C.O. Sarkisyan

Гюмрийский государственный педагогический институт (г. Гюмри, Армения)

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ МИКРОПОЛЯРНЫХ УПРУГИХ ТОНКИХ ОБОЛОЧЕК С НЕЗАВИСИМЫМИ ПОЛЯМИ ПЕРЕМЕЩЕНИЙ И ВРАЩЕНИЙ

In the present paper, on the basis of the hypotheses method of asymptotical origin, the general mathematical model of micropolar thin elastic shells with independent fields of transition and rotation is constructed based on the equations of the three-dimensional equations of the micropolar theory of elasticity.

As a result the basic system of equations of the theory of micropolar thin elastic cylindrical shells is demonstrated. The problem of axial-symmetrically loaded hinged cylindrical shells is solved. Numerical results are obtained and the behavioral peculiarities of shells from micropolar material is exposed.

Прогресс в микро- и нанотехнологии ставит перед механикой деформируемых тел новые проблемы, которые способствуют развитию исследований по микрополярной (несимметричной, моментной) теории упругости и структурной механики в целом [1–3].

В связи с этими современными проблемами весьма актуально построение общих математических моделей для тонких стержней, пластин и оболочек на основе микрополярной теории упругости [4–9].

Основная задача общей теории микрополярных упругих тонких стержней, пластин и оболочек заключается в приближении, но адекватном сведении трехмерной задачи микрополярной теории упругости к одномерной или двумерной краевой задаче.

В данной работе обобщается подход, предложенный в работе [10], и при использовании результата асимптотического анализа граничной задачи микрополярной теории упругости в тонкой области оболочки [12] формулируются предположения (гипотезы), на основе которых построена математическая модель микрополярных упругих тонких оболочек с независимыми полями перемещений и вращений с полным учетом поперечных сдвиговых
и родственных им деформаций. Аналогом этой модели в рамках классической теории упругости является известная уточненная теория упругих тонких оболочек Тимошенко–Рейсснера [13, 14].

1. Постановка задачи

Рассмотрим изотропную оболочку постоянной толщины $2h$ как трехмерное упругое микрополярное тело. Будем исходить из основных уравнений (тензорных) пространственной статической задачи линейной микрополярной теории упругости с независимыми полями перемещений и вращений [15–17].

Уравнения равновесия:

$$
\nabla_m \sigma_{mn} = 0, \quad \nabla_m \mu_{mn} + e^{mkk} \sigma_{mk} = 0.
$$

(1.1)

Соотношения упругости:

$$
\begin{align*}
\sigma_{mn} &= (\mu + \alpha) \gamma_{mn} + (\mu - \alpha) \gamma_{mn} + \lambda \gamma_{kk} \delta_{mn}, \\
\mu_{mn} &= (\gamma + \varepsilon) \kappa_{mn} + (\gamma - \varepsilon) \kappa_{mn} + \beta \kappa_{kk} \delta_{mn}.
\end{align*}
$$

(1.2)

Геометрические соотношения:

$$
\gamma_{mn} = \nabla_m V_n - e_{kmn} \omega^k, \quad \kappa_{mn} = \nabla_m \omega_n.
$$

(1.3)

Здесь δ, μ – тензоры силовых и моментных напряжений; γ, κ – тензоры деформации и изгиба-кручения; V, ω – векторы перемещения и независимого поворота; $\lambda, \mu, \alpha, \beta, \gamma, \varepsilon$ – упругие константы микрополярного материала оболочки. Индексы m, n, k принимают значения 1, 2, 3.

К определяющим уравнениям (1.1)–(1.3) трехмерной несимметричной теории упругости присоединим соответствующие граничные условия.

На лицевых поверхностях оболочки примем граничные условия первой граничной задачи микрополярной теории упругости со свободным вращением, а на поверхности края оболочки Σ будем рассматривать следующие три основные типы граничных условий: 1) когда заданы силовые и моментные напряжения, 2) когда точки поверхности Σ закреплены, 3) когда заданы трехмерные смешанные условия типа шарнирного опирания.

Следует отметить, что основной физической постоянной, придерживающей уравнения (1.1)–(1.3) на уровне микрополярной теории упругости, является модуль упругости α (при $\alpha = 0$ из указанной системы будут отделяться уравнения классической теории упругости).

В дальнейшем будем использовать криволинейные ортогональные координаты, принятые в теории оболочек, при этом для физических составляющих тензоров и векторов оставим прежние обозначения, которые приня-
ты в уравнениях (1.1)–(1.3). Тогда граничные условия на лицевых поверхностях оболочки $\alpha_3 = \pm h$ примут вид:

$$\sigma_{3i} = \pm q_i^\pm, \quad \sigma_{33} = \pm q_3^\pm, \quad \mu_{3i} = \pm m_i^\pm, \quad \mu_{33} = \pm m_3^\pm \quad (i = 1, 2).$$ \hspace{1cm} (1.4)$$

Предполагается, что толщина оболочки мала по сравнению с характерными радиусами кривизны срединной поверхности оболочки. Будем исходить из следующей основной концепции [12]: в статическом случае общее напряженно-деформированное состояние (НДС) тонкого трехмерного тела, образующего оболочку, состоит из внутреннего НДС, охватывающего всю оболочку, и погранслоев, локализующихся вблизи поверхности края оболочки Σ. Построение общей прикладной – двумерной теории микрополярных упругих тонких оболочек тесно связано с построением внутренней задачи.

Считая, что метод гипотез наряду с чрезвычайной наглядностью очень быстро и относительно просто для инженерной практики приводит к окончательным результатам, будем строить теорию микрополярных оболочек на основе метода гипотез. Сами гипотезы будем формулировать на основе результатов асимптотического анализа поставленной трехмерной граничной задачи микрополярной теории упругости в тонкой трехмерной области оболочки [12].

При определении внутреннего НДС (так и краевого НДС) оболочки [12] большую роль играют значения физических констант материала оболочки, с этой точки зрения вводится следующие безразмерные физические параметры:

$$\frac{\mu}{4\alpha}, \quad \frac{R^2\mu}{\beta}, \quad \frac{R^2\mu}{\gamma}, \quad \frac{R^2\mu}{\varepsilon},$$ \hspace{1cm} (1.5)$$

где R – масштабный фактор, представляющий собой характерный радиус кривизны срединной поверхности оболочки.

2. Модель микрополярных упругих тонких оболочек с независимыми полями перемещений и вращений

С учетом качественных результатов асимптотического решения системы уравнений (1.1)–(1.3) с указанными выше граничными условиями и самого процесса асимптотического интегрирования этой краевой задачи [12] в случае, когда безразмерные параметры (1.4) принимают значения:

$$\frac{\mu}{4\alpha} \sim 1, \quad \frac{R^2\mu}{\beta} \sim 1, \quad \frac{R^2\mu}{\gamma} \sim 1, \quad \frac{R^2\mu}{\varepsilon} \sim 1,$$ \hspace{1cm} (2.1)$$

101
в основу предлагаемой теории микрополярной упругой тонкой оболочки ставим следующие достаточно общие предположения (гипотезы):

1) в процессе деформации первоначально прямолинейные и нормальные к координатной поверхности волокна свободно поворачиваются в пространстве как жесткое целое на некоторый угол, не изменяя при этом своей длины и не оставаясь перпендикулярными к деформированной срединной поверхности;

2) для силового напряжения \(\sigma_{33} \) и для моментных напряжений \(\mu_{33}, \mu_{3i} \) примем формулы линейного распределения по толщине оболочки;

3) сначала для определения перемещений, поворотов, деформаций, изгиба-кручения, силовых и моментных напряжений, для силовых касательных напряжений примем

\[
\sigma_{3i} = \sigma_{3i}\left(\alpha_1, \alpha_2\right). \tag{2.2}
\]

После вычисления указанных величин, значения \(\sigma_{3i} \), окончательно определим прибавлением к значениям (2.2) слагаемых, получаемых интегрированием соответствующих уравнений равновесия (1.1), для которых потребуем условия, чтобы усредненные по толщине оболочки величины были равны нулю;

4) величинами \(\frac{\alpha_3}{R_i} \) по сравнению с единицей будем пренебрегать.

При формулировании предлагаемых гипотез исходили из тех соображений, что построенные ниже двумерные уравнения микрополярных оболочек должны в первую очередь учитывать следующие важнейшие факторы, а именно свободные вращения и поперечные сдвиги, и в то же время они должны иметь достаточно простую форму и насколько возможно минимальный порядок, чтобы в дальнейшем использовать их при разработке эффективных методов решения практически важных задач.

Отметим, что при следующих значениях безразмерных параметров (1.5) [12]:

a) \(\frac{\mu}{4\alpha} << 1, \frac{R^2\mu}{\beta} \sim 1, \frac{R^2\mu}{\gamma} \sim 1, \frac{R^2\mu}{\gamma} \sim 1, \frac{R^2\mu}{\gamma} \sim 1, \)

b) \(\frac{\mu}{4\alpha} >> 1, \frac{R^2\mu}{\beta} \sim 1, \frac{R^2\mu}{\gamma} \sim 1, \frac{R^2\mu}{\gamma} \sim 1, \)

в случае а имеет место теория микрополярных упругих тонких оболочек со стесненным вращением, в случае б – теория «с малой сдвиговой жесткостью» (в данной работе эти теории не приводятся).
Математически принятую первую гипотезу запишем так: тангенциальные перемещения и нормальный поворот распределены по толщине оболочки по линейному закону $i, j = 1, 2, \ i \neq j$:

$$V_i = u_i (\alpha_1, \alpha_2) + \alpha_3 \psi_i (\alpha_1, \alpha_2), \ \omega_3 = \Omega_3 (\alpha_1, \alpha_2) + \alpha_3 \Omega (\alpha_1, \alpha_2),$$

(2.3)

а нормальное перемещение и тангенциальные повороты не зависят от попе-
речной координаты α_3, т.е.

$$V_3 = w (\alpha_1, \alpha_2), \ \omega_i = \Omega_i (\alpha_1, \alpha_2).$$

(2.4)

Кинематические гипотезы (2.3),(2.4) дополняются статическими гипо-
тезами 2), которые с учетом соответствующих граничных условий из (1.4) можем записать так:

$$\sigma_{33} = \frac{q_3^+ - q_3^-}{2} + \alpha_3 \left(q_3^+ + q_3^-\right), \ \mu_{33} = \frac{m_3^+ - m_3^-}{2} + \alpha_3 \left(m_3^+ + m_3^-\right),$$

(2.5)

$$\mu_3 = \frac{m_3^+ - m_3^-}{2} + \alpha_3 \left(m_3^+ + m_3^-\right).$$

В соответствии с кинематическими гипотезами (2.3),(2.4) компоненты
тензоров деформации и изгиба-крученя примут вид

$$\gamma_{ii} = \Gamma_{ii} (\alpha_1, \alpha_2) + \alpha_3 K_{ii} (\alpha_1, \alpha_2), \ \gamma_{ij} = \Gamma_{ij} (\alpha_1, \alpha_2) + \alpha_3 K_{ij} (\alpha_1, \alpha_2),$$

$$\gamma_{i3} = \Gamma_{i3} (\alpha_1, \alpha_2), \ \gamma_{3i} = \Gamma_{3i} (\alpha_1, \alpha_2), \ \chi_{ii} = \kappa_{ii} (\alpha_1, \alpha_2), \ \chi_{ij} = \kappa_{ij} (\alpha_1, \alpha_2),$$

(2.6)

$$\chi_{i3} = \kappa_{i3} (\alpha_1, \alpha_2),$$

где

$$\Gamma_{ii} = \frac{1}{A_i} \frac{\partial u_i}{\partial \alpha_i} + \frac{1}{A_i A_j} \frac{\partial A_i}{\partial \alpha_j} u_j + \frac{w}{R_i}, \ \Gamma_{ij} = \frac{1}{A_i} \frac{\partial u_j}{\partial \alpha_i} - \frac{1}{A_i A_j} \frac{\partial A_i}{\partial \alpha_j} u_i - (-1)^i \Omega_3,$$

$$K_{ii} = \frac{1}{A_i} \frac{\partial \psi_i}{\partial \alpha_i} + \frac{1}{A_i A_j} \frac{\partial A_i}{\partial \alpha_j} \psi_j, \ K_{ij} = \frac{1}{A_i} \frac{\partial \psi_j}{\partial \alpha_i} - \frac{1}{A_i A_j} \frac{\partial A_i}{\partial \alpha_j} \psi_j - (-1)^i \Omega_3,$$

(2.7)

$$\Gamma_{i3} (\alpha_1, \alpha_2) = -\psi_i - (-1)^i \Omega_j, \ \Gamma_{3i} (\alpha_1, \alpha_2) = \psi_i - (-1)^i \Omega_j,$$

$$\chi_{i} = \frac{1}{A_i} \frac{\partial \omega_i}{\partial \alpha_i} + \frac{u_i}{R_i}, \ \kappa_{ii} (\alpha_1, \alpha_2) = \frac{1}{A_i} \frac{\partial \Omega_i}{\partial \alpha_i} + \frac{1}{A_i A_j} \frac{\partial A_i}{\partial \alpha_j} \Omega_j + \frac{\Omega_3}{R_i},$$

$$\kappa_{ij} (\alpha_1, \alpha_2) = \frac{1}{A_i} \frac{\partial \Omega_j}{\partial \alpha_i}, \ \kappa_{i3} (\alpha_1, \alpha_2) = \frac{1}{A_i} \frac{\partial \Omega_3}{\partial \alpha_i} - \frac{\Omega_i}{R_i}.$$
На основе обобщенного закона Гука, уравнений равновесия и принятых гипотез для компонентов силового и моментного тензоров напряжений получим следующие определяющие формулы:

\[
\sigma_{ij} = \left[\frac{E}{1 - \nu^2} \Gamma_{ij} + \nu \frac{q_i^+ - q_j^+}{2} \right] + \alpha_3 \left[\frac{E}{1 - \nu^2} \left(K_{ij} + \nu K_{jj} \right) + \frac{q_j^+ + q_i^+}{2h} \right],
\]

(2.8)

\[
\sigma_{ij} = \left[(\mu + \alpha) \Gamma_{ij} + (\mu - \alpha) \Gamma_{ji} \right] + \alpha_3 \left[(\mu + \alpha) K_{ij} + (\mu - \alpha) K_{ji} \right],
\]

\[
\mu_{ij} = \frac{4\gamma(\beta + \gamma)}{\beta + 2\gamma} \kappa_{ij} + \frac{2\gamma\beta}{\beta + 2\gamma} \kappa_{ji} + \frac{\beta}{\beta + 2\gamma} \frac{m_j^+ - m_i^+}{2}, \quad \mu_{ij} = (\gamma + \epsilon) \kappa_{ij} + (\gamma - \epsilon) \kappa_{ji},
\]

\[
\mu_{13} = \frac{4\gamma e}{\gamma + \epsilon} \kappa_{13} + \frac{\gamma - \epsilon}{\gamma + \epsilon} \frac{m_3^+ - m_1^+}{2}, \quad \sigma_{13} = \sigma_{13}(\alpha_1, \alpha_2) = (\mu + \alpha) \Gamma_{13} + (\mu - \alpha) \Gamma_{31},
\]

\[
\sigma_{33} = \sigma_{33}(\alpha_1, \alpha_2) - \alpha_3 \left[\frac{1}{A_i A_j} \left(\frac{\partial(A_i \sigma_{13})}{\partial \alpha_i} + \frac{\partial(A_j \sigma_{23})}{\partial \alpha_j} \right) \right] - \left(\frac{0}{R_1} + \frac{0}{R_2} \right).
\]

\[
\sigma_{3j} = \sigma_{3j}(\alpha_1, \alpha_2) - \alpha_3 \left[\frac{1}{A_i} \frac{\partial \sigma_{ij}}{\partial \alpha_i} + \frac{1}{A_i} \frac{\partial A_j}{\partial \alpha_i} \sigma_{ij} + \frac{1}{A_j} \frac{\partial \sigma_{ij}}{\partial \alpha_j} + \frac{1}{A_j} \frac{\partial A_i}{\partial \alpha_j} \sigma_{ij} + \frac{1}{A_i} \frac{\partial A_j}{\partial \alpha_j} \sigma_{ij} \right]
\]

\[
+ \left[\frac{1}{A_i} \frac{\partial A_j}{\partial \alpha_j} \sigma_{ij} + \frac{1}{A_i} \frac{\partial A_j}{\partial \alpha_j} \sigma_{ij} \right] - \frac{\alpha_3^2}{2} \left[\frac{1}{A_i} \frac{\partial \mu_{ij}}{\partial \alpha_i} + \frac{1}{A_j} \frac{\partial \mu_{ij}}{\partial \alpha_j} \sigma_{ij} \right] + \alpha_3 \left[\frac{1}{A_j} \frac{\partial A_i}{\partial \alpha_j} \left(\mu_{ij} \sigma_{ij} \right) + \frac{1}{A_j} \frac{\partial A_i}{\partial \alpha_j} \left(\mu_{ij} \sigma_{ij} \right) \right] + \frac{1}{A_j} \frac{\partial A_i}{\partial \alpha_j} \left(\mu_{ij} \mu_j \right) + \frac{\mu_{13}}{R_j} + (-1)^j \left(\sigma_{j3} - \sigma_{3j} \right),
\]

\[
\mu_{31} = \mu_{31}(\alpha_1, \alpha_2) - \alpha_3 \left[\frac{1}{A_i} \frac{\partial \mu_{13}}{\partial \alpha_i} + \frac{1}{A_j} \frac{\partial \mu_{13}}{\partial \alpha_j} \left(\mu_{13} - \mu_{13} \right) + \frac{1}{A_j} \frac{\partial \mu_{13}}{\partial \alpha_j} \sigma_{13} \right] + \frac{1}{A_j} \frac{\partial \mu_{13}}{\partial \alpha_j} \left(\mu_{13} + \mu_{13} \right) + \frac{\mu_{13}}{R_j} + (-1)^j \left(\sigma_{j3} - \sigma_{3j} \right),
\]

\[
\mu_{33} = \mu_{33}(\alpha_1, \alpha_2) + \alpha_3 \left[\frac{1}{R_i} + \frac{1}{R_2} \right] - \frac{1}{A_i A_j} \left(\frac{\partial A_i \mu_{13}}{\partial \alpha_i} + \frac{\partial A_j \mu_{23}}{\partial \alpha_j} \right) - \left(\sigma_{12} - \sigma_{21} \right).
\]
Здесь $\sigma_{ii}, \sigma_{ij}, \sigma_{ji}, \sigma_{jj}$ представляют собой постоянную или линейную по α_3 часть силовых напряжений σ_{ii} и σ_{ij}, определяемых по соответствующим формулам (2.8).

Из условий эквивалентности для усредненных по толщине оболочки внутренних продольных сил (T_{il}, S_{lj}), поперечных сил (N_{l3}, N_{lj}), изгибающих и крутящих моментов от силовых напряжений (M_{il}, H_{lj}), изгибающих и крутящих моментов от моментных напряжений (L_{il}, L_{lj}, L_{l3}), с учетом предположения 4, будем иметь следующие формулы:

$$
T_{l3} = \int_{-h}^{h} \sigma_{ii} d\alpha_3, \quad S_{lj} = \int_{-h}^{h} \sigma_{ij} d\alpha_3, \quad N_{l3} = \int_{-h}^{h} \sigma_{i3} d\alpha_3, \quad N_{lj} = \int_{-h}^{h} \sigma_{ij} d\alpha_3, \quad (2.9)
$$

$$
M_{ii} = \int_{-h}^{h} \sigma_{i3} d\alpha_3, \quad H_{lj} = \int_{-h}^{h} \sigma_{ij} d\alpha_3, \quad L_{il} = \int_{-h}^{h} \mu_{i} d\alpha_3,
$$

$$
L_{lj} = \int_{-h}^{h} \mu_{ij} d\alpha_3, \quad L_{l3} = \int_{-h}^{h} \mu_{i3} d\alpha_3.
$$

Основная система уравнений микрополярных упругих тонких оболочек с независимыми полями перемещений и вращений будет выража́ться так.

Уравнения равновесия:

$$
\frac{1}{A_i} \frac{\partial T_{il}}{\partial \alpha_i} + \frac{1}{A_i A_j} \frac{\partial A_j}{\partial \alpha_i} (T_{il} - T_{jl}) + \frac{1}{A_j} \frac{\partial S_{lj}}{\partial \alpha_j} + \frac{1}{A_i A_j} \frac{\partial A_j}{\partial \alpha_j} (S_{lj} + S_{jl}) + \frac{N_{l3}}{R_i} = - \left(q_i^+ + q_i^- \right),
$$

$$
\frac{1}{A_i} \frac{\partial M_{ii}}{\partial \alpha_i} + \frac{1}{A_i A_j} \frac{\partial A_j}{\partial \alpha_i} (M_{ii} - M_{jj}) + \frac{1}{A_j} \frac{\partial H_{lj}}{\partial \alpha_j} +
$$

$$
\frac{1}{A_i A_j} \frac{\partial A_i}{\partial \alpha_j} (H_{yi} + H_{iy}) - N_{3i} = - h (q_i^+ - q_i^-),
$$

$$
\frac{T_{11}}{R_1} + \frac{T_{22}}{R_2} - \frac{1}{A_i A_i} \left[\frac{\partial (A_2 N_{13})}{\partial \alpha_1} + \frac{\partial (A_i N_{23})}{\partial \alpha_2} \right] = q_3^+ + q_3^-, \quad (2.10)
$$

$$
\frac{1}{A_i} \frac{\partial L_{il}}{\partial \alpha_i} + \frac{1}{A_i A_j} \frac{\partial A_j}{\partial \alpha_i} (L_{il} - L_{jl}) + \frac{1}{A_j} \frac{\partial L_{ji}}{\partial \alpha_j} + \frac{1}{A_i A_j} \frac{\partial A_j}{\partial \alpha_j} (L_{ji} + L_{lj}) + \frac{L_{l3}}{R_i} +
$$

$$
\frac{1}{A_i} \frac{\partial L_{il}}{\partial \alpha_i} - \frac{1}{A_i A_j} \frac{\partial A_j}{\partial \alpha_i} (L_{il} - L_{jl}) + \frac{1}{A_j} \frac{\partial L_{ji}}{\partial \alpha_j} + \frac{1}{A_i A_j} \frac{\partial A_j}{\partial \alpha_j} (L_{ji} + L_{lj}) + \frac{L_{l3}}{R_i} +
$$

$$
(-1)^j (N_{l3} - N_{lj}) = - \left(m_i^+ + m_i^- \right),
$$

$$
\frac{L_{11}}{R_1} + \frac{L_{22}}{R_2} - \frac{1}{A_i A_i} \left[\frac{\partial (A_2 L_{13})}{\partial \alpha_1} + \frac{\partial (A_l L_{23})}{\partial \alpha_2} \right] - (S_{12} - S_{21}) = \left(m_3^+ + m_3^- \right).
$$
Соотношения упругости:

\[T_{ii} = \frac{2Eh}{1-v^2} \left[\Gamma_{ii} + v\Gamma_{ji} \right] + \frac{v}{1-v} h(q_3^+ - q_3^-), \quad S_{ij} = 2h \left[(\mu + \alpha) \Gamma_{ij} + (\mu - \alpha) \Gamma_{ji} \right], \]

\[M_{ii} = \frac{2Eh^3}{3(1-v^2)} \left[K_{ii} + vK_{ij} \right] + \frac{h^2}{3} \frac{v}{1-v} (q_3^+ + q_3^-), \]

\[H_{ij} = \frac{2h^3}{3} \left[(\mu + \alpha) K_{ij} + (\mu - \alpha) K_{ji} \right], \]

\[L_{ij} = 2h \left[\frac{4\gamma(\beta + \gamma)}{\beta + 2\gamma} \kappa_{ij} + \frac{2\gamma\beta}{\beta + 2\gamma} \kappa_{ji} + \frac{\beta}{\beta + 2\gamma} \frac{m_3^+ - m_3^-}{2} \right], \] (2.11)

\[L_{ij} = 2h \left[(\gamma + \varepsilon) \kappa_{ij} + (\gamma - \varepsilon) \kappa_{ji} \right], \]

\[N_{i3} = 2h(\mu + \alpha) \Gamma_{i3} + 2h(\mu - \alpha) \Gamma_{3i}, \quad L_{i3} = 2h \frac{4\gamma\varepsilon}{\gamma + \varepsilon} \kappa_{i3} + \frac{\gamma - \varepsilon}{\gamma + \varepsilon} h(m_i^+ - m_i^-), \]

\[N_{3i} = 2h(\mu + \alpha) \Gamma_{3i} + 2h(\mu - \alpha) \Gamma_{i3}, \]

\[\tau = \frac{\beta + \gamma}{\gamma(3\beta + 2\gamma)} \frac{m_3^+ - m_3^-}{2} - \frac{1}{2h} \frac{\beta}{2\gamma(3\beta + 2\gamma)} (L_{11} + L_{22}). \]

Геометрические соотношения:

\[\Gamma_{ii} = \frac{1}{A_i} \frac{\partial u_i}{\partial \alpha_i} + \frac{1}{A_i A_j} \frac{\partial A_i}{\partial \alpha_j} u_j + \frac{w}{R_i}, \quad K_{ii} = \frac{1}{A_i} \frac{\partial \psi_i}{\partial \alpha_i} + \frac{1}{A_i A_j} \frac{\partial A_j}{\partial \alpha_i} \psi_j, \]

\[\Gamma_{i3} = -\partial_i + (-1)^i \Omega_j, \quad \partial_i = -\frac{1}{A_i} \frac{\partial w}{\partial \alpha_i} + \frac{u_i}{R_i}, \quad \Gamma_{3i} = \psi_i - (-1)^i \Omega_j, \]

\[\Gamma_{ij} = \frac{1}{A_i} \frac{\partial u_j}{\partial \alpha_i} - \frac{1}{A_i A_j} \frac{\partial A_i}{\partial \alpha_j} u_i - (-1)^i \Omega_3, \] (2.12)

\[K_{ij} = \frac{1}{A_i} \frac{\partial \psi_j}{\partial \alpha_i} - \frac{1}{A_i A_j} \frac{\partial A_j}{\partial \alpha_i} \psi_i - (-1)^i \tau, \]

\[\kappa_{ii} = \frac{1}{A_i} \frac{\partial \Omega_i}{\partial \alpha_i} + \frac{1}{A_i A_j} \frac{\partial A_i}{\partial \alpha_j} \Omega_j + \frac{\Omega_3}{R_i}, \quad \kappa_{i3} = \frac{1}{A_i} \frac{\partial \Omega_3}{\partial \alpha_i} - \frac{\Omega_3}{R_i}, \]

\[\kappa_{ij} = \frac{1}{A_i} \frac{\partial \Omega_j}{\partial \alpha_i} - \frac{1}{A_i A_j} \frac{\partial A_j}{\partial \alpha_i} \Omega_j, \quad \kappa_{3i} = \frac{1}{A_i} \frac{\partial \Omega_3}{\partial \alpha_i} - \frac{\Omega_3}{R_i}. \]
Представим «смягченные» граничные условия на граничном контуре Γ срединной поверхности оболочки, считая, что этот контур совпадает с координатной линией $\alpha_1 = \text{const}$:

$$T_{11} = T_{11}^* \quad \text{или} \quad u_1 = u_1^*, \quad S_{12} = S_{12}^* \quad \text{или} \quad u_2 = u_2^*, \quad N_{13} = N_{13}^* \quad \text{или} \quad w = w^*, \quad$$

$$M_{11} = M_{11}^* \quad \text{или} \quad \psi_1 = \psi_1^*, \quad H_{12} = H_{12}^* \quad \text{или} \quad \psi_2 = \psi_2^*, \quad$$

$$L_{11} = L_{11}^* \quad \text{или} \quad \Omega_1 = \Omega_1^*, \quad L_{12} = L_{12}^* \quad \text{или} \quad \Omega_2 = \Omega_2^*, \quad L_{13} = L_{13}^* \quad \text{или} \quad \Omega_3 = \Omega_3^*. \quad \tag{2.13}$$

Система уравнений (2.10)–(2.12) (она представляет системой дифференциальных уравнений 16-го порядка) и граничные условия (2.13) составляют математическую модель микрополярной упругой тонкой оболочки с независимыми полями перемещений и вращений.

3. Основные уравнения и граничные условия микрополярной упругой круговой цилиндрической оболочки с независимыми полями перемещений и вращений

Будем под α_i подразумевать соответственно безразмерную длину обпрежающей и безразмерную длину дуги направляемого круга, тогда коэффициенты первой квадратичной формы A_i и главные радиусы кривизны R_i срединной поверхности определяются формулами:

$$\alpha_1 = r\xi, \quad \alpha_2 = r\theta, \quad A_1 = A_2 = r, \quad R_1 = \infty, \quad R_2 = r. \quad \tag{3.1}$$

Из общих уравнений и соотношений теории микрополярных упругих оболочек (2.10)–(2.12) для круговой цилиндрической оболочки получим:

- уравнения равновесия:

$$\frac{\partial T_{11}}{\partial \xi} + \frac{\partial S_{21}}{\partial \theta} = -r(q_1^* + q_1^-), \quad \frac{\partial S_{12}}{\partial \xi} + \frac{\partial T_{22}}{\partial \theta} + N_{23} = -r(q_2^* + q_2^-), \quad \tag{3.2}$$

$$\frac{\partial L_{11}}{\partial \xi} + \frac{\partial L_{21}}{\partial \theta} + r(N_{23} - N_{32}) = -r(m_1^* + m_1^-),$$

$$\frac{\partial L_{12}}{\partial \xi} + \frac{\partial L_{22}}{\partial \theta} + r(N_{31} - N_{13}) + L_{23} = -r(m_2^* + m_2^-),$$

$$-T_{22} + \frac{\partial N_{13}}{\partial \xi} + \frac{\partial N_{23}}{\partial \theta} = -r(q_3^* + q_3^-),$$

$$-L_{22} + \frac{\partial L_{13}}{\partial \xi} + \frac{\partial L_{23}}{\partial \theta} + r(S_{12} - S_{21}) = -r(m_3^* + m_3^-),$$

107
\[
\frac{\partial M_{11}}{\partial \xi} + \frac{\partial H_{21}}{\partial \theta} - rN_{31} = -h(q_1^+ - q_1^-), \quad \frac{\partial M_{22}}{\partial \theta} + \frac{\partial H_{12}}{\partial \xi} - rN_{32} = -h(q_2^+ - q_2^-);
\]

- соотношения упругости:

\[
T_{ii} = \frac{2Eh}{1-v^2} \left[\Gamma_{ii} + v\Gamma_{jj} \right] + \frac{v}{1-v} h(q_3^+ - q_3^-), \quad S_{ij} = 2h [(\mu + \alpha) \Gamma_{ij} + (\mu - \alpha) \Gamma_{ji}],
\]

\[
M_{ii} = \frac{2Eh^3}{3(1-v^2)} \left[K_{ii} + vK_{jj} \right] + \frac{h^2}{3} \frac{v}{1-v} \left(q_3^+ + q_3^-\right),
\]

\[
H_{ij} = \frac{2h^3}{3} \left[(\mu + \alpha) K_{ij} + (\mu - \alpha) K_{ji} \right],
\]

\[
L_{ii} = 2h \left[\frac{4(\beta + \gamma)}{\beta + 2\gamma} \kappa_{ii} + \frac{2\beta}{\beta + 2\gamma} \kappa_{jj} + \frac{\beta}{\beta + 2\gamma} \frac{m_1^+ - m_1^-}{2} \right],
\]

\[
L_{ij} = 2h \left[(\gamma + \varepsilon) \kappa_{ij} + (\gamma - \varepsilon) \kappa_{ji} \right],
\]

\[
N_{i3} = 2h(\mu + \alpha) \Gamma_{i3} + 2h(\mu - \alpha) \Gamma_{3i}, \quad L_{i3} = 2h \frac{4\gamma \varepsilon}{\gamma + \varepsilon} \kappa_{i3} + \frac{\gamma - \varepsilon}{\gamma + \varepsilon} h \left(m_1^+ - m_1^-\right),
\]

\[
t = \frac{\beta + \gamma}{\gamma(3\beta + 2\gamma)} \frac{m_1^+ - m_1^-}{2} - \frac{1}{2h} \frac{\beta}{2\gamma(3\beta + 2\gamma)} \left(L_{11} + L_{22}\right);
\]

- геометрические соотношения:

\[
\Gamma_{11} = \frac{1}{r} \frac{\partial u_1}{\partial \xi}, \quad \Gamma_{22} = \frac{1}{r} \left(\frac{\partial u_2}{\partial \theta} + w\right), \quad \Gamma_{12} = \frac{1}{r} \frac{\partial u_2}{\partial \xi} + \Omega_3, \quad \Gamma_{21} = \frac{1}{r} \frac{\partial u_2}{\partial \theta} - \Omega_3,
\]

\[
K_{11} = \frac{1}{r} \frac{\partial \psi_1}{\partial \xi}, \quad K_{22} = \frac{1}{r} \frac{\partial \psi_2}{\partial \theta}, \quad K_{12} = \frac{1}{r} \frac{\partial \psi_2}{\partial \xi} - t, \quad K_{21} = \frac{1}{r} \frac{\partial \psi_1}{\partial \theta} + t.
\]

\[
\Gamma_{i3} = -\vartheta_i + (-1)^i \Omega_j, \quad \vartheta_1 = -\frac{1}{r} \frac{\partial w}{\partial \xi}, \quad \vartheta_2 = -\frac{1}{r} \left(\frac{\partial w}{\partial \theta} - u_2\right),
\]

\[
\Gamma_{3i} = \psi_i - (-1)^i \Omega_j,
\]

\[
\Gamma_{ij} = \frac{1}{A_i} \frac{\partial u_j}{\partial \alpha_i} - \frac{1}{A_i A_j} u_i - (-1)^i \Omega_3, \quad K_{ij} = \frac{1}{A_i} \frac{\partial \psi_j}{\partial \alpha_i} - \frac{1}{A_i A_j} \psi_i - (-1)^i t,
\]

\[
\kappa_{11} = \frac{1}{r} \frac{\partial \Omega_i}{\partial \xi}, \quad \kappa_{22} = \frac{1}{r} \left(\frac{\partial \Omega_1}{\partial \theta} + \Omega_3\right), \quad \kappa_{12} = \frac{1}{r} \frac{\partial \Omega_2}{\partial \xi}, \quad \kappa_{21} = \frac{1}{r} \frac{\partial \Omega_1}{\partial \theta},
\]

108
\[\kappa_{13} = \frac{1}{r} \frac{\partial \Omega_3}{\partial \xi}, \quad \kappa_{23} = \frac{1}{r} \left(\frac{\partial \Omega_3}{\partial \theta} - \Omega_2 \right). \]

К системе уравнений (3.2)–(3.4) необходимо присоединить граничные условия (2.13).

Рассмотрим задачу шарниро-опертой микрополярной упругой круговой закругленной цилиндрической оболочки в осесимметричной постановке, нагруженной нормально приложенной поверхностной нагрузкой интенсивности \(q = q_0 \sin \frac{\pi r}{a} \xi \).

Для поставленной задачи получено точное решение. Численные результаты приведены в таблице.

<table>
<thead>
<tr>
<th>№</th>
<th>Размеры балки</th>
<th>Максимальный прогиб</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a, \text{мм})</td>
<td>(h, \text{мм})</td>
</tr>
<tr>
<td>1</td>
<td>0,5</td>
<td>0,005</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0,01</td>
</tr>
<tr>
<td>3</td>
<td>1,5</td>
<td>0,015</td>
</tr>
</tbody>
</table>

Отметим, что расчеты выполнены для гипотетического материала. Как убедимся, по микрополярной теории оболочек максимальный прогиб получается 60–65 % ниже, чем по классической теории, который говорит о том, что микрополярный материал имеет высокую жесткостную характеристику.

Библиографический список

Получено 12.07.2010