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This paper deals with contact interaction of a multi-layer structure in the form of a plate
reinforced by beams. There are small gaps between the plate and beams. Such systems are
integral elements of modern devices. The created mathematical model is based on the following
hypothesis: the system has a multi-layer structure; materials are isotropic. We used the kinematic
model of the first approximation (the Kirchhoff model for the plate, the Euler-Bernoulli model for
beams). To solve the problem we used the finite difference method with approximation 0 (h2), 0
(h4) and the Faedo-Galerkin method in higher approximations of spatial coordinates, as well as the
Runge-Kutta method 0 (h4), 0 (h6), 0 (h8) in time. When solving problems associated with chaotic
vibrations, it is necessary to solve the issue of error and realness of chaos, so we need to use
different numerical methods at each stage of the study to validate the results in order to distinguish
chaos from the numerical error. For the analysis of chaotic dynamics we have applied all methods
of qualitative analysis. We have investigated the spatiotemporal chaos based on wavelet analysis.
We have studied the influence of white noise on the contact interaction of elements of the multi-
layer structure. Also, the analysis of the complex vibrations of plates and beams depending on
different intensities of noise and types of applied load has been made. It was found that by using
an external additive white noise, it is possible to control chaotic oscillations and transfer the system
from a chaotic state to a harmonious one and enable or disable the contact interaction. 
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1. Introduction 
 
The structures of modern devices and equipment are 

complex multi-layer systems of beams and plates with small 
gaps between them. Such structures are affected by extreme 
conditions caused by deterministic external influence of 
various kinds and random fluctuations in the environment 
properties which causes modification of modes of dynamic 
systems [1]. It is necessary to take into account the contact 
interaction of layers which is the reason of constructive 
nonlinearity [2]. A gap between the elements (plate-beam, 
plate-plate, beam-beam, shell-beam and other combinations), 
as well as the imperfection of the device, even if there are 
small deflections comparable with the gap between the 
elements, can cause the studied object to be in a state of 
chaotic oscillations [3-4]. Therefore, it is important to study 
influence of control parameters, and different kinds of 
external load on performance of the system. Such systems 
have a wide application to electronics, in particular, to 
gyroscopes (multi-layered flat micromechanical 
accelerometers (MMA)), described in articles [5-6], but 
these works do not deal with the contact interaction of 
layers. When modeling behavior of structures of modern 
devices, the type of the chaotic state is important. This 
phenomenon can be studied from the perspective of analysis 
of the variety of signs of Lyapunov exponents [7-9], Fourier 
analysis and wavelet analysis [10]. An important matter is 
the control of chaos and complex nonlinear oscillations that 
lead to various performance errors of sensors of measuring 
instruments. Such errors can be studied by taking into 
account the mathematical model of white noise. The 
problem of increasing the accuracy and structural strength 
of modern devices is currently relevant. This problem can 
be solved by using new technical solutions and new 
technologies, as well as by creating new mathematical 
models that describe nonlinear dynamics of distributed 
systems. At the moment, both foreign and Russian scientific 
schools have increased interest in effects associated with the 
influence of external noises on the behavior of dynamic 
systems. In such areas as physics, chemistry, and biology it 
has already been proved that random influences play a very 
significant role in the behavior of dynamic systems [11-12]. 
External noise can cause not only fluctuations in the 
properties of dynamic systems, but also a qualitative 
modification of their modes [13-15]. Using the example of 
the Anishchenko-Astakhov oscillator, T.E. Vadivasova [16] 
has proved that the effect of noise signal causes a shift of 
doubling bifurcations towards the increase of the control 
parameter. In the work by V.D. Potapov [17] it is shown 
that the deterministic parametric system which is unstable 
according to Lyapunov, can be stabilized by applying 
random noise to the parametric load. The work [18] reports 
on the results of the sample study of a beam-impact system 
under Gaussian noise disturbances. It is proved that when 
taking into account several forms of oscillations, the 
reaction of a nonlinear model differs greatly from that of the 
calculation model with one degree of freedom. The article 

[19] shows that by taking into account the number of 
degrees of freedom we can significantly affect reliability of 
the results. The work [20] presents calculations of 
vibrations and radiation of sound of reinforced plates 
covered with a damping layer under harmonic load and load 
of the white noise type. The solution is obtained by natural 
decomposition of oscillations. S.I. Denisov [21] examines 
noise-induced transitions in one-dimensional systems that 
cause their stationary distribution functions to change 
qualitatively with the change of noise intensity. When 
fluctuations are modeled by Gaussian white noise, the 
necessary condition for such transitions is multiplicity of 
noise. The authors of the article [22] suggest a theoretical 
static model of equilibrium of a liquid drop on a rough flat 
surface. The surface is described using a random stationary 
function of the white noise type in a limited frequency 
range. A generalization of the model for surface topography 
in the form of a set of random functions was carried out. 
However, in the literature that we know about, there are no 
works devoted to the matter of external influence of the 
environment on nonlinear oscillations of multi-layer 
systems in the form of beams and plates as systems with a 
variety of degrees of freedom. 

 
2. Setting the Problem 
 

The authors of this work have created a mathematical 
model of complex vibrations of a multi-layer system 
consisting of a plate and three beams, which is subjected to 
external load of different types (Fig. 1). The upper layer is a 
plate described by equation of the Germain-Lagrange type, 
and the lower layer is a set of parallel beams. Each beam is 
described by the Euler-Bernoulli equation. The contact 
interaction is taken into account by the Winkler model. The 
plate and beams are isotropic and connected by the 
boundary conditions, there is a small gap between them. 
The mathematical model is described by a following system 
of equations:  
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where functions ( )1 1 2

1
1

2 ksign w h w ψ = + − −  , 

( )2 1 3

1
1

2 ksign w h w ψ = + − −  , and 3ψ =  

( )1 4

1
1

2 ksign w h w = + − −  .  

The ratio 1 1( )i k iK w w h −− − Ψ  (where i = 2; 3; 4 is the 

beam number) is the contact pressure between the layers. In 
the contact problems of the theory of plates and beams this 
ratio is the Winkler connection between compression and 
contact pressure. 

4 4 4
4 2

2 4 4 2 2

1
2

x y x y
λ

∂ ∂ ∂∇ = + λ +
λ ∂ ∂ ∂ ∂

; 1 1,i−Ψ =  if 

1w i kw h> +  is the contact between the plate and the beam, 

otherwise 1 0;i−Ψ =  1, iw w  are functions describing 

deflections of the plate and beams, respectively, K is the 
stiffness coefficient of transversal compression of the 
structure in the contact zone, kh  is the gap between the 

layers. Adhesion zones are unlikely to occur, since the 
contact pressure between the layers is low. The conditions 
of contact between the layers may depend on coordinates 
and include all kinds of the imperfect one-side contact [23]. 

The system of equations (1.1) has the following 

dimensionless form: ,x aх=  y ay= ; 
4

2 2

(2 )E h
q q

a b
= , 

2

ab

h Eg

γτ = , 
a

b
λ = , where ,a b  are dimensions of the 

plate regarding x  and y , respectively, t  is the time, ε  is 

the damping coefficient, w  is the deflection function, 2h  is 
the thickness of the plate, 0.3µ =  is the Poisson's ratio, g  

is the gravity acceleration, E  is the modulus of elasticity, 

1( , , )q x y t  is the transverse load applied to the plate, ( , )iq x t  

are transverse loads applied to the beams, γ  is the specific 

weight of the material.  
The multi-layer system can be subjected to different 

external loads: transverse loads with or without additive 
noise.  

The general form of transverse loads can be written as 
follows:  

 0
1 0

2
( , , ) sin( ) 1

_ max 1p
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q x y t q t a
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= ω + × −

+
;  (2.2) 

0 0 2
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 ( 2,..., 4i = );  (2.3) 

The additive noise is a form of deterministic input, 
whereby the noise is used only by applying the external load 

and expressed by the formula 0 2
1

_ max 1

rand
a

rand
× −

+
, where 

0a  is the noise intensity, the function rand  is the random 
number generator of a random value. 

For simplicity sake, bars over dimensionless parameters 
in the system of equations (1.1) can be omitted. 

 

 
Fig. 1. Schematic view of a multi-layer structure consisting  

of a plate and three beams 
 
The boundary conditions (hinge support along the 

contour and zero initial conditions) should be added to the 
initial equations: 

 0; | 0;m m xw w′′= =  at 0;1x = ;  

 10; | 0;m yw w′′= =  at 0;1y = ;  (2.4) 

m = 1, 2, 3, 4 is the index corresponding to the plate and 
beams,  

1 0 2 0 3 0( , ) | 0, ( ) | 0, ( ) | 0,t t tw x y w x w x= = == = =   

 4 0( ) | 0, | 0t m tw x w= = = , m = 1, 2, 3, 4. (2.5) 

These conditions and conditions of nonpenetration of 
one system into the body of another one should be attached. 
Obtained system of nonlinear PDEs (1.1) is reduced to 
second order ODEs (1-3) by the Faedo-Galerkin higher 
approximation order method [24]. Functions 1w  and iw  

( 2,.., 4),i =  being solutions to (1.1), are approximated by 

the following functions that depend on time and 
coordinates: 
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The functions ( , )kj x yκ  and ( )k
i xϕ  are chosen in such 

a way that they are linearly independent, continuous 
together with their differential derivatives up to fourth 
order, and satisfy boundary and initial conditions. In this 
regard the equation is written as follows: 

( , ) sin( )sin( ),kj x y k x j yϕ = π π  ( ) sin( ),k
i x k xϕ = π  

( 2,.., 4).i =  

The coefficients ( )  и   ( )k
kj iA t A t  are the required 

functions of time. The system of second order with respect 
to functions of time is obtained by the Faedo-Galerkin 
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method. The number of equations in the system depends on 
the number of beams. The system of equations of second 
order is reduced to first order system by the variable 
replacement method. Cauchy problems for the nonlinear 
system of first-order equations is solved by the Runge-Kutta 
method in time.  

When solving problems associated with chaotic 
vibrations, it is necessary to solve the issue of error, so we 
need to use different numerical methods to validate the 
results. For this purpose, we reduced the obtained 
differential equations to the Cauchy problems by the finite 
difference method with approximation 0(h2) and 0(h4) and 
the Faedo-Galerkin method in higher approximations, 
studied convergence of the method for different numbers of 
terms of the order 1,...,6,N =  and checked the accuracy by 

the Runge rule. Obtained ODEs were solved by the 4th, 6th, 
8th order Runge-Kutta method in time, a comparative 
analysis of the results was carried out [1, 4]. Since the 
system of equations is nonlinear, it is not possible to solve it 
analytically. 

Based on this algorithm, a complex solution was 
created that allows to study a multi-layer system of  
a plate and three beams described by a system of  
equations (1.1). The obtained results are analyzed  
using the methods of nonlinear dynamics and qualitative  
theory of differential equations: each layer is studied  
using such techniques as construction of signals,  
phase portraits, Poincaré maps, Fourier spectra, use of  
wavelet transforms as well as analysis of the Lyapunov 
exponents. Various wavelets are used: Morlet,  
Mexican hat, and Gaussian derivatives wavelets (from  
1st to 8th order inclusive). 8th order Gaussian wavelet and 
the Morlet wavelet give similar results, however, the  
Morlet wavelet is preferable, because it allows to better 
localize the frequency in time, i. e. it is more informative 
[25-26]. 

 
3. Numerical Experiment 

 
Let us study complex vibrations of a multi-layer system 

consisting of a plate and three parallel beams positioned at 
an asymmetric distance from the center of the plate 
( 0.2y = , 0.4y = and 0.7),y =  the gap between the plate 

and each of the beams is 0.01.kh =  Let us study the contact 

interaction depending on three types of load: 
1) external distributed transverse load 

1 0( , , ) sin( )pq x y t q t= ω  is applied only to the upper plate, 

the beams are at standstill, i. e. ( , ) 0;iq x t =  

2) external distributed transverse load with the noise 

component 0
1 0

2
( , , ) sin( ) 1,

_ max 1p

rand
q x y t q t a

rand
= ω + × −

+
 

is applied only to the upper plate, the beams are at standstill 
( )( , ) 0iq x t = ; 

3) external distributed transverse load 1( , , )q x y t =  

( )0 sin pq t= ω  is applied to the upper plate, all three beams 

are subjected to the additive white noise, i. e. the load is 

defined as 0 2
( , ) 1

_ max 1i i

rand
q x t a

rand
= × −

+
. 

Let us discuss the first type of the load. The upper plate 
is subjected to an external distributed transverse load 

( )1 0( , , ) sin pq x y t q t= ω  with the intensity 0 0.065q <  and 

excitation frequency 5,pω =  close to the natural-vibration 

frequency of the plate. The plate executes harmonic 
vibrations, and the beams are at standstill. When the 
external load amplitude is 0 0.065q = , there is a contact 

between the plate and beams, which causes short time 
damped vibrations of the beams. When 0 0.07q = , vibration 

behavior of the plate and beams changes. the system goes 
into chaos state, the period triples (see Fig. 2, b1, b2), while 
the second and third beams are at standstill. Figure 2 shows 
the graphs of the Fourier power spectra (b1, b2), 2D Morlet 
wavelet-spectra (c1, c2) of the plate and the first beam, 
respectively, as well as the graph of coupled vibrations of 
the plate and the first beam ( 0.2)y =  (a), a continuous line 

is the plate, a dotted line is the beam. 
 

 
a 
 

 
 

 

b1 b2 
  

  
 

c1 c2 
 

Fig. 2. Contact interaction of the plate and three asymmetric  
 beams at the load amplitude 0 0.07q =  with the gap 0.01kh =  

 
With an increase of the external load amplitude, the 

plate executes chaotic vibrations during period tripling with 
each of the end beams at a time. When the load amplitude is 
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in the range 0 [0.074;0.09]q ∈ , each element of the two-

layer beam-plate system (plate and all three beams) 
executes vibrations. The graphs of 2D Morlet wavelet-
spectra show that the vibrations are executed at different 
frequencies at different time intervals (see Fig. 3 b1-b4), 
unlike the Fourier power spectra (see Fig. 3, a1-a4), which 
show frequencies of vibrations for the entire period of time. 
This analysis allows us to draw a conclusion about the 
presence of intermittency zones and areas of 
enabling/disabling frequencies. With increase of the load, 
the plate once again executes vibrations with each of the 
beams at a time. And finally, starting with the load 
amplitude 0 0.31q = , the plate interacts simultaneously with 

two end beams ( 0.2,y =  0.7y = ), the vibration behavior is 

chaotic. 
 

  
 

a1 a2 
  

  
 

a3 a4 
  

  
 

b1 b2 
  

 
 

 

b3 b4 
 

Fig. 3. Contact interaction of the plate and three asymmetric  
beams at the load amplitude 0 0.077q =  with the gap 0.01kh =  

 
Let us discuss the second type of the load. The upper 

plate is subjected to an external distributed transverse load 

with the amplitude 0 0.07.q =  Let us study the influence of 

additive noise added to the external transverse load applied 
to the plate, on the complex vibrations of the multi-layer 
system. The noise intensity from the range of 

0 6 3[1 10 ; 6.6 10 ]a − −∈ ⋅ ⋅  has absolutely no influence on the 

vibration behavior (see Fig. 4 a1, b1, c1, d1). The system is 
still deterministic, chaotic vibrations are captured during 
period tripling of the plate and the first beam ( 0.2).y =  

Figure 4 shows graphs of Fourier power spectra and 2D 
Morlet wavelet-spectra of the plate 1(0.5;0.5, )w t  (a1-a4 

and b1-b4), first beam 2 (0.5; )w t  (c1-c4 and d1-d4), second 

beam 3 (0.5; )w t  (e3-e4 and f3-f4) and third beam 4 (0.5; )w t  

(g3-g4 and h3-h4), respectively, for different noise 
intensities. When increase of the noise intensity 

0 36.7 10 ,a −= ⋅  the vibration behavior of the entire system 

has changed. The vibrations of the plate became harmonic 
at the excitation frequency of the external load 5pω = , and 

the beams are at standstill. Thus, there is no contact 
interaction with the presence of additive noise 

0 36.7 10a −= ⋅  in the external load (see Fig. 4, a2, b2). With 

the noise intensity of 0 3 2[6.7 10 ; 5 10 ]a − −∈ ⋅ ⋅  and 

amplitude of the external transverse load of 0 0.07,q =  the 

vibrations of the system are harmonic, the phase portrait has 
the form of a ring. When the noise intensity is increased up 

to 0 26 10a −= ⋅  at the previous values of other control 
parameters, the system changes and tripling of orbits is 
shown in the phase plate portrait. The beams execute 
vibrations due to the contact as a result of the contact 
interaction of layers (see Fig. 4, c3, d3, e3, f3, g3, h3). The 
Fourier power spectrum of the plate shows localization of 
frequencies around a frequency, which will occur with a 
further increase of the noise intensity (see Fig. 4, a3, b3). 

When the noise intensity is 0 27 10 ,a −= ⋅  the system 
executes chaotic vibrations during period tripling. When the 

noise intensity is increased up to 0 11 10 ,a −= ⋅  the multi-
layer system executes complex chaotic vibrations during 
period tripling. At different time intervals, the plate interacts 
with each of the beams at a time. The contact interaction of 
the plate with the second ( 0.4)y =  and third ( 0.7)y =  

beams occurs only for a short period of time (see Fig. 4, a4, 
b4, c4, d4, e4, f4, g4, h4). 

Now, let us discuss the third type of the load. The upper 
plate is subjected to an external distributed transverse load 
with the amplitude 0 0.07q =  and excitation frequency 

5.pω =  Let us study the contact interaction under the 

influence of additive noise applied to all three beams,  
i. e. the load on the beams is defined as 

0 2
( , ) * 1

_ max 1i i

rand
q x t a

rand
= −

+
. 

When there is no external white noise ( )0 0 ,ia =  there is 

a contact between the plate and the first beam ( 0.2),y =  the  
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0 36,6 10a −= ⋅  0 36,7 10a −= ⋅  0 26 10a −= ⋅  0 11 10a −= ⋅  

 
a1 

 
a2 

 
a3 

 
a4 

 
b1 

 
b2 

 
b3 

 
b4 

 
c1 

 
d1 

at standstill 

 
c3 

 
d3 

 
c4 

 
d4 

at standstill at standstill 

 
e3 

 
f3 

 
e4 

 
f4 

at standstill at standstill 

 
g3 

 
h3 

 
g4 

 
h4 

 
Fig. 4. Study of the influence of white noise on vibrations of a multi-layer system using the Fourier method and wavelet analysis 
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a1 

 
b1 

 
c1 

 
a2 

 
b2 

 
c2 

 

Fig. 5. Contact interaction of the plate 1(0.5;0.5, )w t  and the first beam 2 (0.5; )w t  under the influence of white noise 0 0.001ia =  

 

 
a1 

 
b1 

 
c1 

 
a2 

 
b2 

 
c2 

 

Fig. 6. Contact interaction of the plate 1(0.5; 0.5, )w t  and the third beam 4 (0.5; )w t  under the influence of white noise 0 0.031ia =  

 
plate and the beam execute vibrations during period tripling, 
while the second ( 0.4)y =  and third ( 0.7)y =  beams are at 
standstill. The system changes with increase of the additive 

noise intensity up to 0 0.001ia = . The second and third 
beams execute chaotic vibrations with a small amplitude 
compared to the gap between the plate and beams, phase 
portraits have the form of a solid spot, the Fourier power 
spectra and wavelet-spectra show a deep chaos. The contact 
interaction occurs between the plate and the first beam 
during period tripling (see Fig. 5, b1, b2), but there is 
intermittency of frequencies of these elements (see Fig. 5, 
c1, c2). Fig. 5 shows the graphs of the signal (a1, a2), the 

Fourier power spectrum (b1, b2) and 2D Morlet wavelet 
spectra (c1, c2) of the plate and the first beam, respectively. 

When the noise intensity is 0 [0.002;0.029]ia = , the 

plate and the third beam come into contact interaction 
during period tripling, the first and second beams make 
chaotic oscillations, but there is no contact with the plate. 

When 0 0.002ia = , the Fourier power spectrum of the plate 

is cleared, the plate and the third beam are synchronized 
with small noise components.  The  vibrations  are  executed 
during period tripling, but a dominating frequency of the 
plate is ωp = 5, and dominating frequencies of the beam  
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are / 3 1.6pω =  and 2 / 3 3.3.pω =  When the white noise 

intensity is 0 0.03,ia =  the plate executes harmonic 

vibrations due to the fact that there is no contact with any of 
the beams, although they are in a state of deep chaos. With 

increase of the noise intensity up to 0 0.031ia = , the plate 

once again touches the third beam with a tripling of the 
frequency period, i. e. these two elements of the beam-plate 
structure are synchronized (see Fig. 6). 

 
4. Conclusion 

 

This work presents a mathematical model of the contact 
interaction of a plate reinforced by ribs with gaps under the 
influence of white noise. As a part of the study, the authors 
have studied behavior of complex vibrations of a multi-
layer system depending on three types of load under the 
influence of white noise. We can draw a conclusion that as 
soon as elements of the system come into contact, 
regardless of the presence of white noise, their vibrations 
become chaotic at linearly dependent frequencies 5pω = , 

/ 3 1.6pω =  and 2 / 3 3.3pω = . 

The external additive white noise can affect the 
vibration behavior (presence or absence of the contact 
interaction of elements of a multi-layer system). The 
absence of contact interaction causes the system to execute 
harmonic vibrations. 
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