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In this paper, the characteristics, features and the corresponding boundary value problems of
gradient theories of elasticity are examined. A brief description on one-parametric applied model,
which is one of the several variants of the gradient elasticity theories, is given. In relation to that,
we represent a continuum gradient model of two-phase composite structures that will allow us to
evaluate the influence of scale parameters on their effective mechanical properties. 

In identifying the additional physical parameters of gradient elasticity models, a new method is
introduced where a comparison between the results of continuum and discrete-atomistic modeling
for specific tested heterogeneous structures is made. As a result, a procedure and the respective
algorithm defining the additional parameter of applied gradient continuum model of heterogeneous
media is proposed; and in such procedure, an interphase zone is characterized at the contact
surface of a two-phase composite and the scale effects represented by cohesions-interaction
fields, which are localized near to the boundaries of contact surfaces, are defined. This additional
physical parameter of gradient model is found through parameters of potentials, which are used to
describe the specific studied structure in the discrete-atomistic modeling. 

To justify and validate the proposed method, a numerical investigation is conducted and
comparison is made between the results of continuum and discrete-atomistic modeling. The
examination reveals that a high degree of accuracy of prediction can be provided by the continuum
one-parametric gradient theory when describing the effective properties of countable multiple set of
two-phase heterogeneous studied structures, which are formed by atomic substructures with
various properties (various parameters of potentials). 

Finally, it is demonstrated that the identification method of parameters in gradient elasticity
theories for heterogeneous structures is well described by Leonard-John potential and Morse
potential. Furthermore, we consider that when the parameters of potentials are known, the various
types of cross interactions of atoms can be treated as ‘ideal’ or ‘damaged’ interactions as per
Lorentz-Berthelot’s rule. 
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1. Introduction 
 

Historically, development of the gradient theories of 
elasticity began thanks to the path breaking works [1-4].  
In contrast to the classical theory of elasticity which does 
not take into account any scale parameters in constitutive 
equations, the gradient theories of deformation include 
parameters of length dimension and, therefore, are suitable 
for simulation of scale effects. 

Currently, the gradient theories of elasticity are widely 
used to describe dimensional effects and non-local behavior 
observed in semi-crystalline and nanostructured materials, 
geomaterials, and biomaterials as well as to simulate 
anomalous properties of hyperfine structures (micro and 
nanoparticles, hyperfine cantilever beams and plates, carbon 
nanotubes and metal nanowires) [5-9]. Dimensional effects 
in hyperfine structures were observed experimentally, for 
example, in bend tests of aluminum rods, epoxy and 
polypropylene cantilever beams [10-12]. The gradient 
theories of elasticity are used for evaluation of the effective 
properties of filled composites with micro/nanoinclusions to 
take into account so-called secondary effects [13-20]. The 
theories are also used to evaluate conformance between the 
discrete atomic simulation level and the continual 
simulation level used in continuum mechanics [21].  

Generally, simulation of scale effects in various 
physicomechanical processes is performed using the 
secondary gradient theories due to their relative simplicity 
[8, 18, 22, 23]. In the secondary gradient theory, the Cauchy 
stress tensor σ and the couple stress pseudotensor µ are 
arcwise connected to the strain tensor ε and the strain 
gradient tensor χ. In general, there are 300 independent 
material coefficients based on the symmetry conditions (the 
gradient theory of deformations with a symmetric strain 
tensor), while the number of physical constants decreases to 
7 for isotropic centrosymmetric materials (see, for example, 
[2, 5, 6]). On the one hand, the large number of material 
coefficients underlines richness of the gradient theories, but 
on the other hand, it points to the obvious difficulties in 
determining physical parameters from the available set of 
experimental studies. It should be noted that in order to use 
the gradient theory for simulation in specific theoretical  
and engineering problems, physical constants must be 
determined fairly accurately and reliably. Consequently, 
even a correctly developed theory, determined up to a large 
number of physical constants that are impossible to derive 
from experimental trials accurately, becomes untenable in 
relation to specific applications. Therefore, the problem of 
additional physical parameters determination in the gradient 
theories of elasticity is very relevant. It should be noted that 
in some cases this problem can be solved using indirect 
methods, for example, based on comparison of theoretical 
results with experimental data on the effective properties of 
the nanocomposites filled with rigid nanoparticles [18].  

In this paper, we discuss direct evaluation of the 
additional physical constant responsible for gradient (scale) 
effects in applied versions of the gradient theory of 

elasticity. We develop a method to determine the nonclassic 
physical constant based on comparison of the results of 
direct discrete atomic simulation of heterogeneous 
structures and the results of continual simulation carried out 
using the one-parameter gradient theory. The direct 
feasibility demonstration of the proposed methodology is 
the results of preliminary studies [21] showing that the 
gradient theory gives a very accurate description of the one-
dimensional composite chains properties. Simulation of the 
effective properties of that chains was carried out on the 
basis of direct discrete atomic simulation using the Lennard-
Jones potential (6-12).  

The article develops the methodology based on 
consideration of the one-dimensional discrete model of 
composite system and the one-dimensional continual 
composite model respectively. In the case under 
consideration, the continual solution, taking into account 
scale effects, obtained for periodic composite structures 
using the gradient theory of elasticity, is presented in an 
analytical form which helps to determine the nonclassic 
physical constant. Therein, the discrete model may be 
created using, formally, any potential that is most suitable 
for simulation of the materials under consideration. 

 
2. Gradient Theories of Elasticity 

 
Let us give a brief introduction to the gradient theories 

of elasticity and introduce variants of the applied one-
parameter theories of elasticity. We use the variational 
formulation to define the linear gradient theory of elasticity 
in displacements for isotropic centrosymmetric materials: 

  , , , ,

1 1

2 2ijkl i j k l ijklmn i jk l mnE C R R dV C R R dV= + −∫ ∫    

 ( ), .i i i i i i j jf R dV t R q R n dS− − +∫ ∫v  (1) 

Where Ri is the displacement vector; fi, ti, and qi are 
vectors of given forces in the volume of a body and on its 
surface; ni is the normal to the body surface at the point 
under consideration; Cijkl and Cijklmn are the moduli tensor of 
the classic elasticity theory and the hexor of gradient moduli 
for isotropic materials accordingly.  

Tensor components of ordinary and couple stresses are 
determined by the Green equalities: 

 , ,/ ,ij i j ijkl k lE R C Rσ = ∂ ∂ =    

 , ,/ijk i jk ijklmn l mnE R C Rµ = ∂ ∂ =    (2) 

Couple stresses tensor taking into account the 
"moment" interaction in the body volume. 

It is assumed that tensors of classic and gradient moduli 
meet the following necessary potential conditions: 

 , .ijkl klij ijklmn lmnijkC C C C= =   (3) 

For the gradient theory of deformation that is more 
particular than the gradient theory of distortion, it is 
necessary to introduce the following additional symmetry 
conditions for the first pair of indices: 
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 .ijklmn jiklmnC C=   (4) 

For the isotropic theory of elasticity, the tensor of 
elasticity moduli ijklС  is determined by the Lame 

coefficients λ, µ: ( )ijkl ij kl ik jl il jkС = λδ δ + µ δ δ + δ δ  where δij 

is the bivalent mixed tensor. By varying the potential energy 
functional (1), we obtain the equilibrium equations and 
natural static boundary conditions for the gradient theory of 
elasticity: 
 , , 0,ij j ijk kj ifσ − µ + =      (5) 

ijk j k in n qµ = , 

 , , ,( ) ( ) .ij j ijk k j ijk k j ijk j k l l in n n n n n tσ − µ − µ + µ =      (6) 

The system of resolving equations has a higher degree 
than the Lame equations of the classic elasticity theory. In 
addition to the forces on the surface, the non-classic 
boundary conditions for the couple stresses allow to take 
into account the influence of given external moment factors 
applied to the boundary of the body surface. 

The equations (6) in contact problems are 
complemented by continuity conditions of the 
displacements and their first derivatives. 

 
3. Principle of Symmetry in Gradient Theories  
of Elasticity 

 
We take into account that since the distortion tensor 

,i jR   is assumed to be continuous in the variational 

formulation (1), there is independence from the 
differentiation order of the displacement vector , , ,i jk i kjR R=  

and the tensor of the second derivatives of displacements 

,ijk i jkRχ =  is symmetric for the last two indices. 

Consequently, the equality (3) results in the additional 
symmetry conditions for the tensor of gradient moduli: 

 , .ijklmn ikjlmn ijklmn ijklnmC C C C= =    (7) 

It should be noted that the antisymmetric part of the 

gradient elasticity moduli ( ) / 2ijklmn ikjlmnC C−  may be 

arbitrary in the defining relation for the couple stresses µijk 
in (3). It is also easy to see that the antisymmetric part of the 
gradient moduli is also not included in the expression for 

the potential energy density ( ), , / 2.ijklmn i jk l mnC R R  

Consequently, it can be said that the asymmetric 

components of the gradient tensors ( ) / 2ijklmn ikjlmnC C−  are 

energetically invisible. It can be shown that the asymmetric 
part of the gradient elasticity tensors can also be ignored 
when we formulate the resolving equilibrium equations (5) 
for displacements. However, it is important to note that the 
asymmetric part of the gradient elasticity tensors can make 
a parasitic input to the static boundary conditions (6): 

( ) ( ), , ,ij j ijk k j ijk k ijk j k l ij l
n n n n n n tσ − µ − µ + µ =  and should be 

excluded. Therefore, the symmetry conditions for the 
gradient moduli tensor (7) in the gradient theory of 
elasticity are the criteria of accuracy and should be included 
in the additional necessary conditions for the elasticity 
tensors. The symmetry criterion of the gradient theories was 
defined for the first time with the help of Prof. A. Gusev 
(ETH, Zurich). 

 

4. Applied Gradient Theories of Elasticity 
 

Papers [2-4] show that the strain energy density E  of 

the gradient theory E EdV= ∫  for an isotropic body can be 

formulated using five additional gradient elasticity moduli 

1 2 3 4 5, , , ,c c c c c  in the following way: 

   , ,

1

2 ijkl ij kl ijklmn i jk l mnE C C R R = ε ε + =    

 2
1 , 2 , ,

1

2 ijkl ij kl i i i iC c R c= ε ε + θ ∇ + θ θ +   

 2 2
3 4 , , 5 , , .i i i jk i jk i jk j ikc R R c R R c R R+ ∇ ∇ + +      (8) 

It is easy to define that the elasticity moduli ijklmnC  for 

the gradient theory of deformations (the first two indices (4) 
are symmetrical) can also be expressed by five independent 
physical constants 1 2 3 4 5, , , ,c c c c c  in the representation (8). 

However, in general, the tensor of the gradient elasticity 
moduli does not meet the symmetry criterion (7). Using 
additional conditions of symmetry (7), it can be established 
that, in the case of complete symmetry in the Mindlin 
model, there are the following relations: 1 34 ,c c=  1 2 ,c c=  

5 42 .c c=  Therefore, only two physical constants are 

independent additional parameters: 3c  and 4.c  In this case, 

the expression for the couple stresses ijkµ  takes the 

following form: 

 ( )2
3ijk ij k ik j jk ic R R Rµ = ∇ δ + δ + δ +   

 ( ), , ,2 ij k ik j jk i
+ δ θ + δ θ + δ θ  ( )4 , , , .k ij j ik i jkc R R R+ + +  (9) 

As the result, the symmetry conditions (7) make it 
possible to reduce the number of independent additional 
constants to two. In this case, the variational formulation 
gives the following resolving equations in displacements: 

             0,ij jk k iH L R f+ =  2 2 2
1 2 ,ij ij ij i jH l l= δ − δ ∇ − ∂ ∂   

 2 ( ) ,jk jk j kL = µ δ ∇ + λ + µ ∂ ∂     

 2
1 3 4( ) ,l c c= + µ   

    ( ) ( ) [ ]2
2 1 2 5 3 4( ) ( 2 )l c c c c c = µ + + − λ + µ + µ λ + µ  . (10)  

These equations are expressed using two scale 

parameters 2
1 ,l  2

2 .l  

The one-parameter gradient theory of deformation, 
proposed in the papers [8, 22, 23], is widely used for 
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applied problems. In this kind of theory, the density of the 
gradient energy of deformation has the following form: 

    2
, , , ,(1 / 2) (1/ 2) .ijkl ij kl k k ij k ij kE C l  = ε ε + λ θ θ + µ ε ε     (11) 

This theory can be formally obtained from the model 
(1)-(6) assuming that 

1 3 0,c c= =  2
2 (1/ 2) ,c l= λ  2

4 5 (1/ 2)c c l= = µ .   (12) 

The system of resolving equations for the applied 
model [22, 23]: 

                                 ( )21 0.ij j il L R f− ∆ + =    (13) 

It should be noted that this theory never meets the 
symmetry condition (7), i.e. it is not adequate enough. 

Another example of a one-parameter model is the 
gradient model of the interface layer [18-20] where the 
density of the gradient energy of deformation is defined 
through the additional scale parameter С (cohesive 
modulus) using the following formula: 

 ( )( )(1/ 2) /ijkl ij kl jk k jk kE C L R L R C = ε ε +  .   (14) 

This theory corresponds to the following relation 
between physical constants in the Mindlin model 

1 2 3 4 5, , , ,c c c c c  and the scale parameters l1 and  l2: 

 2
1 22 ( ) / , ( ) / ,c C c C= µ µ + λ = µ + λ    

 2
3 4 5/ , 0,c C c c= µ = =  ( )2 2

1 21 2 ,l l= − ν   

where ν is the Poisson ratio.  
The system of resolving equations (equilibrium 

equations) for the gradient theory of the interface layer has 
the following form: 

                        ( )1
0.ij ij jk k iL C L R f

C
− − δ + =    (15) 

It should be noted here that the model of the interface 
layer (14) meets the symmetry criterion being a gradient 
theory of distortion, but not a theory of deformation. 

Hereinafter, we will use the solution of the one-
dimensional problem of the gradient elasticity theory  
to implement the procedure of additional parameter 
identification in the gradient theory of elasticity. In fact, we 
need to formulate a gradient model of a stratified medium  
to do this. It is easy to make sure that all the applied  
gradient theories  (8)-(10), (11)-(13) discussed above and 
the interface layer theory (14), (15) give equivalent 
formulations for the one-dimensional problem. The 
resolving equation for the one-dimensional problem has the 
following form: 

 ( ) 0,CLL R =   ( )( )2 2( ) 2 / ,L R R x= µ + λ ∂ ∂   

 ( )( )2 2( ) 2 / .CL R R x CR= µ + λ ∂ ∂ −  (16) 

The boundary conditions result from the variational 
formulation. For kinematic boundary conditions, they are 
formulated relatively to the displacements R derived from 
the displacements / ,R x∂ ∂  and in the case of static 

boundary conditions, the boundary conditions are 
formulated relatively to the couple stresses 

[ ](2 ) / ( )C L Rµ + λ  and stresses [ ](2 ) / ( ) / .CC L R xµ + λ ∂ ∂  

Now let us consider the one-dimensional model of the 
stratified medium. In this case, the boundary contact 
conditions for a representative periodicity fragment are 
formulated with the periodicity jump condition  and can be 
represented in the following form: 

       ( ) ( ) ( )1 2 1 2 1 22 ,U d d U d d d d− − = + − +   

  
( ) ( )1 2 1 2U d d U d d

x x

∂ − − ∂ +
=

∂ ∂
,   (17) 

                ( ) ( )1 2 1 2 ,u d d u d d− − = +   

 
( ) ( )1 2 1 2 .

u d d u d d

x x

∂ − − ∂ +
=

∂ ∂
   (18) 

Where U and u are two components of the general 
displacement field R = U – u which meet the conditions of 
the classic equation ( ) 0L U =  and cohesive field equation 

( ) 0CL u =  respectively: ( )CU L R C= −   ( )u L R C= −  2d2 

is the length of the inclusion, d1 is the length of the matrix 
layer to the right and left of the inclusion (Fig. 1), the total 
length of the matrix layer in the representative fragment of 
the stratified system is 2d1. 

Solution of the boundary problem (16)-(18) can be 
obtained in a clear analytical form and expressed by three 
functions in different increment ranges of the argument: 

1( ),R R x=  1 2 2 ,d d x d− − < < −  2 ( ),R R x=  2 2 ,d x d− < <  

3 ( ),R R x=  2 1 2 ,d x d d< < +  where 

( )( ) ( )1 1 1 1 2 1 1 1 2( ) 1 sh ,R x H x H d d d x d d= + − + − κ + +  

2 2 2 2( ) sh ,R x H x d x= − κ  

( )( ) ( )3 1 1 1 2 1 1 1 2( ) 1 sh ,R x H x H d d d x d d= − − + − κ − −    (19) 

Where 1,2 1,2 1,2 1,21 / ,l C kκ = =  1,2 1,2 1,22 ;k = µ + λ  

index 1 refers to the matrix phase, index 2 refers to the 
inclusion phase.  

The effective elasticity modulus Ê  for the stratified 
medium is determined according to the asymptotic 
averaging method on the basis of the solution (19) as 
average stresses of the periodicity cell of the classic 
component of the solution ( ).U x  As for the model in 

question, this gives the following expression for ˆ:E  

    ( ) ( )
( )

2
1 2

1 2 1 2 1 2 2 1
1 2 2 1

ˆ / .
E E

E E E d d E d E d
E E

 −
 = + + −

α + α  
   (20) 

where ( )1,2 1,2 1,2 1,2/ th .dα = κ κ  
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The expression (20) comes to the classical Reiss 

formula for the lack of any gradient effects ( )1 20, 0 .l l= =  

 
5. Methodology for Identification  
of Gradient Model Scale Parameters Based  
оn Molecular Dynamics Simulation 

 
We consider two one-dimensional models of composite – 

discrete and continual. The one-dimensional composite 
(layered composite) is a periodic structure described by a 
representative fragment – the periodicity cell shown in 
Fig. 1. Then, we compare the effective elasticity modulus, 
calculated for the discrete composite structure and 
consisting of 2n1 atoms of the first phase and n2 atoms of 
the second phase, with the results of calculation of the 
layered composite effective elasticity modulus using the 
continual gradient model (see Fig. 1). The lengths of the 
continual cells of each phase correspond to the lengths of 
the discrete atom chains simulating these phases. The phase 
length for the discrete composite model is calculated using 
equilibrium interatomic distances. In turn, the equilibrium 
distances for the discrete model are defined by minimization 
the potential energy calculated using given interaction 
potentials. As the result, the discrete fragment corresponds 
to the one-dimensional continual fragment of the composite. 
 

 
Fig. 1. Discrete and continual models of the two-component 

composite structure 
 

We use the Lennard-Jones (6-12) and Morse potentials 
to simulate interatomic interactions: 

 ( )
12 6

4 ,U r
r r

 σ σ   = ε −         
  

 ( ) ( )2 ( ) ( )e 2e ,r rU r − α −σ −α −σ= ε −   

Parameters of interaction between atoms of different 
types will be determined according to the Lorentz-Berthelot 
rule [24]: 

 1 2
12 1 2 12 12 1 2, , ,

2

σ + σ
ε = χ ε ε σ = α = α α   

where χ varies from 0 to 1, and the parameters 1 1,ε σ  and 

2 2,ε σ  determine potential characteristics of two atom 

types. 
Equilibrium arrangement of atoms is found by 

determining the minimum value of the potential energy of 
the considered atomic system. It should be noted that in the 
case of the “nearest neighbors” model, which assumes 

interaction only between two neighboring atoms, the 
equilibrium interatomic distances are determined 
analytically using known parameters of the interatomic 
interaction potentials. The elasticity modulus is defined 
using the relation connecting the increment of the potential 

energy with the effective modulus: ( )1 2
ˆ / 2,U E d d∆ = +  

where U∆  is the increment of the potential energy of the 
fragment when the periodicity cell is under unit strain.  

In the case of a composite chain, the procedure does not 
change, and the obtained value is the effective elasticity 
modulus of the one-dimensional composite taking into 
account not only the volume content of the phases (n1/n2 
ratio), but also the dimensional factors (n1 or n2 values) 
which are natural dimensional parameters of the discrete 
structure. They describe the number of interface boundaries 
and the length of the interface layer.  

It should be noted that the scale effects are substantial 
for the materials where properties of the phases (in this 
case, the elasticity moduli) are significantly different. 
Polymer composites reinforced with carbon nanoinclusions 
(nanotubes), where moduli of elasticity can differ by more 
than 80 times, may serve as an example. For the structures 
we considered in this work, the elasticity moduli of the 
phases differ by no more than ten times, therefore, the scale 
effects here are not so pronounced. Taking into account 
these effects that can be directly simulated in the 
frameworks of the one-dimensional discrete model, we can 
accurately predict anomalous change of the properties of 
micro/nanostructures for the composites under 
consideration. 

The identification method for parameters of the gradient 
models is based on comparison of the calculation results of 
the effective elasticity moduli defined using discrete and 
continual simulation. Comparison of the solutions is 
performed according to the following algorithm: 

1. Choose the type of interatomic interaction potential. 
It should be noted that, in general, the methodology allows 
to work with any potential. Potentials for the simulation are 
chosen based on preliminary physical and chemical studies 
and should be consistent with the structures and materials 
under consideration. Taking into account these 
requirements, we use the Lenard-Jones (6-12) and Morse 
potentials in this work. 

2. Specify the number of atoms in the chain  and their 
type, i.e. choose values of the potential parameters. In this 
work, values of the potential parameters were taken from 
[24-26]. 

3. Determine equilibrium distances and values of the 
elasticity moduli for each of the homogeneous atom chains 
that form the composite chain. These values are used as 
initial data – the moduli of elasticity and phase lengths in 
the formula (20). The calculated moduli of the chains 
correspond to the idealized one-dimensional atomic 
structures under consideration. Generally speaking, they 
differ from the real properties of the three-dimensional 
structures of the materials. Nevertheless, the algorithm for 
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determination of the scale parameters based on 
corresponding monoatomic structures can be used for 
identification of gradient models and evaluation of 
properties of the composite materials under consideration. 

4. Determine the effective rigidity of the chain in the 
frameworks of the discrete model . 

5. Determine the scale parameter of the continual model 
so the effective modulus, obtained in the continual model 
for the chain using the formula (20), is equal to the modulus 
obtained in the frameworks of the discrete model for all 
parameter values of the structure n1 (or n2) and n1/n2. 
Whereby, we assume that the structure under consideration 
(i.e. both phases) is described by the single scale parameter 

1 2l l l= =  in continual simulation. 

In the general case, there is one characteristic that takes 
into account typical size of the structure for each phase in 
the two-component composite. However, we believe that 
these structure characteristics of the different phases are 
identical. In other words, we assume that the two-
component composite has single scale parameter 1 2l l l= =  

in the relations (19), (20) in continual simulation. Further 
direct calculations, carried out using discrete simulation, 
showed that, with this simplification, the proposed 
procedure for identification of the single scale parameter of 
the two-component composite makes it possible to describe 
the entire set of composites for specific phases with 
extremely high accuracy. The physical meaning of the result 
is that the obtained single scale parameter (l) adequately 
describes the length of the interface layer located in the 
vicinity of the phase contact boundary of the composite 
structure. 

6. Vary the parameters n1 and n2 to make sure that the 
value of the scale parameter l allows to obtain coincidence 
of the solutions of the continual and discrete models for any 
chains created from atoms of the selected type. 

It is important to note that the main feature of the 
proposed gradient parameter identification method lies in 
the fact that it is always possible to find the scale parameter 
that allows to describe the entire countable set of one-
dimensional composites with high accuracy. 

 

6. Calculation Results and Examples  
of Gradient Model Parameters Identification  

 

Let us consider examples of solution for the 
identification problem of the non-classic parameter, 
determining the typical size of a particular structure, using 
examples of two types of composites formed from phases of 
silicon and carbon atoms and lead and iron atoms 
respectively. In this case, both phases of the composite 

1 2
( ) ( )n nSi C−  are well described by the Lenard-Jones 

potential [24, 25], and interactions of atoms in the phases of 
the second composite, consisting of iron and lead atoms 

1 2
( ) ( ) ,n nFe Pb−  are well simulated by the Morse potential 

[26]. Let us consider the discrete periodic structure with the 
periodicity cell consisting of silicon and carbon atoms. 

Fig. 2 shows dependences of the effective elasticity 
modulus of the structures created from silicon and carbon 
atoms with different number and ratio of atoms in the chain. 
The results of discrete simulation using the Lennard-Jones 
potential are designated by points at all subsequent graphs 
in Fig. 2. The solid lines correspond to the solutions 
obtained using the gradient theory of elasticity (20). 
Numerical studies show that it is sufficient to take into 
account only interactions between the nearest neighboring 
atoms using the discrete method to study the structures.  
In all cases, possible relative error does not exceed 0.1 %. 
Values of potential parameters for silicon atoms: 

1 10.0025 , 29.43 ,eV Aε = σ =  [25] carbon atoms: 

2 20.0024 , 3.37 eV Aε = σ =  [24]. For this structure, the 

scale parameter of the continual model equals to l = 19.5 A. 
Fig. 2, a shows dependences of the effective elasticity 
modulus on the scale factor, i.e. on the number of atoms of 
one phase in the periodicity cell. The dotted line shows the 
classic solution which does not allow to take into account 
influence of the scale effects. Fig. 2, b shows comparison of 
the discrete and continual solutions when the number of 
atoms changes in the phase consisting of carbon atoms. 

 

 
а 
 

 
 
 

 
 
Fig. 2. Dependence of the effective elasticity modulus on the 
number of atoms in the Si-C structure calculated according to the 
discrete model using the Lennard-Jones potential (points) and the 
continual model (solid lines); (a) – size of the cell changes, 

0,5 ij ijT s s= , the dotted line denotes the classic solution of the elas-

ticity  theory  of; (b)  the  number of  silicon atoms  hanges,  n1 = const 
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Fig. 3 shows dependence of the elasticity moduli  
of the chains created by iron and lead atoms on the  
number of atoms of one phase. For the simulation, we use 
the Morse potential with parameters for iron atoms: 

1
1 1 10.4216 , 2.849 , 1.3765 ,eV A A−ε = σ = α =  for lead 

atoms: 2 0.2455 eVε =  1
2 22.667 , 1.2624 A A−σ = α =  [26]. 

The scale parameter equals to 4 A. 
 
 

 
a 
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Fig. 3. Dependence of the effective elasticity modulus on the 
number of atoms in the Fe-Pb structure calculated according to the 
discrete model using the Morse potential (points) and the continual 
model (solid lines); (a) – size of the cell changes, 

1 2/ = constantn n ; (b) the number of iron atoms changes n1,  

2 = constant.n  Type and color of the lines correspond to those shown 

 in Fig. 2, a and b 
 
Table shows values of the scale parameters defined 

using the proposed methodology for the structures 
consisting of different metal atoms. We used the Morse 
potential for discrete simulation, parameters of the 
potentials were taken from [26]. The table is symmetric 
with respect to its central diagonal, i.e. values of the scale 
parameters do not change within the frameworks of the one-
dimensional model when the inclusion phase and matrix are 
interchanged. 

 

Values of the scale parameters of the model (in angstroms) 
of the gradient elasticity theory identified for the chains 
consisting of atoms of two different metals, for example, 

Fe-Mo, Fe-Nb, etc. 
 

 Mo Nb Ta V W Ag Au Cu Pb Pt Ni 
Fe 1.3 1.4 0.2 8 1.3 4 1.2 1.4 4 1.4 9 
Mo  1.4 2.5 1.7 1.3 1.7 1.5 1.3 2.4 2 1.2 
Nb   2 1.7 1.4 1.7 1.4 1.4 2.4 0.9 1.3 
Ta    1.1 2.2 1.1 4.8 0.7 2.2 2.6 0.3 
V     1.7 1.8 1.7 0.5 3.5 1.8 11 
W      1.7 1.4 1.4 2.4 0.5 1.2 
Ag       1.7 1.3 4 1.8 4.5 
Au        1.3 2.5 1.9 1.1 
Cu         6.5 1.5 1.6 
Pb          2.5 4 
Pt           1.3 

 
Fig. 4 shows dependence of the effective elasticity 

modulus on the length of one phase (the number of atoms in 
the atomic chain). The composite includes atoms of 
different metals with the same number of atoms of each 
type (n1= n2= n) which means that the volume content 
percentage of the phases equals to 50%. 

 

 
Fig. 4. Examples of dependences of the effective elasticity 
modulus  of  some  two-phase  composites  on  size  of     the  phases  

(the scale effect), 1 2/ 1n n =  

 
7. Conclusion 

 
We proposed the method for determination of the scale 

parameters for gradient theories. The method is sufficiently 
accurate because direct calculations, performed using the 
scale parameter defined with the help of the gradient theory, 
give effective property values for the entire countable set of 
corresponding discrete composites with the relative error not 
exceeding 1 %. In the proposed method, the scale parameter 
actually determines the length of the interface zone in the 
considered two-component composites. The zone is formed 
in each phase in the areas adjacent to the contact boundary. 
Direct calculations show that, in the composites with 
significantly different rigidity, formation of the interface zone 
occurs with the help of the phase with lower rigidity, and the 
scale parameter of the rigid phase can be neglected. In other 
words, the scale parameter determines the typical scale of the 
material with lower rigidity.  
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The results of numerical calculations show that values 
of the scale parameters, defined for idealized structures 
consisting of metal atoms, are small and do not exceed 
several tens of angstroms. The scale effects appear in very 
small cell sizes for all of the structures, i.e. for materials 
with high contact boundary density of the phases which is 
fully consistent with the physical meaning. In the systems 
defined by the Lennard-Jones potential, significant 
influence of the scale effects is predicted for the structures 
with the fragment of up to 40 atoms; in the systems described 
by the Morse potential, the scale effects make substantial 
impact for the periodicity fragments of up to 15 atoms. 
However, these effects substantially depend on the rigidity 
ratio of the phases. For the polymer composites with rigid 
nanoscale inclusions, the ratio of phase rigidity can reach 80 
and the scale effects can appear in the periodicity cells that 
are up to tens of microns. Analysis of such structures within 
the frameworks of the proposed methodology is limited only 
to the fact that the authors have no reliable data on the 
potentials describing the polymer binder. 

We can draw the conclusion that the forecast for the 
elasticity moduli is too low when we use the Lennard-Jones 
potential, and too high when we use the Morse potential, 
compared to the known typical macroscale characteristics of 
the materials under consideration. Apparently, the result can 
be refined by extending the proposed methodology to flat or 
three-dimensional formulation. Some refinements can be 
obtained using more complex and accurate interatomic 
interaction potentials for discrete simulation.  

There are almost no scale effects in the structures where 
the value of the scale parameter is less than one angstrom 
(Fe-Ta, V-Cu). Thus, there are no scale effects in the 
structures where the length of local fields (using the 
terminology of the continual approach) is very small. On the 
other hand, we can observe the saturation effect for large 
values of the scale parameter (Fig. 4) with the volume 
content of 50 % which does not depend on correlation 
between the elasticity modulus and the size of the 
reinforcing phase. 
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