematization and analysis of more than a thousand experimental research and practical applications in this area over the period since 1780 to the present time, the authors have identified some features of the hydrate formation from single or multi-component gases.

Ключевые слова:
gаз, гидратные полости, гидратообразование, гидратообразующая система, гидраты, кристаллические структуры, льдоподобные ассоциаты, многокомпонентные газы, однокомпонентные газы, поглощение молекул, термобарические условия, техногенные гидраты, формирование гидратных полостей, формирование кристаллических структур, формирование льдоподобных ассоциат.

Natural hydrates are a form of the gas existence in depths and a promising source of hydrocarbon gas. Manmade hydrates are present in bottom-hole zones and wells in hydrocarbon production, reducing production rates. In oil and gas collection systems hydrates are deposited under certain conditions of temperature and pressure on the walls of the pipelines and increase its hydraulic resistance, thereby increasing energy consumption. The presence of hydrates in streams of producing fluid increases the wear of prefabricated collectors, reducing their life. In hydrocarbon field preparation’s systems (heat exchange equipment, separators, throttle devices, ejectors) hydrate deposition degrades technological processes. Hydrate formation in machinery and equipment (compressor, expander) collection and treatment systems lead to accidents. In gas pipeline transport the hydrate deposition reduces its effectiveness. To solve problems associated with technogenic hydrates and gas production from natural hydrates, it is necessary to know the basic features of their formation.

The description contains modern concepts of single- and multi-component gas hydrates formation (natural and oil), which occur in natural and technical systems. Authors hope that the paper will be useful to a wide range of readers, especially students and staff of higher education institutions of oil and gas profile, as well as professionals, industrial activity of whom is connected with production, collection, preparation and transportation of natural and oil gases.

Based on the systematization and analysis of more than a thousand experimental research and practical applications in this area over the period since 1780 to the present time, the authors have identified some features of the hydrate formation from single or multi-component gases.
Introduction

Gas hydrates (hereinafter hydrates) are solid crystalline compounds that form in certain thermobaric conditions from gases and water (vaporous, liquid and solid). Hydrates relate to a class of substances which are not chemical compounds. Hydrates can be natural or manmade. Natural hydrates are one of the forms in which gas occurs in the interior of the earth. Estimated natural gas reserves in hydrated state approximate $2 \cdot 10^{16} \text{ m}^3$. Russia accounts for $10^{14}–10^{15} \text{ m}^3$. Hydrates are a promising source of hydrocarbon gas.

The role of manmade hydrates in oil and gas industry is mainly negative. Hydrate generation in bottom-hole zones and wellbores complicates hydrocarbon production. In oil and gas collection systems under certain conditions of temperature and pressure hydrates deposit on the walls of the pipes and increase their hydraulic resistance, thereby increasing energy consumption. Presence of hydrates in streams of produced fluid extracted from the interior of the earth increases the wear of production headers, reducing their useful life. In hydrocarbon field preparation systems (heat exchanging equipment, separators, pressure reducing valve flow parts, throttle devices, ejectors) hydrate deposition degrades technological processes. Hydrate formation in machinery or collection and treatment systems leads to accidents. Hydrates deposition in pipeline transport reduces its effectiveness. Deposits result in increase of local hydraulic resistance and increase of energy costs required for pumping of the transported medium.

To eliminate manmade hydrates and produce gas from natural hydrates, it is necessary to know the basics of their formation.

The history of hydrate formation study accounts for over 235 years. The authors have analyzed the experimental research and practical applications in the area for the period from 1780 to date and described their findings in [1], based on 1150 literary references. Hydrate formation research is tightly connected to the exploration of natural hydrates reserves, prevention and liquidation of manmade hydrates, targeting of natural hydrates accumulation areas in the course of exploration of new fields and identification of hydrate-hazardous areas in the process of production, collection, preparation and pipeline transportation of hydrocarbons.

In order to solve these tasks, it is necessary to study hydrate formation in natural and technical systems. Based on systematization and analysis of scientific data, the authors have identified a number of regularities of hydrate formation from single-and multicomponent gases as described below.

Hydrate formation from single-component gases

Hydrate formation depends on the nature of gas, as well as temperature and pressure in the “gas-water” system. Figure 1 presents diagrams of phase states of the system containing some of the individual gases and water (distilled). Hydrate formation is influenced by presence of admixtures in the water. Salts and alcohols normally reduce hydrate formation temperature; type of surfactant determines temperature decrease or increase.

![Figure 1. Phase state diagrams of water and hydrates–components of natural and oil gases](image-url)
nitrogen, hydrogen sulfide, carbon dioxide, oxygen, argon, xenon) form two structures of crystal lattices – CS-I and CS-II (Figure 2).

Figure 2. Unit cells structures of hydrate crystal lattices: a – CS-I; b – CS-II; 1 – crystal lattice cell; 2 – hydrate cavity; a1, a2 – geometrical parameter of CS-I and CS-II structures crystal lattice cells. Gray areas are cavities which are occupied by a molecule of water each. Blank cavities contain a molecule of gas.

Hydrate formation proceeds as follows. At certain thermobaric conditions of hydrate formation in “gas – fluid water” system, hydrate cavities consisting of ice-like associates of water molecules initially form around individual molecules of gas and water vapors at steady state with its fluid phase. As an example, Figure 3 shows processes of formation of such cavities around a molecule of methane (a, b) and ethane (c, d). Each cavity contains only one molecule of gas. Cavities with a molecule of water vapor may form. The molecule confined inside the cavity cannot spontaneously leave it. This molecule association is a strong structure.

Depending on the size of gas molecules, cavities of two types (small and large) form (Figure 4), which later become a part of crystalline structures (CS-I and CS-II).

Dodecahedral cavities D and D’ are normally referred to as small, while the rest of them (T, T’, P, H, E) – as large.

CH₄, Ar, H₂S molecules with relatively small typical size are trapped by all types of cavities starting from D and D’; C₂H₆, CO₂ molecules – by T-cavities, larger C₃H₈, t-C₄H₁₀, n-C₄H₁₀ molecules – by H-cavities. Very large molecules are only trapped by E-cavities. Sizes of gas hydrate forming molecules, types of cavities and crystal lattices are shown as a diagram in Figure 5 [3].

In the course of formation of each of the hydrate cavities, heat energy is produced in the amount that is a total of energy of water fluid phase transition to ice-like associates and heat from gas and water vapor trapping.

Figure 3. Processes of hydrate cavities formation from methane molecules (a, b) and ethane molecules (c, d); e – formed hydrate ethane cavity: 1 – methane molecule; 2 – water molecule; 3 – ethane molecule; 4 – water molecules ice-like associates; 5 – “window”; d – typical molecule size; α – typical “window” size (d > α); P, T – pressure and temperature of gas-water system; rGi – energy produced in the process of gas trapping by a singular cavity.

Transition heat energy is equal to ice generation heat that is directly proportional to the number of water molecules per one molecule of gas (or water vapor).

Heat energy of molecule trapping is equal to their adsorption energy [4].

Figure 4. Hydrate cavity varieties based on X-ray structure analysis data (m, where m₁ – number of edges; γ – number of facets, e.g. for b-cavity m = 5, γ = 12).
In “gas-ice” system, hydrate cavity forms simultaneously with gas molecule trapping, while the initial solid phase of water (ice) transforms into its ice-like associate. Depending on the nature of gas (molecular weight), the transformation process can be exothermic or endothermic [5]. Trapping of molecules is an exothermic process; heat energy produced in its course is equal in value to the adsorption heat.

Since the quantity of heat energy produced in the process of gas molecules or water vapor trapping is equal to their adsorption energy, the authors assume [6] that this process can be compared to adsorption process. Therefore in the course of hydrate formation process study it is permissible to use the key provisions of Langmuir’s adsorption model.

In the process of forming of various structure types from crystal lattice hydrate cavities (see, e.g. Figure) crystallization energy is produced. The described hydrate formation process is schematically presented in Figure 6.

Hydrate growth rate depends on the intensity of heat discharge as it is produced in the course of ice-like associates forming, as well as molecules trapping in hydrate cavities and crystalline structures forming (see Figure 6). Depending on the rate of heat removal from the hydrate forming system, hydrate forming time increases or reduces. Heat removal normally occurs: through the wall, in case of isenthalpic expansion (Joule-Thompson effect) of gas containing water in vaporous or dispersed state, e.g. in orifices or union; at isentropic (adiabatic) expansion of gas containing water in vaporous or dispersed states, e.g. in nozzles and expansion valves.

The intensity of heat removal directly depends on the area of interphase contact between gas and water or ice (Figure 7), temperature gradient between the forming hydrate and heat absorbing system, as well as on the pressure. In practical terms, the increase of interphase contact area is achieved via agitation of interfacing phases, their blending, dispersing, exposure to vibration etc. [7]. In these circumstances, heat transfer factor increases (Figure 8).
Figure 8. Dependence of methane hydrate relative growth rate on the relative value of heat transfer factor in the event of immediate contact in “gas-water” system: \(\bar{W} \) – methane hydrate relative growth rate, \(W = W/W_0 \) (\(W_0 = 0.00015 \) mole/s); \(\bar{K} \) – relative heat transfer factor value, \(\bar{K} = K/K_0 \) (\(K_0 = 1 \) W/(m²·deg); \(\Delta H_i \) – heat of hydrate forming from water

Minimal heat transfer factors are observed at steady-state conditions when hydrate forming system is motionless. Therefore in steady-state conditions low hydrate forming rates have been measured, e.g. at 5.0 MPa pressure and 7 °C temperature, 100 ml gas turn into hydrate in 2.6 h; at the same temperature and 7.0 MPa pressure – in 1 h; at –2 °C and 7.0 MPa – in 0.5 h [8, 9].

Heat transfer factor value can be correlated to the number of rotations of reactor mixer used for research of hydrate forming and growth. Dependence between relative heat transfer factor \(\bar{K} \) and number of rotations of the mixer is shown in Figure 9 [5].

Evidence exists that it is possible to accelerate hydrate growth by applying physical force (acoustic, electromagnetic, photon, high frequency). However, any of such forces cause energy inflow to hydrate which, on the contrary, is supposed to result in deceleration of growth.

The paradoxical phenomenon of hydrate forming and growth is observed upon treatment with some of the anti-hydrate reactants. In the presence of minor amounts (0.5–3 mole %) of alcohols (lower aliphatic alcohols from methanol to propanol, glycols), hydrate formation speeds up [2, 10–13]. The phenomenon is explained by the authors [10] by increasing reciprocal solubility of hydrate-forming components. Others assume [11] that alcohol molecules become embedded in the solution and serve as “germs” for clathrate hydrate-type structure. Study of water-methanol solutions structure by means of neutron diffractometry methods [14] has determined the existence of a membrane composed of water molecules around the methyl group of methanol molecule at a distance of approximately 0.37 nm from carbon atom. Methanol concentration increase in the solution leads to redistribution (increase) of hydrogen connections between the molecules of water and alcohol in the solution. Methanol forms own supramolecular structures with water and becomes a competitor for gas in terms of hydrate forming. As a consequence, methanol concentration increase decelerates hydrate forming process.

Adding of 0.05–1.00 g/l surfactants in water solutions produces an effect of step-like increase in the hydrate forming process (for some gases by a factor of ten and more) [15, 16]. The explanation for this effect is that the presence of surfactants causes formation of porous hydrates, in which capillary forces cause influx of fluid to the hydrate formation interface, facilitating continuous renovation of “fluid-gas” interphase surface and hydrates intensive growth. Hydrates forming and growth rate increase in surfactant solution is also explained [17, 18] by micelles formation, in which colloidal dissolution (solubilization) of gas occurs. In this case hydrate forming occurs not only on the “fluid-gas” interface but also in bulk of micellar solution, resulting in increased rate of hydrate forming. However it has to be mentioned that, just like in case of alcohol solutions, certain watersoluble surfactants can decelerate hydrate formation [2].
Hydrate formation from multicomponent gas

Natural and oil (associated) gases extracted from wells are multicomponent blends. Multicomponent composition causes certain peculiarities in hydrate forming from such gases. The key difference is that not each component of the mix is able to participate in hydrate formation.

According to the Gibbs phase rule, CS-I and CS-II structures can exist both separately (CS-I or CS-II), and in combination (CS-I and CS-II) [2]. Based on this phenomenon, hydrate bulk may consist of uniform structures or their blend (Figure 10).

Figure 10. Multicomponent gas hydrate consisting of CS-I and CS-II structures (cavity occupation is not shown)

Conditions of mixed hydrates formation are largely influenced by concentration of individual components. For instance, thermobaric conditions of hydrate formation for binary methane-ethane and methane-propane mixtures available from experiment are shown in Figure 11, a, b.

Figure 11. Hydrate formation conditions in “methane-ethane-water” system (a) and “methane-propane-water” system (b) based on data from [19]. Figures next to curves are molar content of methane in gas mixture, %

Phase equilibrium curves for CH₄ and C₂H₆ or CH₄ and C₃H₈ mixtures show that hydrates form at lower pressure and higher temperature when ethane and propane are added.

In order to determine the equilibrium conditions for natural and oil gas hydrates formation, it is common to use a nomogram depicted in Figure 12 [20]. Knowing gas density (relative to air) and pressure, it helps to determine the threshold temperature for hydrate formation.

Figure 12. Hydrate forming conditions for multicomponent gases of varying densities [18]. Figures stand for gas density relative to air

Normally hydrate formation temperature directly correlates with gas density; however, it is important to know that there are exceptions. Natural gas with low density can form hydrates at higher temperatures than natural gas with higher density. If natural gas density is influenced by components that cannot form hydrates, than its hydrate forming temperature is lower.

Summary

To conclude, this paper discusses hydrate formation process from single- and multicomponent natural and oil gases occurring in natural and manmade systems.

Acknowledgement

The research was conducted with financial support of the Russian foundation for fundamental research in the scope of scientific research project No. 16-38-60108.

References

11. Malenkô E.V. Issledovanie usloviâ obrazovaniâ i razrusheniâ gidratov prirodnoâ gazi i izuchenie ingibiruiushchego vliiaianiâ neelektroli-tov [Research of formation and destruction conditions of the natural gas hydrates and study the inhibitory effect of non-electrolytes]: dis. … kand. khim. nauk. Moscow, 1979, 168 p.

11. Маленко Э.В. Исследование условий образования и разрушения гидратов природного газа и изучение ингибитирующего влияния неэлектролитов: дис. ... канд. хим. наук. – М., 1979. – 168 с.

Please cite this article in English as:

Просьба ссылаться на эту статью в русскоязычных источниках следующим образом: