Янкин А.С. Влияние частот биагармонического (двукачестотного) нагружения на динамическое поведение вязкоупругих полимерных композитов / Вестник Пермского национального исследовательского политехнического университета. Механика. – 2015. – № 4. – С. 273–292. DOI: 10.15593/perm.mech/2015.4.16

ВЛИЯНИЕ ЧАСТOT БИГАРМОНИЧЕСКОГО (ДВУКАЧАСТОТНОГО) НАГРУЖЕНИЯ НА МЕХАНИЧЕСКОЕ ПОВЕДЕНИЕ ИМИТАТОРА ТВЕРДОГО ТОПЛИВА

A.C. Янкин

Пермский национальный исследовательский политехнический университет, Пермь, Россия

О СТАТЬЕ

Получена: 10 декабря 2014 г.
Принята: 13 октября 2015 г.
Опубликована: 25 декабря 2015 г.

Ключевые слова:
динамический (комплексный) модуль, угол сдвига фазы между напряжением и деформацией, угол потеря, динамический механический анализ (свойства), низкочастотные вязкоупругие полимерные композиты, биагармоническое (двукачестотное) нагружение, моногармоническое (одинарчатстотное) нагружение, амплитуда деформации, предварительная статическая деформация, частота, угол сдвига начальных фаз

АННОТАЦИЯ

Статья посвящена разработке инженерного аппарата, позволяющего оценить напряженно-деформированное состояние вязкоупругих конструкций в аэрокосмической технике в условиях действия биагармонических (двукачестотных) нагрузок. В рамках исследования были проведены одноосные моногармонические (одначастотные) испытания вязкоупругого низкомодульного композита на полимерной основе при различных значениях предварительной статической деформации, угла сдвига начальных фаз и одноосные биагармонические (двукачестотные) испытания при различных значениях частот первой (низкочастотной) и второй (высокочастотной) гармоник. Для описания поведения вязкоупругого материала при гармонических нагружениях применялся метод комплексных модулей. Определены динамические деформационные свойства материала с использованием разработанной методики. Данная методика позволяет определить составляющие динамических модулей и углы потеря первой и второй гармоник. Для изучения влияния частот биагармонического нагружения на поведение вязкоупругого материала было предложено ввести относительный частотный фактор. Предложен метод представления результатов экспериментов при граничных значениях отношения частот первой и второй гармоник. Данный подход позволяет определить поведение вязкоупругих материалов при моногармонических нагружениях в биагармонической постановке задачи. Построены зависимости составляющих динамического модуля и угла потерь первой гармоники от частоты этой гармоники, зависимости составляющих динамического модуля и угла потерь второй гармоники от отношения частот первой и второй гармоник. Выявлено, что изменение угла сдвига начальных фаз практически не оказывает влияния на поведение вязкоупругих материалов. Предложенная математическая модель, описывающая поведение материала при различных значениях частот. Показано, что предложенная модель с достаточной точностью позволяет описать поведение материала при любом отношении частот. Показано, что биагармонические испытания являются более предпочтительными для определения зависимостей динамического модуля от предварительной статической деформации, чем моногармонические испытания при изменении предварительной статической деформации.

© Янкин Андрей Сергеевич – младший научный сотрудник, e-mail: yas.cem@yandex.ru
Andrei S. Yankin – Junior Researcher, e-mail: yas.cem@yandex.ru
BIHARMONIC (TWO-FREQUENCY) LOAD FREQUENCIES INFLUENCE ON MECHANICAL BEHAVIOR OF SOLID PROPELLANT SIMULATOR

A.S. Yankin

Perm National Research Polytechnic University, Perm, Russian Federation

ABSTRACT

This work is devoted to the engineering unit development for stress-strain state assessments of the viscoelastic structures in aerospace engineering under some biharmonic (two-frequency) loads. Uniaxial monoharmonic (one-frequency) tests of low-modulus viscoelastic polymer composite were conducted under different values of pre-static deformation and initial phase shift angle, as well as uniaxial biharmonic (two-frequency) tests under different values of first (low-frequency) and second (high-frequency) harmonics frequencies. The complex modulus method was used to describe the behavior of viscoelastic materials under harmonic loads. Material dynamic deformation properties were determined by a specially developed method. The method allows determining the dynamic modulus and loss angle of the first and the second harmonics. A relative frequency factor was offered for the study of the effect of biharmonic load frequencies on the behavior of viscoelastic materials. The method of experiment results under boundary values of frequencies ratio of the first and second harmonics was offered. This approach allows us to determine the behavior of viscoelastic materials under monoharmonic loads in the biharmonic formulation of the problem. Dependencies of the dynamic modulus and the loss angle of the second harmonic on frequencies ratio of the first and second harmonics were shown. It has been found that the initial phase shift change does not impact viscoelastic materials behavior. A mathematical model describing material behavior under different values of frequencies was proposed. This model allows us to describe, with a sufficient accuracy, the material behavior under any frequencies ratio. Biharmonic tests are more preferable for determining the dependence of the dynamic modulus on pre-static deformation than monoharmonic tests under pre-static deformation changing.

© PNRPU

ARTICLE INFO

Received: 10 December 2014
Accepted: 13 October 2015
Published: 25 December 2015

Keywords:
complex modulus, dynamic modulus, loss angle, phase angle, lag angle between stress and strain, dynamic mechanical properties (analysis), low-modulus viscoelastic polymeric composites, monoharmonic (one-frequency) loading, biharmonic (two-frequency) loading, strain amplitude, pre-static strain, frequency, initial phase shift

Введение

Вязкоупругие полимерные композиты широко используются в современной авиационной и ракетной технике. Данные материалы должны выдерживать не только статические, но и высокие динамические нагрузки, обладать хорошими демпфирующими свойствами. Статья посвящена изучению влияния сложных динамических (бигармонических) нагрузок на поведение вязкоупругих наполненных полимеров.

Для описания поведения вязкоупругого материала используются интегральные и дифференциальные операторы, а также комплексные модули [1–3]. В условиях действия стационарных гармонических колебаний для описания деформационных свойств вязкоупругих материалов удобно использовать комплексные модули [1–5]. Поведение материала в таком случае определяется динамическим модулем \(E^* \) и углом потерь \(\varphi_E \). При действии бигармонических нагрузок количество компонент увеличивается до четырех: \(E_{1*}, E_{2*}, \varphi_{E1}, \varphi_{E2} \) (индексы 1 и 2 соответствуют первой и второй гармоникам).

Механические характеристики полимеров обычно существенно зависят от температуры проведения опыта и частоты нагружения [1]. Кроме того, для наполненных полимеров в условиях действия одночастотных нагрузок также характерны некоторые нелинейные эффекты, например, влияние потери гистерезиса от эллиптической формы, размягчение материала (эффект Маллинса–Патрикеева), влияние амплитуды деформации \(\varepsilon_d \) (эффект Пэнга) и предварительной статической деформации \(\varepsilon_0 \) на динамические модули [6–13]. При двухчастотных нагрузках также наблюдаются существенные зависимости ди-
намических модулей от амплитуд деформации первой и второй гармоник нагружения [11, 14, 15].

Для изучения влияния частот бигармонического нагружения на поведение вязкоупругого материала было предложено ввести относительный частотный фактор v_1/v_2 [7, 14]. Тогда отношение v_1/v_2 имеет два предельных значения: $v_1/v_2 = 0$ (частота первой гармоники v_1 равна 0, амплитуда деформации первой гармоники e_{a1} преобразуется в предварительную статическую деформацию e_{a1}) и $v_1/v_2 = 1$ (частоты первой и второй гармоник равны, $v_1 = v_2$). И при $v_1/v_2 = 0$, и при $v_1/v_2 = 1$ двухчастотная нагрузка преобразуется в одночастотную.

При подобном описании вязкоупругих свойств материала возникает ряд вопросов. Как осуществить переход от одночастотного нагружения к двухчастотному нагружению при граничных значениях v_1/v_2? Как описать поведение материала при близком значении частот (например, $v_1 = 1$ Гц, $v_2 = 0,9$ Гц)? Как определить динамические свойства при нецелом отношении частот гармоник?

1. Описание поведения материала при двухчастотных нагрузках

Соотношение напряжений и деформаций при стационарных гармонических колебаниях можно записать в следующем виде:

$$
\sigma(t) = E^* e_{a} \sin(2\pi v t + \varphi_E),
$$

(1)

$$
E^* = \sqrt{E'^2 + E''^2}, \quad \operatorname{tg} \varphi_E = \frac{E''}{E'},
$$

где E' — действительная часть комплексного модуля; E'' — мнимая часть комплексного модуля; e_{a} — амплитуда деформации; σ_{a} — амплитуда напряжения, t — время; v — частота. Обобщая соотношение (1) для многочастотного нагружения, запишем

$$
\sigma(t) = \sum_{i=1}^{m} E^*_i e_{a_i} \sin(2\pi v_i t + \varphi_{E_i} + \varphi_{\varphi_i}),
$$

(2)

gде m — количество гармоник воздействия; φ_{φ_i} — угол сдвига начальных фаз. Формулы (1), (2) подходят для описания линейного вязкоупругого поведения материала. При нелинейном поведении (зависимость динамического модуля от предварительной статической деформации, амплитуды деформации) использование уравнения (2) приводит к отличиям реального поведения материала от расчетного. Динамические нагрузки, действующие на фоне квазистатических, часто не приводят к большим деформациям, поэтому существенных искажений формы петли гистерезиса от эллиптической не происходит [9]. Исходя из этого возможен приём гармонической линеаризации [16] динамического нагружения в окрестности некоторого квазистатического нагружения.

Экспериментальные исследования показывают, что при стационарных гармонических нагрузках в окрестности каких-либо предварительных статических деформаций для данного типа материалов наблюдаются различные значения динамического модуля E^* [7, 8, 11]. Зависимость динамического модуля E^* от предварительной статической деформации e_{a} могут быть описаны полиномом второй степени:

$$
E^*(e_{a}) = A_1 e_{a}^2 + A_2 e_{a} + A_3,
$$

(3)
Например, для режима нагружения с частотой 1 Гц и амплитудой деформации 1 % коэффициенты $A_1 = 0,155$; $A_2 = -0,45$; $A_3 = 11,45$.

Предположим, что предварительная статическая деформация ε_0_0 изменяется во времени периодически. Тогда будут наблюдаться изменения динамического модуля $E^*(t)$ с периодом $1/\nu$. В случае одночастотного (моногармонического) нагружения предварительная статическая деформация ε_{0_0} играет роль первой (назначающей) гармоники при бигармоническом нагружении:

$$
\varepsilon_{0_0}(t) = \varepsilon_{0_0} \sin 2\pi \nu t.
$$

(4)

Тогда при бигармонических воздействиях значение $E^*(t)$ в зависимости от деформации $\varepsilon_{0_0}(t) = \varepsilon_{0_0} \sin 2\pi \nu t$ будет изменяться подобным образом, как в функции (3). Подставив (4) в (3), получим

$$
E^*(t) = A_3 + \frac{A_1 \varepsilon_{0_0}^2}{2} + A_2 \cdot \varepsilon_{0_0} \cdot \sin 2\pi \nu t + \frac{A_4 \varepsilon_{0_0}^2}{2} \sin(2\pi 2\nu t - 0,5\pi).
$$

(5)

Примем

$$
E_{2_0}^{(0)} = A_3 + \frac{A_1 \varepsilon_{0_0}^2}{2}, \quad E_{2_0}^{(1)} = A_2 \cdot \varepsilon_{0_0}, \quad E_{2_0}^{(2)} = \frac{A_4 \varepsilon_{0_0}^2}{2}.
$$

Между напряжениями и деформациями существует запаздывание на величину Φ_{E}, поэтому запишем уравнение (5) в виде

$$
E^*(t) = E_{2_0}^{(0)} + E_{2_0}^{(1)} \sin(2\pi \nu t + \Phi_{E}) + E_{2_0}^{(2)} \sin(2\pi 2\nu t - 0,5\pi + \Phi_{E}).
$$

(6)

Изменениями угла потерь в зависимости от предварительной статической деформации ε_{0_0} при одночастотных воздействиях пренебрегаем [11], следовательно, можно записать $\Phi_{E_0}(t) = \text{const.}$

Для высоконаполненных полимерных сред, как правило, характерно различное сопротивление при растяжении и сжатии [17]. Исходя из этого в условиях симметричного цикла деформирования (рис. 1) возможны различные значения динамического модуля при растяжении и сжатии ($\sigma_1 \neq -\sigma_2$, $\varepsilon_1 = -\varepsilon_2$).

Рис. 1. Один цикл одночастотного нагружения
Амплитуды деформации и напряжения, а также среднее значение напряжения определяются с помощью формул

$$\sigma_a = \frac{(\sigma_1 - \sigma_2)}{2}, \quad \sigma_m = \frac{(\sigma_1 + \sigma_2)}{2}, \quad \varepsilon_a = \frac{(\varepsilon_1 - \varepsilon_2)}{2}.$$

Далее определим две составляющие динамического модуля:

$$E^{(0)} = \frac{\sigma_a}{\varepsilon_a}, \quad E^{(1)} = \frac{\sigma_m}{\varepsilon_a}.$$

Соответственно, динамический модуль при моногармонических нагрузках запишем в виде

$$E^*(t) = E^{(0)}(t) + E^{(1)}(t)\sin(2\pi v t + \varphi_E),$$

при бигармонических нагрузках

$$E_1^*(t) = E_1^{(0)}(t) + E_1^{(1)}(t)\sin(2\pi v_1 t + \varphi_{E_1}).$$

Таким образом поведение материала при двухчастотных нагрузках можно описать семью составляющими: $E_1^{(0)}$, $E_1^{(1)}$, $E_2^{(0)}$, $E_2^{(1)}$, $E_2^{(2)}$, $E_2^{(2)}$, φ_{E_1}, φ_{E_2}; при одночастотных нагрузках – тремя составляющими: $E^{(0)}$, $E^{(1)}$, φ_E.

2. Методические вопросы проведения динамического эксперимента

Некоторые методические аспекты были затронуты в работе [18]. Экспериментальные исследования проводились на электродинамической испытательной системе Instron ElectroPuls E10000 в Центре экспериментальной механики Пермского национального исследовательского политехнического университета [19]. Для определения динамических деформационных свойств использовался низкомодульный вязкоупругий материал марки ПДИ, из которого были изготовлены образцы круглого сечения диаметром $36,5^{±0,1}$ мм и высотой $39,5^{±1,5}$ мм (рис. 2). Всего было изготовлено 8 образцов. Данный материал обладает ярко выраженными вязкоупругими свойствами.

![Рис. 2. Чертеж образца (a) и металлической оснастки (b), выполненных в виде «грибка»](image)
Образцы подвергались термостатированию в температурной камере Instron 3119 в течение 3 часов с целью установления равномерной температуры по всему объему образца. На изготовленных образцах проводились одноосные динамические испытания по закону деформирования вида

$$\varepsilon(t) = \varepsilon_{a1} \sin 2\pi v_1 t + \varepsilon_{a2} \cdot \sin \left(2\pi v_2 t + \varphi_{g2}\right).$$

(7)

После проведения испытаний для расчета брались данные установившегося режима деформирования, так как экспериментальной системе необходимо время для выхода сигнала на заданные значения деформации $t_{над}$. Кроме того, на начальном этапе деформирования наблюдается размягчение материала (эффект Маллинза–Патрикеева). Обычно эффект ограничен несколькими первыми циклами нагрузения, после которых им можно пренебречь. Для примера на рис. 3 и 4 приведены зависимости напряжений от времени для одночастотного режима нагружения с частотой 1 Гц, амплитудой деформации 1 % и температурой 30 °C и для двухчастотного режима нагружения с частотами 1/7 и 1 Гц, амплитудами деформации 3 и 1 % и температурой 30 °C. Было отмечено, что для одночастотной нагрузки эффектом размягчения можно пренебречь после 5-го цикла (максимальные отличия между определяемыми вязкоупругими характеристиками для 5-го и 6-го циклов не превысили 1 %), для двухчастотной нагрузки – после 3-го цикла низкочастотной гармоники (максимальные отличия между определяемыми вязкоупругими характеристиками для 3-го и 4-го циклов не превысили 2 %).

Рис. 3. Зависимость напряжения от времени для одночастотного нагружения

Рис. 4. Зависимость напряжения от времени для двухчастотного нагружения
Нужно отметить, что за каждый цикл нагружения материал выделяет тепло, которое идет на нагрев образца. Повышение температуры образца, в свою очередь, способствует изменению значений динамического модуля и угла потерь. Исходя из этого температурная камера должна работать в процессе нагружения. В результате тепло уносится с поверхности образца. Помимо этого, также было ограничено время проведения эксперимента (по количеству циклов).

Материал почти полностью восстанавливает свои механические свойства в течение 24 часов. Далее возможно использовать образец снова, без существенных отличий в результатах. На рис. 5 представлены диаграммы нагружения образца до и после 24 часов выдержки для режима нагружения с параметрами \(v_1 = 1/11 \text{ Гц}; \ v_2 = 1 \text{ Гц}; \ \varepsilon_{a1} = 3\%; \ \varepsilon_{a2} = 0,5\% \). Максимальное отличие данных составило 2,8 %.

![Diagram](image)

Рис. 5. Зависимость напряжения от времени для двухчастотного нагружения

По умолчанию для определения перемещений система ElectroPuls использует встроенный датчик перемещений траверсы. Это значит, что фиксируемое данным датчиком перемещение складывается из реального перемещения на образце \(u_a \) и перемещения системы \(u_c \). Исходя из этого перед проведением экспериментальных исследований был произведен замер перемещений элементов нагружающей системы (захватных приспособлений). Для этого в захватных приспособлениях испытательной системы ElectroPuls Е10000 была закреплена стальная пластина толщиной 12 мм с минимальным зазором между захватными приспособлениями. Затем были проведены испытания на растяжение и сжатие. Поскольку расстояние между захватами мало по сравнению с их длиной, удлинение пластины можно пренебречь. Соответственно, перемещения, зафиксированные по встроенному датчику системы, и будут перемещениями элементов нагружающей системы. Зависимость перемещения элементов системы от приложенной нагрузки можно описать функцией вида

\[
N = 66,12u_c.
\]

Для нахождения «истинных» перемещений образца нужно из перемещений, фиксируемых испытательной системой \(u_{ась} \), вычесть перемещения испытательной системы \(u_c \) при соответствующих нагрузках.
3. Методика определения механических свойств вязкоупругих материалов, представление их в виде комплексных модулей

После проведения двухчастотных испытаний результаты эксперимента (напряжения, деформации и т.д.) сохраняются в виде электронных таблиц (табл. 1).

Таблица 1

<table>
<thead>
<tr>
<th>Время t_i, с</th>
<th>Деформации (ε_{ni}), %</th>
<th>Напряжения σ_i, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>(ε_{n1})</td>
<td>σ_1</td>
</tr>
<tr>
<td>t_2</td>
<td>(ε_{n2})</td>
<td>σ_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>t_n</td>
<td>(ε_{nn})</td>
<td>σ_n</td>
</tr>
</tbody>
</table>

Для учета жесткости нагружающей системы необходимо определить перемещения, фиксируемые испытательной системой

$$(u_{ni})_i = (\varepsilon_{ni})_i L,$$

$((\varepsilon_{ni})_i$ – деформации из табл. 1); нагрузку

$$(N_{ni})_i = \sigma_i F;$$

перемещения элементов испытательной системы

$$(u_c)_i = \frac{1}{66,12} (N_{ni})_i;$$

«истинные» перемещения

$$(u_{nc})_i = (u_{ni})_i - (u_c)_i;$$

«истинные» деформации

$$\varepsilon_i = \frac{(u_{nc})_i}{L}.$$

Затем построим табл. 2 аналогично табл. 1.

Таблица 2

<table>
<thead>
<tr>
<th>Время t_i, с</th>
<th>Деформации ε_i, %</th>
<th>Напряжения σ_i, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>ε_1</td>
<td>σ_1</td>
</tr>
<tr>
<td>t_2</td>
<td>ε_2</td>
<td>σ_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>t_n</td>
<td>ε_n</td>
<td>σ_n</td>
</tr>
</tbody>
</table>

Между соседними точками значений напряжений и деформаций (например, ε_2 и ε_3), взятых из табл. 2, проведем отрезки. Совокупность этих отрезков можно описать функциями вида
\[\varepsilon(t) = \frac{(t-t_0)(\varepsilon_{i+1} - \varepsilon_i)}{t_{i+1} - t_i} + \varepsilon_j, \quad \sigma(t) = \frac{(t-t_0)(\sigma_{i+1} - \sigma_i)}{t_{i+1} - t_i} + \sigma_j. \]

Далее данные эксперимента разбиваются на временные интервалы через каждый период колебаний первой низкочастотной гармоники \(1/v_1\) и выделяется первый низкочастотный временной интервал \([t_{p_0} - t_{p_1}]\) \((t_{p_0} = t_1; t_{p_1} = 1/v_1 + t_{p_0})\). В результате такого разбиения получим \(n\) интервалов.

Каждый низкочастотный временной интервал разложим в ряд Фурье [20] с помощью формул

\[B^{(0)} = \sum_{p=0}^{p_1} 2v_1 \int_{t_i}^{t_{i+1}} \frac{(t-t_0)(\varepsilon_{i+1} - \varepsilon_i)}{t_{i+1} - t_i} + \varepsilon_i \, dt, \]
\[B^{(1)} = \sum_{p=0}^{p_1} 2v_1 \int_{t_i}^{t_{i+1}} \frac{(t-t_0)(\varepsilon_{i+1} - \varepsilon_i)}{t_{i+1} - t_i} + \varepsilon_i \cos(2\pi v_i t) \, dt, \]
\[B^{(2)} = \sum_{p=0}^{p_1} 2v_1 \int_{t_i}^{t_{i+1}} \frac{(t-t_0)(\varepsilon_{i+1} - \varepsilon_i)}{t_{i+1} - t_i} + \varepsilon_i \sin(2\pi v_i t) \, dt. \]

\[f_{c_1}(t) = \frac{B^{(0)}}{2} + \left[B^{(1)} \cos(2\pi v_1 t) + B^{(2)} \sin(2\pi v_1 t) \right]. \] (8)

Далее с помощью формул

\[\varphi_{c_1} = \arctan \left(\frac{B^{(1)}}{2v_1 B^{(2)}} \right), \quad \varepsilon_{c_1} = \sqrt{\left(\frac{B^{(1)}}{2v_1} \right)^2 + \left(\frac{B^{(2)}}{2} \right)^2}, \quad \varepsilon_{m_1} = \frac{B^{(0)}}{2} \]

получим первую низкочастотную гармонику по деформациям

\[f_{c_1}(t) = \varepsilon_{m_1} + \varepsilon_{c_1} \sin 2\pi v_1 (t + \varphi_{c_1}). \] (9)

После аналогичных преобразований для напряжений выделим первую низкочастотную гармонику по напряжениям

\[f_{\sigma_1}(t) = \sigma_{m_1} + \sigma_{c_1} \cdot \sin 2\pi v_1 (t + \varphi_{\sigma_1}). \] (10)

Аппаратная реализация закона нагружения по деформации в общем случае предполагает наличие угла сдвига фазы \(2\pi v_1 \varphi_{c_1}\) вследствие запаздывания экспериментального оборудования. Предложенная методика обработки позволяет учитывать запаздывание экспериментального оборудования. Значение \(\varepsilon_{m_1}\) при симметричном цикле деформирования будет стремиться к нулю.

Таким образом, для первой низкочастотной гармоники можно определить значения составляющих динамического модуля и угла потерь:

\[E^{(0)}_{\varepsilon} = \frac{\sigma_{c_1}}{\varepsilon_{c_1}}, \quad E^{(1)}_{\varepsilon} = \frac{\sigma_{m_1}}{\varepsilon_{c_1}}, \quad \varphi_{E_1} = 2\pi v_1 (\varphi_{c_1} - \varphi_{\sigma_1}). \]
С помощью аналогичных преобразований можно определить значения составляющих динамического модуля и угла потерь при одночастотных нагрузках.

Подставим теперь в выражения (9) и (10) вместо t значения времени t_i из табл. 2 и вычтем выражения (9) и (10) из табличных значений напряжений и деформаций соответственно $\varepsilon_i - f_{e1}(t_i)$, $\sigma_i - f_{\sigma 1}(t_i)$. В результате предложенных преобразований можно получить значения напряжений и деформаций только от высокочастотной гармоники.

Данные значения разбиваются на высокочастотные временные интервалы периодом $1/\nu_2$ следующим способом: $[t_{k0} - t_{k1}]$ – 1-й высокочастотный временной интервал, $[t_{k0+1} - t_{k2}]$ – 2-й, ..., $[t_{k0+j} - t_{kj+1}]$ – последний ($t_{k0} = t_p$; $t_{k1} = 1/\nu_1 + t_{k0}$; $t_{k2} = 1/\nu_1 + t_{k0+1}$ и т.д. до тех пор, пока $t_{kj} = t_p$; $j + 1$ – количество высокочастотных временных интервалов). Затем с помощью аналогичных преобразований (8), описанных выше, можно определить зависимости для каждого высокочастотного временного интервала:

$$f_{e2}(t) = \varepsilon_a \sin 2\pi \nu_2 (t + \varphi_{e2}), \quad f_{\sigma 2}(t) = \sigma_a \sin 2\pi \nu_2 (t + \varphi_{\sigma 2}).$$

Для каждого высокочастотного временного интервала определяются значения составляющих динамического модуля и угла потеря

$$E_2^* = \frac{\sigma_a}{\varepsilon_a}, \quad \varphi_{E2} = 2\pi \nu_2 (\varphi_{e2} - \varphi_{\sigma 2})$$

для высокочастотной гармоники (табл. 3).

Таблица 3

<table>
<thead>
<tr>
<th>Номер временного интервала</th>
<th>Время $t_{i_1}^{(c)}$, с</th>
<th>Высокочастотный временной интервал</th>
<th>Угол потеря φ_{E2}, град.</th>
<th>Динамический модуль E_2^*, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,5($t_{k0} + t_{k1}$)</td>
<td>$[t_{k0} - t_{k1}]$</td>
<td>(φ_{E2}^1)</td>
<td>($E_2^*_1$)</td>
</tr>
<tr>
<td>2</td>
<td>0,5($t_{k0+1} + t_{k2}$)</td>
<td>$[t_{k0+1} - t_{k2}]$</td>
<td>(φ_{E2}^2)</td>
<td>($E_2^*_2$)</td>
</tr>
<tr>
<td>3</td>
<td>0,5($t_{k0+2} + t_{k3}$)</td>
<td>$[t_{k0+2} - t_{k3}]$</td>
<td>(φ_{E2}^3)</td>
<td>($E_2^*_3$)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$j + 1$</td>
<td>0,5($t_{k0+j} + t_{kj+1}$)</td>
<td>$[t_{k0+j} - t_{kj+1}]$</td>
<td>(φ_{E2}^{j+1})</td>
<td>($E_2^*_{j+1}$)</td>
</tr>
</tbody>
</table>

Так как значения динамического модуля и угла потерь определяются для конкретного интервала времени, то они присваиваются среднему значению времени $t_{i_1}^{(c)}$ этого интервала.

Таким образом, в результате обработки получается $j + 1$ значение угла потерь и динамического модуля высокочастотной гармоники. Угол потеря $\varphi_{E2}(t) = \text{const}$, следовательно,

$$\varphi_{E2} = \sum_{i=1}^{j+1} (\varphi_{E2_i}).$$

Динамический модуль второй гармоники характеризуется уравнением (6), поэтому для определения составляющих $E_2^{*0}, E_2^{*1}, E_2^{*2}$ воспользуемся преобразованиями Фурье:
С помощью формул

\[E_2^{(1)} = \sqrt{(C^{(1)})^2 + (C^{(2)})^2}, \quad E_2^{(2)} = \sqrt{(C^{(3)})^2 + (C^{(4)})^2}, \quad E_2^{(0)} = C^{(0)}/2 \]

определяются значения составляющих динамического модуля.

Затем выделяется второй низкочастотный интервал, третий и т.д. Всего в итоге получаем \(n \) значений составляющих динамического модуля и угла потерь для первой низкочастотной и второй высокочастотной гармоник. Далее определяются их средние значения.

Геометрия используемых образцов существенно влияет на определяемые вязкоупругие характеристики вследствие возникновения сложного неоднородного вида напряженно-деформированного состояния при нагрузке (при растяжении или сжатии торцы образца, приклеенные к металлической оснастке, не могут свободно перемещаться в поперечном направлении). Поэтому для определения «истинных» вязкоупругих характеристик композита были решены соответствующие динамические осесимметричные задачи на растяжение-сжатие в программном обеспечении ANSYS. В расчетах принимались следующие характеристики материала грибка (сталь): плотность \(\rho = 7800 \text{ кг/м}^3 \); коэффициент Пуассона \(\mu = 0,3 \); модуль упругости \(E_c = 200 \text{ ГПа} \). Для полимерного композита была принята плотность \(\rho_x = 1720 \text{ кг/м}^3 \). Постоянство коэффициента Пуассона наполненных полимеров часто не подтверждается экспериментально \([6, 10, 21, 22]\). Исходя из этого, помимо варьирования «истинных» значений динамического модуля \(E_{nc}^* \), при определении напряженно-деформированного состояния также варьировались «истинные» значения коэффициента Пуассона \(\mu_{nc}^* \) (табл. 4). На основе анализа напряженно-деформированного состояния определялись значения динамического модуля, соответствующие экспериментальной ситуации его (динамического модуля) определения

\[E_{nc}^* = \frac{N}{F_E}, \]
где F – площадь поперечного сечения образца; N – нагрузка, возникающая при деформировании образца.

При сопоставлении «истинного» и экспериментального значений динамического модуля определялся коэффициент корректировки $K_E = E^*_\text{вс} / E^*_\text{эк}$ (см. табл. 4).

Таблица 4

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Динамический модуль, МПа</th>
<th>Коэффициент Пуассона</th>
<th>Коэффициент корректировки</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1,21</td>
<td>0,83</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>11,91</td>
<td>0,84</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>112,15</td>
<td>0,89</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1,02</td>
<td>0,98</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>10,12</td>
<td>0,99</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>95,31</td>
<td>1,05</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0,93</td>
<td>1,08</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>9,23</td>
<td>1,08</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>86,97</td>
<td>1,15</td>
</tr>
</tbody>
</table>

Данные из табл. 4 показывают, что корректировочный коэффициент K_E зависит от значений динамического модуля и коэффициента Пуассона. Данная зависимость с высокой точностью описана функцией вида

$$K_E = -3,25(\mu^*_\text{вс})^2 + 1,3\mu^*_\text{вс} + 0,001E^*_\text{эк} + 0,982.$$

С использованием зависимости $K_E = f\left(E^*_\text{эк}, \mu^*_\text{вс}\right)$ определялись «истинные» значения составляющих динамического модуля.

4. Особенности обработки экспериментальных данных при граничных значениях отношения частот бигармонического нагружения

При отношении частот $\nu_1/\nu_2 = 0$ частота первой гармоники ν_1 равна 0, амплитуда деформации первой гармоники ε_{a1} преобразуется в предварительную статическую деформацию ε_{a2}. С помощью уравнений (3)–(6) можно определить значения составляющих динамического модуля и угла потерь в бигармонической постановке задачи.

При отношении частот $\nu_1/\nu_2 = 1$ частоты первой и второй гармоник равны, $\nu_1 = \nu_2$ (одночастотное нагружение), при этом принимаем, что $\varphi_{E1} = \varphi_{E2}$. Одночастотную нагрузку можно представить в виде двухчастотной следующим образом:

$$\varepsilon_{a(n)}\sin2\pi\nu t = \varepsilon_{a1}\sin2\pi\nu t + \varepsilon_{a2}\sin(2\pi\nu t + \varphi_{g2}).$$

Амплитуда деформации $\varepsilon_{a(n)}$ зависит от угла сдвига начальных фаз φ_{g2}. Рассмотрим два предельных значения:

а) примем $\varphi_{g2} = 0$, тогда $\varepsilon_{a(n)} = \varepsilon_{a1} + \varepsilon_{a2}$,
\[\sigma_a(e_{a(n)}, t) = E^*(e_{a(n)}, t) \cdot e_{a(n)} = E^*(e_{a(n)} + e_{a2}), \]
\[\sigma_a(e_{a1}, t) = E^*(e_{a1}, t) \cdot e_{a1}, \quad \sigma_a(e_{a2}, t) = E^*(e_{a2}, t) \cdot e_{a2}. \]

С увеличением амплитуды \(e_a\) значения динамического модуля \(E^*\) уменьшаются:
\[e_{a1} < e_{a2} < e_{a(n)},\]
следовательно,
\[E^*(e_{a1}, t) > E^*(e_{a2}, t) > E^*(e_{a(n)}, t),\]
тогда можно принять
\[E^*(e_{a1}, t) = k_1 E^*(e_{a2}, t) = k_1 k_2 E^*(e_{a(n)}, t); k_1 > 1; k_2 > 1,\]
\[\sigma_a(e_{a1}, t) + \sigma_a(e_{a2}, t) = k_2 E^*(e_{a(n)}, t)(k_1 e_{a1} + e_{a2}),\]
\[\sigma_a(e_{a(n)}, t) = \sigma_a(e_{a1}, t) + \sigma_a(e_{a2}, t).\]

Далее принимаем для первой гармоники
\[E^*(e_{a1}, t) = E^*_1(t); \quad \sigma_a(e_{a1}, t) = \sigma_{a1}(t); \quad E^*(e_{a2}, t) = E^*_2(t); \quad \sigma_a(e_{a2}, t) = \sigma_{a2}(t).\]
Тогда для второй гармоники
\[\sigma_{a2}(t) = \sigma_a(e_{a(n)}, t) - \sigma_{a1}(t); \quad E^*_2(t) = \frac{\sigma_{a2}(t)}{e_{a2}}.\]
б) примем \(\varphi_{g2} = \pi,\) тогда \(e_{a(n)} = e_{a1} - e_{a2}.\)
После аналогичных преобразований получаем
\[\sigma_{a2}(t) = \sigma_{a1}(t) - \sigma_a(e_{a(n)}, t); \quad E^*_2(t) = \frac{\sigma_{a2}(t)}{e_{a2}}.\]

Эксперимент показывает, что \(E^*_2(t)\) при \(\varphi_{g2} = 0\) примерно равен \(E^*_1(t)\) при \(\varphi_{g2} = \pi.\)
Таким образом, \(\varphi_{g2}\) не оказывает существенного влияния на динамические модули \(E^*_1(t)\) и \(E^*_2(t).\)

Данный подход позволяет определить значения динамического модуля и угла потерь в биармонической постановке задачи при отношении \(v_1/v_2 = 0\) и \(v_1/v_2 = 1.\)

5. Экспериментальные исследования поведения вязкоупругого материала при различном соотношении частот биармонического нагружения

Проведены экспериментальные исследования поведения вязкоупругого полимерного композита марки ПДИ при различном соотношении частот (табл. 5) биармонического нагружения (7) при температуре 30 °C.

С помощью описанной выше методики определялись значения составляющих динамических модулей и углов потерь (табл. 6, рис. 6, 7). Номера режимов нагружения из табл. 6 соответствуют номерам режимов нагружения из табл. 5.
Таблица 5

Параметры нагружения образцов

<table>
<thead>
<tr>
<th>Номер режима нагружения</th>
<th>Частота гармоник, Гц</th>
<th>Амплитуда деформации гармоник, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>v_1/v_2</td>
<td>v_2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1/11</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1/8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1/7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1/6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1/3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 6

Значения динамических деформационных свойств материала

<table>
<thead>
<tr>
<th>Номер режима нагружения</th>
<th>$E_2^{(0)}$, МПа</th>
<th>$E_2^{(1)}$, МПа</th>
<th>$E_2^{(2)}$, МПа</th>
<th>Φ_{E2}, град.</th>
<th>$E_1^{(0)}$, МПа</th>
<th>$E_1^{(1)}$, МПа</th>
<th>Φ_{E1}, град.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12,15</td>
<td>-1,35</td>
<td>0,70</td>
<td>17,87</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>11,82</td>
<td>-1,35</td>
<td>0,73</td>
<td>18,28</td>
<td>4,44</td>
<td>-0,43</td>
<td>17,72</td>
</tr>
<tr>
<td>3</td>
<td>11,68</td>
<td>-1,29</td>
<td>0,79</td>
<td>18,50</td>
<td>5,39</td>
<td>-0,46</td>
<td>18,38</td>
</tr>
<tr>
<td>4</td>
<td>11,38</td>
<td>-1,32</td>
<td>0,80</td>
<td>18,69</td>
<td>5,91</td>
<td>-0,49</td>
<td>18,31</td>
</tr>
<tr>
<td>5</td>
<td>11,09</td>
<td>-1,35</td>
<td>0,88</td>
<td>19,14</td>
<td>6,53</td>
<td>-0,50</td>
<td>18,41</td>
</tr>
<tr>
<td>6</td>
<td>11,57</td>
<td>-1,40</td>
<td>0,87</td>
<td>18,9</td>
<td>6,93</td>
<td>-0,53</td>
<td>18,6</td>
</tr>
<tr>
<td>7</td>
<td>11,10</td>
<td>-1,40</td>
<td>0,87</td>
<td>19,24</td>
<td>6,95</td>
<td>-0,49</td>
<td>18,60</td>
</tr>
<tr>
<td>8</td>
<td>11,10</td>
<td>-1,31</td>
<td>0,83</td>
<td>19,72</td>
<td>7,11</td>
<td>-0,53</td>
<td>18,82</td>
</tr>
<tr>
<td>9</td>
<td>10,88</td>
<td>-1,32</td>
<td>0,90</td>
<td>19,46</td>
<td>7,22</td>
<td>-0,51</td>
<td>18,51</td>
</tr>
<tr>
<td>10</td>
<td>11,38</td>
<td>-1,49</td>
<td>0,93</td>
<td>19,83</td>
<td>7,62</td>
<td>-0,55</td>
<td>18,90</td>
</tr>
<tr>
<td>11</td>
<td>10,84</td>
<td>-1,38</td>
<td>0,81</td>
<td>19,97</td>
<td>7,72</td>
<td>-0,53</td>
<td>18,61</td>
</tr>
<tr>
<td>12</td>
<td>10,89</td>
<td>-1,33</td>
<td>0,62</td>
<td>19,72</td>
<td>8,21</td>
<td>-0,61</td>
<td>18,81</td>
</tr>
<tr>
<td>13</td>
<td>10,33</td>
<td>-1,20</td>
<td>0,34</td>
<td>19,23</td>
<td>9,08</td>
<td>-0,68</td>
<td>18,74</td>
</tr>
<tr>
<td>14</td>
<td>9,20</td>
<td>-1,16</td>
<td>0</td>
<td>17,9</td>
<td>10,69</td>
<td>-0,74</td>
<td>17,9</td>
</tr>
</tbody>
</table>

Также были проведены бигармонические испытания, аналогичные испытаниям, результаты которых отражены в табл. 5, при v_2 равной 0,1 Гц и 10 Гц. Результаты исследования представлены на рис. 7.

Рис. 6. Зависимости компонент $E_1^{(0)} (a)$; $E_1^{(1)} (b)$ и $\Phi_{E1} (c)$ от логарифма частоты $\lg(v_1)$
Рис. 7. Зависимости компонент $E_2^{(0)}$ (a); $E_2^{(1)}$ (b); $E_2^{(2)}$ (c) и φ_{E2} (c) от логарифма отношения частот $\lg(v_1/v_2)$ при различных значениях частоты v_2 (*экспериментальные данные при $\lg(v_1/v_2) = -3$ соответствуют однократному режиму нагружения с варьированием предварительной статической деформации (табл. 5, режим нагружения 1))

Анализ экспериментальных данных показывает, что отношение частот v_1/v_2 практически не оказывает влияния на компоненты $E_2^{(0)}$, $E_2^{(1)}$ при $v_1/v_2 \leq 0,2$ и $E_2^{(0)}$ при $v_1/v_2 \leq 0,02$.

Максимальное отличие значений угла потерь φ_{E2} при варьировании $\lg(v_1/v_2)$ составили 10 % при $v_2 = 1$ Гц, 7% при $v_2 = 0,1$ Гц, 7% при $v_2 = 10$ Гц. Можно принять $\varphi_{E2}(v_1/v_2) = \varphi_{E2}(1)$. Статическая деформация практически не оказывает влияния на угол потерь, следовательно, $\varphi_{E2}(0) \approx \varphi_{E2}(1)$. Частота v_2 также существенно влияет на составляющие $E_2^{(0)}$, $E_2^{(1)}$, $E_2^{(2)}$, φ_{E2}. Данные зависимости можно описать полиномами второй степени:

$$E_2^{(0)} = a_1 \lg^2 v_2 + a_2 \lg v_2 + a_3;$$

$$E_2^{(1)} = \begin{cases}
 \frac{b_1 \lg^2 v_2 + b_2 \lg v_2 + b_3}{\lg 0,2}; & v_1/v_2 \leq 0,02, \\
 \frac{1}{\lg 0,2} \cdot \lg v_2 \cdot (b_1 \lg^2 v_2 + b_2 \lg v_2 + b_3); & v_1/v_2 \in (0,2;1]
\end{cases}$$

$$E_2^{(2)} = \begin{cases}
 c_1 \lg^2 v_2 + c_2 \lg v_2 + c_3; & v_1/v_2 \leq 0,02, \\
 \left(\frac{c_4 - 1}{\lg 0,02} \frac{\lg^2 v_2}{v_2} + \frac{2(1-c_4)}{\lg 0,02} \frac{\lg v_2}{v_2} + c_4 \right) \cdot \left(c_1 \lg^2 v_2 + c_2 \lg v_2 + c_3; \right) & v_1/v_2 \in (0,02;1]
\end{cases}$$

$$\varphi_{E2} = f_1 \lg^2 v_2 + f_2 \lg v_2 + f_3.$$
Также было установлено, что частота v_2 не оказывает существенного влияния на компоненты низкочастотной гармоники $E_1^{(0)}, E_1^{(1)}, \varphi_{E_1}$, а частота v_1 существенно влияет на $E_1^{(0)}, E_1^{(1)}, \varphi_{E_1}$.

\[E_1^{(0)} = d_1 \ln^2 v_1 + d_2 \ln v_1 + d_3, \]
\[E_1^{(1)} = e_1 \ln^2 v_1 + e_2 \ln v_1 + e_3, \]
\[\varphi_{E_1} = f_1 \ln^2 v_1 + f_2 \ln v_1 + f_3. \]

Зависимости, приведенные выше, характерны только для исследованного диапазона частот. При расширении диапазона частот (например, с использованием принципа температурно-временной аналогии) данные зависимости могут стать более сложными.

Следует отметить, что статические испытания (см. табл. 5, режим нагружения № 1) сложны для экспериментатора. Для того чтобы определить зависимость динамического модуля от статической деформации, необходимо провести как минимум три испытания. Материал почти полностью восстанавливает свои свойства через 24 часа после проведения испытаний, поэтому нельзя использовать один образец несколько раз в течение дня. Кроме того, на величины динамического модуля также влияет скорость выхода на заданный уровень статической деформации. С другой стороны, достаточно провести всего один двухчастотный эксперимент, чтобы определить зависимость динамического модуля от статической деформации. Низкочастотная гармоника в данном случае – аналог статической деформации, а высокочастотная гармоника – аналог моногармонической нагрузки. Скорость выхода на заданный уровень статической деформации будет определяться амплитудой и частотой низкочастотной гармоники. Таким образом, бигармонические испытания являются более предпочтительными для определения зависимостей динамического модуля от предварительной статической деформации.

Представляет интерес также проведение испытаний при нецелом отношении частот v_1/v_2 с последующим сравнением результатов эксперимента (σ_m) с результатами, рассчитанными по предложенным зависимостям (11)–(17) (σ_a). Для этого были проведены два эксперимента: при $v_1/v_2 = 1/4,25$ (рис. 8) и при $v_1/v_2 = 0,9$ (рис. 9) (когда значения частот гармоник близки друг к другу, наблюдается периодическое увеличение и уменьшение амплитуды – биение), остальные параметры нагружения соответствуют параметрам из табл. 5 при температуре 30 °C.

Рис. 8. Зависимость напряжения от времени проведения испытания при отношении частот $v_1/v_2 = 1/4,25$
При \(\nu_1/\nu_2 = 1/4,25 \) максимальные отличия между \(\sigma_{\text{жк}} \) и \(\sigma_{\text{м}} \) составляют 5,9 %. При \(\nu_1/\nu_2 = 0,9 \) максимальные отличия между \(\sigma_{\text{жк}} \) и \(\sigma_{\text{м}} \) составляют 6,8 %. Помимо этого, были проведены экспериментальные исследования при различных значениях угла сдвига начальных фаз \(\phi_{g2} \). Анализ результатов показал, что изменение \(\phi_{g2} \) практически не оказывает влияния на определяемые характеристики (составляющие динамических модулей и углы потерь).

![График № 9. Зависимость напряжения от времени проведения испытания при отношении частот \(\nu_1/\nu_2 = 0,9 \)](image)

Заключение

В ходе работы затронуты некоторые методические вопросы проведения экспериментальных исследований при стационарных гармонических нагрузках, описана методика определения динамических деформационных свойств (в виде комплексных модулей) вязкоуправных материалов при двухчастотных нагрузках, проведены экспериментальные исследования поведения низкомодульного вязкоупругого полимерного композита при би-гармонических (двухчастотных) нагрузках и моногармонических (одночастотных) нагрузженнях. В рамках одночастотного нагружения реализовывались режимы с изменением предварительной статической деформации и угла сдвига начальных фаз. В рамках би-гармонического нагружения реализовывались режимы с изменением частот первой (низкочастотной) и второй (высокочастотной) гармоник. По результатам испытаний в соответствии с предложенной моделью описания вязкоупругого поведения материала определялись составляющие динамических модулей и углы потерь.

Предложена методика представления результатов эксперимента при граничных значениях отношения частот первой и второй гармоник \(\nu_1/\nu_2 = 0 \) и \(\nu_1/\nu_2 = 1 \), а также при любом нецелом отношении частот. Данный подход позволяет определить значения динамического модуля и угол потерь в би-гармонической постановке задачи.

Анализ результатов проведенных экспериментальных исследований показал, что изменение отношения частот \(\nu_1/\nu_2 \) практически не оказывает влияния на компоненты \(E_2^{(1)}, E_2^{(2)} \) при \(\nu_1/\nu_2 \leq 0,2, E_2^{(6)} \) при \(\nu_1/\nu_2 \leq 0,02 \) и на угол потерь \(\phi_{E2} \). Изменение частоты \(\nu_2 \) существенно влияет на \(E_2^{(0)}, E_2^{(2)}, E_2^{(6)}, \phi_{E2} \), но не оказывает существенного влияния на компоненты низкочастотной гармоники \(E_1^{(0)}, E_1^{(1)}, \phi_{E1} \). Частота \(\nu_1 \) существенно влияет на \(E_1^{(0)}, E_1^{(1)}, \phi_{E1} \). Были предложены зависимости, описывающие поведение ма-
териала при различных значениях частот первой и второй гармоник. Показано, что бигармоныческие испытания являются более предпочтительными для определения зависимостей динамического модуля от предварительной статической деформации, чем одночастотные испытания при варьировании предварительной статической деформации. Угол сдвига начальных фаз \(\phi_{2} \) практически не оказывает влияния на поведение вязкоупругого материала.

В дальнейшем необходимо проведение испытаний в широком диапазоне температур, разработки многофакторной математической модели, описывающей зависимости вязкоупругих характеристик (составляющих динамических модулей и углов потерь) от различных параметров (амплитуды деформации и частоты) и условий (температура) нагружения, определение коэффициентов этой модели, дисперсии повторяемости результатов эксперимента, а также проверка адекватности модели.

Работа выполнена при финансовой поддержке РФФИ (грант 13-01-96003 р_урал_а).

Библиографический список

References

