Димов Ю.В., Подашев Д.Б. Производительность процесса при обработке кромок деталей полимерно-абразивными щетками // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. – 2020. – Т. 22, № 3. – С. 29–36. DOI: 10.15593/2224-9877/2020.3.04

Dimov Yu.V., Podashev D.B. Process performance when machining part edges with polymer-abrasive brushes. *Bulletin PNRPU. Mechanical engineering, materials science*, 2020, vol. 22, no. 3, pp. 29–36. DOI: 10.15593/2224-9877/2020.3.04

ВЕСТНИК ПНИПУ. Машиностроение, материаловедение T. 22, № 3, 2020 Bulletin PNRPU. Mechanical engineering, materials science http://vestnik.pstu.ru/mm/about/inf/

DOI: 10.15593/2224-9877/2020.3.04 УДК 621.923: 621.922

Ю.В. Димов, Д.Б. Подашев

Иркутский национальный исследовательский технический университет,

Иркутск, Россия

ПРОИЗВОДИТЕЛЬНОСТЬ ПРОЦЕССА ПРИ ОБРАБОТКЕ КРОМОК ДЕТАЛЕЙ

ПОЛИМЕРНО-АБРАЗИВНЫМИ ЩЕТКАМИ

Рассмотрен способ обработки кромок полимерно-абразивными щетками, который позволяет решить проблему механизации и автоматизации ручного труда, применяемого в настоящее время при выполнении подобных операций. Решение этой проблемы для отечественной промышленности является весьма актуальной задачей.

При исследованиях использовались щетки компании 3М марок С ВВ-ZВ с изогнутыми ворсинами и А ВВ-ZВ с прямыми ворсинами. На основе изучения взаимодействия режущего микрорельефа с обрабатываемой поверхностью разработана математическая модель формирования размера обработанной кромки в зависимости от режимных параметров обработки.

При этом режущий микрорельеф характеризуется следующими параметрами: σ – среднее квадратичное отклонение профиля, *m* – число максимумов и *n*(0) – число нулей (пересечений средней линии).

Для аналитического определения размера кромки рассчитан объем материала, который необходимо удалить в процессе обработки путем резания единичными абразивными зернами. Для этого определено количество зерен, участвующих в контакте, и глубина их внедрения, а также смоделирован процесс стружкообразования единичным зерном, который представлен в виде конуса с закругленной вершиной. Установлено, что производительность процесса обработки (съем материала) зависит от количества зерен, участвующих в резании, глубины их внедрения, радиуса при вершине зерна и механических свойств обрабатываемого материала.

Радиус на вершинах зерен определен экспериментально, поскольку он зависит от уровня сближения режущего микрорельефа и обрабатываемой поверхности, которое, в свою очередь, зависит от нормальной составляющей силы резания, а соответственно, от режимных параметров обработки: деформации щетки ΔY , скорости резания V и подачи S.

Прочность поверхностного слоя существенно отличается от прочности остального материала обрабатываемой детали и зависит от конкретных условий деформации, типа среды, предыстории обрабатываемого материала и т.д. В связи с этим введен и экспериментально определен коэффициент, учитывающий глубину внедрения абразивных зерен в обрабатываемый материал, для материалов В95пчТ2 и ВТ20 и представлен в виде уравнения регрессии.

Экспериментальные исследования показали, что теоретические положения полностью подтверждаются экспериментальными данными. Установлено, что полимерно-абразивные щетки могут эффективно применяться для обработки кромок деталей. Из всех исследованных щеток рекомендуются С BB-ZB P120 и A BB-ZB P50, как наиболее производительные.

Ключевые слова: размер кромки, щетка, режущий микрорельеф, модель единичного зерна, радиус закругления, сближение, глубина внедрения, площадь стружки, съем материала, полимерно-абразивный инструмент.

Yu.V. Dimov, D.B. Podashev

Irkutsk National Research Technical University, Irkutsk, Russian Federation

PROCESS PERFORMANCE WHEN MACHINING PART EDGES

WITH POLYMER-ABRASIVE BRUSHES

The article discusses a method of processing edges with polymer-abrasive brushes, which allows to solve the problem of mechanization and automation of manual labor, which is currently used in such operations. The solution of this problem for domestic industry is a very urgent task. In the research we used 3M brushes of grades C BB-ZB with curved bristles and A BB-ZB with straight bristles.

Based on the study of the cutting microrelief interaction with the machined surface, a mathematical model has been developed for forming the size of the machined edge depending on the processing parameters.

In this case, the cutting microrelief is characterized by the following parameters: σ – the mean square deviation of the profile, m – the number of maxima and n(0) – the number of zeros (intersections of the midline).

For analytical determination of the edge size, the volume of material is calculated that must be removed during processing by cutting with single abrasive grains. To do this, the number of grains participating in the contact and the depth of their introduction are determined, and the chip formation process by a single grain, which is presented in the form of a cone with a rounded top, is simulated. It was established that the productivity

of the processing process (material removal) depends on the number of grains involved in cutting, the depth of their introduction, the radius at the top of the grain and the mechanical properties of the processed material.

The radius at the tops of the grains was determined experimentally, since it depends on the level of convergence of the cutting microrelief and the surface being machined, which, in turn, depends on the normal component of the cutting force, and, accordingly, on the processing parameters: brush deformation ΔY , cutting speed V and feed S.

The strength of the surface layer differs significantly from the strength of the rest of the material of the workpiece and depends on the specific conditions of deformation, the type of medium, the history of the processed material, etc. In this regard, a coefficient was introduced and experimentally determined that takes into account the depth of penetration of abrasive grains into the processed material for materials V95pchT2 and VT20 and is presented in the form of a regression equation.

Experimental studies have shown that theoretical principles are fully supported by experimental data. It has been established that polymerabrasive brushes can be effectively used to process the edges of parts. Of all the brushes examined, C BB-ZB P120 and A BB-ZB P50 are recommended as the most productive.

Keywords: edge size, brush, cutting microrelief, single grain model, radius of curvature, rapprochement, penetration depth, chip area, material removal, polymer-abrasive tools.

Вопросам оценки производительности процесса и качества изделий после различных видов механической обработки посвящено множество работ, например работы [1-8]. Тем не менее в настоящее время многие финишные операции, такие как зачистка поверхностей и скругление острых кромок, продолжают выполняться при помощи низкопроизводительного ручного труда. Одним из перспективных и практически неисследованных способов, способных эффективно решать вышеуказанную проблему, является обработка вращающимися инструментами на гибкой (полимерной) связке. В связи с изложенным можно констатировать, что проблема замены ручного труда на механизированный и автоматизированный труд с применением полимерно-абразивных щеток для отечественной промышленности является весьма актуальной.

При исследованиях использовались щетки компании 3М марок С BB-ZB с изогнутыми ворсинами и A BB-ZB с прямыми ворсинами, характеристики которых подробно описаны в работе [9]. Данные щетки выпускаются в виде тонких дисков толщиной 1,5 мм из полимерного материала с гибкими ворсинами (135 для типа С и 90 для типа А) по окружности.

Параметры, характеризующие производительность процесса

Оцениваются в поперечном сечении кромки (рис. 1). К ним относятся [10]: фактический радиус скругления кромки, количество материала, снятого при скруглении кромки, и размер кромки $Z_k = 0.5(X + Y)$.

При обработке эластичными полимерно-абразивными щетками формулу съема материала с кромки длиной *l* можно записать следующим образом:

$$Q = N_D Q_c T n, \tag{1}$$

где n – частота вращения щетки, мин⁻¹; T – время обработки, мин; $T = \frac{l+B}{S}$; l – длина обрабатываемой кромки, мм; B – ширина щетки, мм; Q_c – объем материала кромки, срезаемый щеткой шириной 1 мм за один оборот:

$$Q_c = S_c N N_B \Delta Y b x, \qquad (2)$$

где S_c – площадь поперечного сечения стружки на единичном зерне [11]; N_B – количество ворсин на всей окружности на ширине щетки 1 мм; ΔY – деформация щетки (длина участка ворсины, участвующая в резании); b – ширина ворсины в зоне контакта с кромкой; x – путь прохождения ворсиной в состоянии контакта с кромкой; N – количество зерен, находящихся в контакте на площади 1 мм², в соответствии с формулой [12]

$$N = \frac{\pi n^2(0)}{2\sqrt{2\pi}} \cdot \gamma e^{-0.5\gamma^2},$$
 (3)

где γ – относительное сближение средних линий m_1m_1 и m_2m_2 (рис. 2); n(0) – число нулей (число пересечений средней линии). Следует отметить, что, согласно работам [11–14], кроме этого параметра предусмотрены: **о** – среднее квадратичное отклонение профиля, m – число максимумов, характеризующих режущий микрорельеф.

Рис. 1. Схема к расчету площади *Q*_c

Рис. 2. Схема взаимодействия режущего микрорельефа с поверхностью детали

Аналитическое определение размера кромки ($Z_k = 0.5(X + Y)$)

Обработанная кромка в зависимости от конструкции щетки может быть в виде фаски *ACB* (см. рис. 1) или закругленной по радиусу r_{ϕ} .

Кромка в виде фаски. При x = AB треугольника *ABD* величина переменная и зависит от $Z_k = 0,5(X + Y)$:

$$x = \int_0^{Z_k} dx = \int_0^{Z_k} \sqrt{2} dZ = \sqrt{2} Z_k.$$
 (4)

Подставив формулу (4) в формулу (2), получим

$$Q_c = S_c N N_B \Delta Y b \sqrt{2} Z_k.$$
⁽⁵⁾

При $X = Y = Z_k$ объем материала, который подлежит снятию с кромки,

$$Q = \frac{Z_k^2}{2}l.$$
 (6)

Решая совместно уравнения (1), (5) и (6), получим

$$Z_k = 2,828S_c NN_B \Delta Y b N_D \frac{n}{S},$$

где Z_k численно равен объему снятого материала на ширине 1 мм.

Кромка, закругленная по теоретическому радиусу $r_{\rm T}$. При $\mathbf{x} = AOD$

$$h = r_{\rm r} \left(1 - \cos \frac{\alpha}{2} \right) = 293 r_{\rm r}; a = 2\sqrt{2hr_{\rm r} - h^2} = 1,414 r_{\rm r} 293 r_{\rm r}.$$

При $r_{\rm r} = Z_k \ x = \sqrt{a^2 + \frac{16}{3}h^2} = 1,567 Z_k.$ (7)

Уравнение примет вид $Q_c = S_c N N_B \Delta Y b 1,567 Z_k$. Решая совместно уравнения (1), (2) и (7), получим

$$Z_k = 7,302S_c NN_B \Delta YbN_D \frac{n}{S}.$$

Площадь поперечного сечения стружки на единичном зерне S_c

По аналогии с работой [11] в качестве модели единичного зерна принят конус со скругленной вершиной. При внедрении зерна впереди него образуется валик наплыва (рис. 3), который при определенных условиях может переходить в стружку. Пластически оттесненный материал, обтекая зерно без отделения от основной массы, образует наплыв по его боковым сторонам [11].

На рис. З приняты обозначения: y_E – глубина внедрения зерна; mg – участок, на котором происходит стружкообразование; D – точка перехода сферической части в коническую; mk и gn – участки, на которых при движении зерна материал пластически оттесняется в наплыв.

Рис. 3. Взаимодействие модели единичного зерна с обрабатываемой поверхностью

Площадь поперечного сечения стружки на единичном зерне, по данным работы [11],

$$S_c = 2r_{\mathfrak{I}}^2 \sin \psi_0 (A_E - A_O)$$
 при $y_E \le y_D;$

$$S_c = 2r_3^2 \sin \psi_0 [A_D + A_O + \Delta \varepsilon (0,5\Delta \varepsilon ctg \phi_D + \sin \phi_D)]$$

при $y_E > y_D$,

где r_3 – эквивалентный радиус закругления абразивного зерна и микронеровности обрабатываемой поверхности; ψ_0 – угол заторможенного участка на сферическом абразивном зерне.

$$\psi_0 = \pi/4 - 0.5 \operatorname{arccos} 2\mu_T$$

(при $\mu_T = 0.4 \ \psi_0 = 0.463 \ 65 \ \text{рад}$).

Здесь $AE = 0,5\varphi_E - 0,25\sin 2\varphi_E; \varphi_E = \arccos(1 - \varepsilon_E);$ $\varepsilon_E = y_E/r_3; AO = 0,5\varphi_0 - 0,25\sin 2\varphi_0;$

$$\Delta \varepsilon = \varepsilon_E - \varepsilon_D; \ \varepsilon_D = y_D/r_I; \ y_D = r_I(1 - \sin\varphi_D).$$

При $\phi_D = 45^\circ = 0,785$ 4 рад $y_D = 0,293$ r_I .

Здесь r_I – средний радиус кривизны вершин выступов режущего микрорельефа эластичного полимерно-абразивного круга; y_E – математическое ожидание глубины внедрения выступов зерен, пластически деформирующих материал:

$$y_E = \sigma[\gamma_0 - \gamma], \tag{8}$$

где γ_0 – математическое ожидание относительных высот максимумов; $\gamma_0 = \gamma^{0.802} + 0,97$.

Для определения *у*_{*E*} необходимо воспользоваться зависимостями составляющих сил резания для единичного зерна.

Нормальная P_y^1 и тангенциальная P_z^1 составляющие силы резания на единичном зерне определяются по выражениям

$$P_{y}^{1} = Kr_{y}^{2}f_{y}; P_{Z}^{1} = Kr_{y}^{2}f_{z},$$

где K – предел текучести на сдвиг; f_y и f_z – безразмерные коэффициенты сил, формулы для расчета которых приведены в аппроксимированном виде в работе [11]:

$$f_{v} = 14,387\epsilon_{E}^{0.895}; f_{z} = 7,1\epsilon_{E},$$
 (9)

где ε_E – относительная величина внедрения зерен, $\varepsilon_E = y_E/r_{2}$.

Радиус на вершинах зерен

Из-за сложности определения эквивалентного радиуса r_3 целесообразно при исследованиях использовать радиус r_L . В работах [11–13] авторами установлено, что кривизна вершин выступов (радиус r_l) зависит от уровня сближения γ (см. рис. 2) режущего микрорельефа с обрабатываемой поверхностью.

Таким образом, радиус r_I зависит от математического ожидания глубины внедрения выступов абразивных зерен y_E , которая, в свою очередь, зависит от нормальной составляющей силы резания, рассмотренной в работах [15, 16], и, соответственно, от режимных параметров обработки: деформации щетки ΔY , скорости резания V и подачи S.

Известно, что при малой глубине внедрения режущего микрорельефа в процессе обработки поверхностей эластичными полимерно-абразивными инструментами микрогеометрия в результате износа инструмента и самозатачивания постоянно меняется и учесть это практически невозможно.

В связи с вышеизложенным принято решение определять реальный радиус r_1 экспериментально, в

зависимости от уровня сближения γ , а следовательно, от режимных параметров обработки – ΔY , *V* и *S*.

Суммарные составляющие силы резания на всей площадке контакта (согласно работе [11])

$$P_{y} = K r_{\mathfrak{I}}^{2} f_{y} n_{p}; P_{z} = K r_{\mathfrak{I}}^{2} f_{z} n_{p}.$$
(10)

Средневероятное количество активных (работающих) зерен на единице поверхности контакта эластичного круга с деталью, по работе [13], определяется по выражению

$$n_p = N x b N_p. \tag{11}$$

 $\langle a \rangle$

Подставляя формулы (8), (3), (9) и (11) в уравнение (10) и решая относительно γ, получаем

$$= \frac{\left(\gamma^{0,802} - \gamma + 0.97\right)^{0.895} \gamma e^{-\left(\frac{\gamma^2}{2}\right)}}{\frac{P_n}{12,749Kr_3^{1,105}\sigma^{0.895}n^2(0)Z_{\rm m}bN_D}},$$
(12)

где P_n – полная нормальная составляющая силы резания, по работе [13] (при этом $P_y = P_n$); Z_{rp} – заданный по чертежу размер обработанной кромки.

Определение величины γ по формуле (12) возможно только при решении численным методом. На рис. 4 приведена зависимость γ от *A* – правой части уравнения (12).

Рис. 4. Графическое представление уравнения (12)

Эта зависимость была аппроксимирована уравнением $\gamma = 2,5 A^{-0,0531} e^{-2,929A}$.

При заданных $\gamma = 2,9$ и K = 300 H/мм² (для сплава B95пчT2) и K = 450 H/мм² (для сплава BT20) экспериментально определены значения r_1 в зависимости от режимов обработки (ΔY и V) и представлены уравнением

$$r_1 = g_1 \Delta Y^2 + g_2 V^2 + g_3 \Delta Y + g_4 V + g_5 \Delta Y V + g_6.$$
(13)

Значения коэффициентов $g_1 - g_5$ и свободного члена g_6 для формулы (13) приведены в табл. 1. Скорости резания V – в м/с, деформации круга ΔY – в мм.

Таблица 1

					-			
Коэффициент	C BB-ZB P120	C BB-ZB P220	C BB-ZB P400	A BB-ZB P36	A BB-ZB P50			
В95пчТ2								
g_1	$-4 \cdot 10^{-5}$	-4.10-5	$-4 \cdot 10^{-5}$	-2.10^{-4}	$5 \cdot 10^{-6}$			
<i>g</i> ₂	$4 \cdot 10^{-6}$	4.10-6	5.10-6	0	6.10-7			
<i>g</i> ₃	9.10-4	9.10-4	1,1.10-3	7,6.10-3	1,9.10-3			
g_4	$2 \cdot 10^{-4}$	$2 \cdot 10^{-4}$	2.10-4	2,4.10-3	8.10-4			
<i>g</i> 5	1,3.10-7	1.10-7	5.10-8	1,5.10-8	2,5.10-8			
g 6	$-1,8 \cdot 10^{-3}$	-1,95.10-3	-2,02·10 ⁻³	-0,023	-7,2·10 ⁻³			
BT20								
g_1	-4.10-5	-4.10-5	-5.10-5	-2.10^{-4}	-2,5.10-5			
<i>g</i> ₂	5.10-6	4.10-6	7.10-6	7.10-6	-2.10-6			
<i>g</i> 3	1.10-3	9.10-4	1,1.10-3	5.10-3	2,1.10-3			
g_4	2.10-4	2.10-4	2.10-4	1,3.10-3	8.10-4			
<i>g</i> 5	1,3.10-7	1,0.10-7	5.10-8	1,5.10-8	2,5.10-8			
g_6	$-2,22 \cdot 10^{-3}$	$-1,85 \cdot 10^{-3}$	-2,04·10 ⁻³	-0,0145	-7.10-3			

Значения коэффициентов и свободного члена в формуле (13)

Таблица 2

Значения коэффициентов и свободного члена для щеток в формуле (14)

	C BB-ZB	A BB-ZB	C BB-ZB	A BB-ZB		
Коэффициент	P120	P50	P120	P50		
	Материал Е	395пчТ2	Материал ВТ20			
d_1	$-1,051 \cdot 10^{-6}$	-3,873.10-6	1,501.10-5	-2,5217.10-6		
d_2	-4,463.10-3	$-3,204 \cdot 10^{-3}$	-0,034 94	6,7906.10-4		
d3	10,71	12,65	26,07	4,36		
d_4	-0,0192	-0,058	-0,0545	-0,04423		
d_5	0,389	0,581	0,6483	0,5182		
d_6	-0,249	-0,397	-0,7212	-0,3651		
d_7	-2,21196.10-7	-2,932·10 ⁻⁹	-2,6566.10-8	7,2106.10-8		
d_8	1,521 52.10-4	2,761 44.10-5	2,763.10-5	-6,072.10-6		
<i>d</i> 9	-0,02245	-3,9037.10-3	-1,5176.10-3	8,52.10-4		
d_{10}	1,833 11	1,04724	0,9533	0,9312		

Обработка кромок полимерно-абразивными щетками – это удаление тонкого поверхностного слоя с острой кромки. Известно [17], что прочность приповерхностного слоя обрабатываемой поверхности существенно отличается от прочности остального материала обрабатываемой детали. Она зависит от конкретных условий деформации, типа среды, предыстории обрабатываемого материала и т.д. Ввиду этого принимаем $K = K_n K_{cn}$, где K_n – коэффициент, учитывающий глубину внедрения абразивных зерен в обрабатываемый материал; K_{cn} – предел текучести на сдвиг, полученный по формуле $K_{cn} = \sigma_{0,2} / \sqrt{3}$ через предел текучести $\sigma_{0,2}$.

В результате проведенных экспериментов получены значения коэффициента *К*_п для материалов В95пчТ2 и ВТ20 и представлены в виде уравнения

$$K_{\rm m} = (d_1 V^2 + d_2 V + d_3)(d_4 \Delta Y^2 + d_5 \Delta Y + d_6) \times \\ \times (d_7 S^3 + d_8 S^2 + d_9 S + d_{10}).$$
(14)

В уравнении (14) значения коэффициентов d_{1-10} определены по итогам комплекса экспериментов и приведены в табл. 2. В уравнении (14) ΔY – в мм, V – в м/мин, S – в мм/мин.

Экспериментальное исследование формирования кромки радиальными щетками

Одним из параметров, наиболее приемлемым для производственных условий, является размер кромки Z_k.

Таблица 3

Марка щетки	ΔY , мм	<i>V</i> , м/мин	<i>S</i> , мм/мин	Z _k экс., мм	<i>Z_k</i> теор., мм	<i>Р</i> _{<i>n</i>} теор., Н [15]	<i>S</i> , мм/мин	Z _k экс., мм	<i>Z_{k,}</i> теор., мм	<i>Р_n</i> теор., Н [15]
			В95пчТ2 <i>К</i> = 300 Н/мм ²			ВТ20 <i>К</i> = 450 Н/мм ²				
	4	235,62	130	0,295	0,296	6,896	82	0,077	0,077	7,086
		471,24		0,433	0,462	10,841		0,167	0,177	11,144
		706,86		0,658	0,658	16,201		0,316	0,316	16,656
C BB-7B		942,48		0,971	0,971	21,653		0,524	0,525	22,262
P120	2		130	0,594	0,595	10,183	82	0,275	0,274	10,473
σ=	3	706.06		0,621	0,629	13,332		0,292	0,298	13,71
= 0,007 72 мм;	4	/06,86		0,658	0,658	16.201		0,316	0,316	16,656
$m = 136 \text{ Mm}^{-1};$	5			0,705	0,704	18,80		0,347	0,348	19,325
$n(0) = 42,5 \text{ MM}^{-1}$		706,86	82	0,744	0,745		33	0,346	0,347	- 16,656
	4		130	0,658	0,658	16 201	41	0,343	0,342	
			255	0,239	0,239	16.201	82 130	0,316	0,316	
			395	0,164	0,164			0,259	0,258	
	4	235,62	35,62 0,235 0,235 71,24 0,32 0,373 06,86 0,461 0,462 42,48 0,657 0,658	0,235	18,406		0,465	0,466	18,969	
		471,24		0,32	0,373	34,702	82	0,6	0,67	35,829
		706,86		0,461	0,462	51,034		0,824	0,825	52,725
		942,48		0,657	0,658	67,404		1,136	1,135	69,659
A BB-ZB P50 $\sigma =$ = 0,005 74 MM; $m = 133 \text{ MM}^{-1};$ $n(0) = 46,3 \text{ MM}^{-1}$	2		6 130	0,421	0,421	29,553	82	0,762	0,763	30,55
	3	706,86		0,438	0,436	40,89		0,788	0,748	42,256
	4			0,461	0,462	51,034		0,824	0,825	52,725
	5			0,49	0,49	60,307		0,87	0,871	62,289
	4	4 706,86	82	0,515	0,515	51,034	33	0,869	0,868	52,725
			130	0,461	0,462		41	0,865	0,868	
			255	0,199	0,2		82	0,824	0,825	
			395	0,05	0,049		130	0,738	0,738	

Съем материала по параметру Z_k

Экспериментальные исследования производительности процесса скругления кромок в зависимости от режимных параметров обработки (деформации щетки ΔY , скорости ее вращения V и подачи S) проводились на образцах из высокопрочного алюминиевого сплава В95пчТ2 и титанового сплава ВТ20 на вертикальном обрабатывающем центре Deckel Maho DMC 635V щетками C BB-ZB P120 и A BB-ZB P50 (наиболее эффективными из всех исследованных). Размеры X и Y измерялись на большом инструментальном микроскопе БМИ-111 с точностью 1 мкм.

Результаты исследования приведены в табл. 3 по экспериментальным и теоретически рассчитанным данным [15].

Заключение

На основании проведенных исследований можно констатировать, что теоретические положения по съему материала полностью подтверждаются экспериментальными данными.

Установлено, что полимерно-абразивные щетки могут эффективно применять для обработки кромок деталей. Из всех исследованных щеток рекомендуются С ВВ-ZВ Р120 и А ВВ-ZВ Р50, как наиболее производительные.

Список литературы

1. Fomin A.A., Gusev V.G., Sattarova Z.G. Geometrical errors of surfaces milled with convex and concave profile tools // Solid State Phenomena. – 2018. – Vol. 284. – P. 281–288.

2. Fomin A.A. Microgeometry of surfaces after profile milling with the use of automatic cutting control system // Proc. of 2017 Int. Conf. on Indust. Eng., Appl. and Manuf. (ICIEAM-2017), St. Petersburg, 16–19 May 2017. – St. Petersburg, 2017. – Art. no. 8076117.

3. Bratan S., Vladetskaya E., Kharchenko A. Improvement of quality of details at round grinding in the conditions of a floating workshop // MATEC: Web of Conf., Sevastopol, 11–15 September 2017. – Sevastopol, 2017. – Vol 129. – Art. no. 01083.

4. Zverovshchikov A., Zverovshchikov V., Nesterov S. Comprehensive ensuring of quality of surfaces of details at centrifugalplanetary volume processing // MATEC: Web of Conf., Sevastopol, 10–14 September 2018. – Sevastopol, 2018. – Vol. 224. – Art. no. 01123.

5. Effect of the velocity of rotation in the process of vibration grinding / K. Hamouda, H. Bournine, M.A. Tamarkin, A.P. Babichev, D. Saidi, H.E. Amrou // Surf. State Materials Sci. – 2016. – Vol. 52 (2). – P. 216–221.

6. Shi J., Wang J.Y., Liu C.R. Modelling white layer thickness based on the cutting parameters of hard Machining // Proc. of the Inst. of Mech. Eng. Part B: J. of Eng. Manuf. – 2006. – Vol. 220, iss. 2. – P. 119–128.

7. Research on processing efficiency and contact characteristics of M300 steel surface grinding with elastic abrasives jixie gongcheng xuebao / X. Wu, Z. Chen, T. Zhou, C. Ma, X. Shu, J. Dong // J. of Mech. Eng. -2018. - Vol. 54, iss. 1. - P. 171–177.

8. Wu X., Zhou T., Tong Z. Experimental study on surface quality in elasticity ball-end grinding of m330 steel // J. of Comp. and Theoret. Nanosci. – 2017. – Vol 14, iss. 11. – P. 5372–5377.

9. Димов Ю.В., Подашев Д.Б. Исследование характеристик полимерно-абразивных щеток // Вестник ИрГТУ. – 2016. – № 4. – С. 19–25.

 Димов Ю.В., Подашев Д.Б. Исследование производительности процесса скругления кромок полимерно-абразивными щетками // Вестник ИрГТУ. – 2017. – № 3. – С. 74–78.

11. Димов Ю.В. Обработка деталей свободным абразивом. – Иркутск: Изд-во ИрГТУ, 2000. – 293 с.

12. Рудзит Я.А. Микрогеометрия и контактное взаимодействие поверхностей. – Рига: Зинатне, 1975. – 210 с.

13. Лукьянов В.С., Рудзит Я.А. Параметры шероховатости поверхности. – М.: Изд-во стандартов, 1979. – 162 с.

14. Димов Ю.В., Подашев Д.Б. Математическая модель для определения производительности обработки деталей полимерно-абразивными кругами // Вестник машиностроения. – 2018. – № 8. – С. 56–63.

15. Димов Ю.В., Подашев Д.Б. Расчет силы, действующей на кромку детали при обработке абразивными щетками // Вестник машиностроения. – 2016. – № 11. – С. 59–63.

16. Димов Ю.В., Подашев Д.Б. Силы резания при обработке эластичными абразивными кругами // Вестник ИрГТУ. – 2015. – № 7 (102). – С. 47–55.

17. Ахматов А.С. Молекулярная физика граничного трения. – М.: Физматгиз, 1963. – 472 с.

References

1. Fomin A.A., Gusev V.G., Sattarova Z.G. Geometrical errors of surfaces milled with convex and concave profile tools. *Solid State Phenomena*, 2018, vol. 284, pp. 281–288.

2. Fomin A.A. Microgeometry of surfaces after profile milling with the use of automatic cutting control system. *Proc.* of 2017 Int. Conf. on Indust. Eng., Appl. and Manuf. (ICI-EAM-2017), 2017, Art. no. 8076117.

3. Bratan S., Vladetskaya E., Kharchenko A. Im-provement of quality of details at round grinding in the con-ditions of a floating workshop. *MATEC: Web of Conf., Sevastopol.* Sevastopol, 2017, vol. 129. Art. no. 01083.

4. Zverovshchikov A., Zverovshchikov V., Nesterov S. Comprehensive ensuring of quality of surfaces of details at centrifugal-planetary volume processing. *MATEC: Web of Conf.* Sevastopol, 2018, vol. 224. Art. no. 01123.

5. Hamouda K., Bournine H., Tamarkin M.A., Babichev A.P., Saidi D., Amrou H.E. Effect of the velocity of rotation in the process of vibration grinding. *Surf. State Materials Science*, 2016, vol. 52 (2), pp. 216–221.

6. Shi J., Wang J.Y., Liu C.R. Modelling white layer thickness based on the cutting parameters of hard Machining. *Proc. of the Inst. of Mech. Eng. Part B: J. of Eng. Manuf.*, 2006, vol. 220, iss. 2, pp. 119–128.

7. Wu X., Chen Z., Zhou T., Ma C., Shu X., Dong J. Research on processing efficiency and contact char-acteristics of M300 steel surface grinding with elastic abra-sives jixie gongcheng xuebao. *Journal of Mech. Eng.*, 2018, vol. 54, iss. 1, pp. 171–177.

8. Wu X., Zhou T., Tong Z. Experimental study on surface quality in elasticity ball-end grinding of m330 steel. *Journal of Comp. and Theoret. Nanosci.*, 2017, vol. 14, iss. 11, pp. 5372–5377.

9. Dimov Iu.V., Podashev D.B. Issledovanie kharakteristik polimerno-abrazivnykh shchetok [Investigation of polymer-abrasive brushes characteristics]. *Vestnik IrGTU*, 2016, no. 4, pp. 19–25.

10. Dimov Iu.V., Podashev D.B. Issledovanie proizvoditel'nosti protsessa skrugleniia kromok polimernoabrazivnymi shchetkami [Performance study of edge rounding process with polymer-abrasive brushes]. *Vestnik IrGTU*, 2017, no. 3, pp. 74–78.

11. Dimov Iu.V. Obrabotka detalei svobodnym abrazivom [Processing of parts with free abrasive]. Irkutsk: Izdatelsnvo IrGTU, 2000, 293 p.

12. Rudzit Ia.A. Mikrogeometriia i kontaktnoe vzaimodeistvie poverkhnostei [Microgeometry and contact surface interaction]. Riga: Zinatne, 1975, 210 p.

13. Luk'ianov V.S., Rudzit Ia.A. Parametry sherokhovatosti poverkhnosti [Surface roughness parameters]. Moscow: Izdatelstvo standartov, 1979, 162 p.

14. Dimov Iu.V., Podashev D.B. Matematicheskaia model' dlia opredeleniia proizvoditel'nosti obrabotki detalei polimerno-abrazivnymi krugami [Mathematical model for determining the productivity of machining parts with polymerabrasive wheels]. *Vestnik mashinostroeniia*, 2018, no. 8, pp. 56–63. 15. Dimov Iu.V., Podashev D.B. Raschet sily, deistvuiushchei na kromku detali pri obrabotke abrazivnymi shchetkami [Calculation of force acting on the workpiece edge when blasting with abrasive brushes]. *Vestnik mashinostroeniia*, 2016, no. 11, pp. 59–63.

16. Dimov Iu.V., Podashev D.B. Sily rezaniia pri obrabotke elastichnymi abrazivnymi krugami [Cutting forces when machining with elastic abrasive wheels]. *Vestnik IrGTU*, 2015, no. 7 (102), pp. 47–55.

17. Akhmatov A.S. Molekuliarnaia fizika granichno-go treniia [Molecular physics of boundary friction]. Moscow: Fizmatgiz, 1963, 472 p.

Получено 27.05.2020 Опубликовано 12.10.1010

Сведения об авторах

Димов Юрий Владимирович (Иркутск, Россия) – доктор технических наук, профессор кафедры конструирования и стандартизации в машиностроении Иркутского национального исследовательского технического университета, e-mail: Dimov-Ura@yandex.ru.

Подашев Дмитрий Борисович (Иркутск, Россия) – кандидат технических наук, доцент кафедры конструирования и стандартизации в машиностроении Иркутского национального исследовательского технического университета, e-mail: dbp90@mail.ru.

About the authors

Yuriy V. Dimov (Irkutsk, Russian Federation) – Doctor in Technical Sciences, Professor, Department of Design and Standardization in Mechanical Engineering, Irkutsk National Research Technical University, e-mail: Dimov-Ura@yandex.ru.

Dmitriy B. Podashev (Irkutsk, Russian Federation) – Ph.D. in Technical Sciences, Associate Professor, Department of Design and Standardization in Mechanical Engineering, Irkutsk National Research Technical University, e-mail: dbp90@mail.ru.