Р.В. Гольдштейн
Институт проблем механики им. А.Ю. Ишлинского Российской академии наук (г. Москва)

Т.М. Махвиладзе, М.Е. Сарычев
Физико-технологический институт Российской академии наук (г. Москва)

МОДЕЛИРОВАНИЕ ВЛИЯНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ НА КИНЕТИКУ РОСТА КИСЛОРОДНЫХ ПРЕЦИПИТАТОВ В КРЕМНИИ

Present work presents the model describing kinetics precipitates of oxygen in silicon plates taking into account internal mechanical pressure, arising in system precipitate - a silicon matrix is developed. The case precipitates the spherical form is considered and the mechanical pressure caused in a silicon matrix by a difference of specific volumes Si and SiO are written down

В реальных условиях пластины для подложек нарезаются из кристаллических слитков, выращиваемых из расплава кремния. При последующем остывании кристалла в нем остается кислород, причем в концентрациях, достаточных для образования пересыщенного твердого раствора. Пересыщенным называется раствор, в котором концентрация растворенного вещества (в данном случае кислорода) оказывается больше его равновесного значения, отвечающего температуре раствора. В данном случае подобная ситуация возникает вследствие того, что в процессе посткрystalлизационного охлаждения слитка кремния или при последующих термообработках пластин, вырезаемых из него, температура кристалла оказывается достаточно низкой (≤1000–1200 °С) по сравнению с температурой, при которой кислород попадает в расплав кремния (1400 °С). В дальнейшем происходит распад пересыщенного раствора кислорода с образованием и ростом зародышей новой объемной фазы, так называемых кислородных преципитатов, представляющих собой частицы окисного соединения вида SiOₓ, где обычно считается, что х = 2, т.е. это - двуокись кремния SiO₂ (кварц). Размеры новой фазы в кристаллической матрице зависят от содержания в ней кислорода, условий выращивания кристалла кремния и режимов последующей термообработки вырезаемых из него пластин.
Описанное явление образования объемной фазы прекипитатов может быть использовано в микроэлектронных технологиях изготовления ультра-
сверхбольших интегральных схем. Дело в том, что, контролируя тем или
инным способом распад пересыщенного твердого раствора кислорода в кри-
сталлизующемся кремнии, можно создавать подложки с так называемым
встроенным геттером. Геттерированием называется создание различного ро-
da стоков, которые оттягивают на себя имеющиеся в подложке микродефек-
ты (собственные и привнесенные), оказывающие вредное влияние на функ-
ционарирование микросхем. Соответственно сами стоки называются геттерами.

Таким образом, в силу указанных причин становится особенно актуа-
льным проведение моделирования кинетики образования и роста кислород-
ных прекипитатов в кремниевых пластинках. Как следует из многочисленных
экспериментов, моделирование кинетики зарождения и роста кислородных
предкапитатов в кремнии является сложной многофакторной проблемой.
В частности, моделирование процесса зарождения прекипитатов должно
включать две стадии. Первая – моделирование образования в кремнии облас-
tей пересыщения кислородом. Вторая – моделирование распада этого пере-
сыщенного раствора, сопровождающегося образованием и ростом термоди-
намически устойчивых зародышей (клеток) прекипитата в виде соедине-
ния кремния с кислородом. Моделирование кинетики роста зародыша
должно математически описывать диффузционный транспорт кислорода
к прекипитату, захват его поверхностью прекипитатного клетера, а также
процесс транспорта таких собственных точечных дефектов, как вакансии
и межузельные атомы кремния.

Отметим следующую особенность, которую, на наш взгляд, следует
учитывать при моделировании кинетики прекипитации. Поскольку объем,
приходящийся на атом кремния, в прекипитате больше, чем в исходной
кремниевой матрице, то уже зарождение прекипитата сразу же должно со-
провождаться возникновением поля механического напряжения, которое
в свою очередь будет оказывать влияние на процесс роста. Имеется, как ми-
ниум, три механизма влияния возникающих механических напряжений на
зарождение и рост прекипитата.

Во-первых, они влияют на выражение для изменения свободной энер-
гии системы при зарождении прекипитата путем термодинамической флу-
ктуации.

Во-вторых, механические напряжения будут оказывать воздействие на
dиффузционный транспорт атомов кислорода вблизи зародыша прекипитата
за счет появления вклада в их поток, обусловленного градиентом напряже-
ний. Указанный механизм до сих пор не рассматривался. Представляется, что
вблизи зародыша прекипитата вклад, обусловленный градиентом напряже-
ний, может быть значительным.
Наконец, еще один механизм, не отмеченный в литературе по преципитации, связан с изменением под действием механической нагрузки энергий активации таких процессов, как диффузия кислорода и его присоединение к уже существующему преципитатному кластеру. В наиболее общем виде такого рода эффекты отражены известной феноменологической формулой С.Н. Журкова.

Настоящая работа является одним из начальных этапов разработки надежной модели кинетики преципитации. В работе указаны выше соображения о возможном влиянии внутренних механических напряжений в системе преципитат–кремниевая матрица на кинетику роста преципитата конкретизируются и анализируются для преципитатного кластера сферической формы. Выполнены некоторые оценки этих эффектов.

2. Поле механических напряжений от преципитата сферической формы

Для нахождения механических напряжений, генерируемых кислородным преципитатом в окружающем кремнии, будем считать, что преципитат имеет сферическую форму и находится в бесконечно протяженной среде.

Из-за разности удельных объемов Si и SiO₂ сферический преципитат находится под давлением \(p \) [1], определяемым выражением

\[
p = \frac{v_p - v_c}{sv_p},
\]

где \(v_p \) и \(v_c \) — объемы частицы преципитата SiO₂ и той полости в кремниевой матрице, в которую она вставлена, \(s \) — эффективная сжимаемость (\(\mu \) — модуль сдвига для кремния, \(K_p \) — модуль всестороннего сжатия для SiO₂),

\[
s = K_p^{-1} + 0,75\mu^{-1}.
\]

В частности, если преципитат содержит \(n \) атомов O, т.е. \(n/2 \) атомов Si, то \(v_p = \eta n/2\rho \), где \(\eta \) — отношение удельных объемов SiO₂-фазы (в расчете на один атом Si) и Si-фазы, \(\eta = 2,36 \), \(\rho \) — плотность атомов в Si. В то же время величина \(v_c \) зависит от того, какой тип дефектности реализуется в процессе выращивания кремния. Например, если основными микродефектами являются межузельные атомы кремния \(Si_n \), то [1]

\[
v_c = \left(n_i + n/2 \right) / \rho,
\]

где \(n_i \) — число атомов \(Si_n \), эмитировавших в межузля для образования полости. Подставляя (2) и выражение для \(v_p = \eta n/2\rho \) в (1), имеем

\[
p = \frac{2}{s\eta}(\gamma_0 - n_i / n),
\]

37
где \(\gamma_0 \) – величина эмиссионного отношения для межузелльного кремния \(\gamma = n_i/n, \gamma_0 = (\eta - 1)/2 = 0,68 \), при котором частица преципитата оказывается ненапряженной.

В противоположном случае, когда основными микродефектами являются вакансии и частица преципитата образуется за счет конденсации вакансий, в (2) и (3) надо заменить \(n_i \) на число вакансий \(n_v \), поглощенных при образовании полости. Соответственно, в этом случае имеем

\[
p = (2/s\eta)(\gamma_0 - n_v/n).
\]

В (4) \(n_v/n \) – эмиссионное отношение для вакансий.

Приведем также выражения для давления \(p \) для случая термодинамически равновесного преципитата, отвечающего минимуму свободной энергии по величине эмиссионного отношения \(n_i/n \) или \(n_v/n \) при фиксированном \(n \).

В этом случае минимуму свободной энергии отвечают значения [1]

\[
n_i/n = \gamma_0(1 - \gamma_0 f_i/4w), \quad n_v/n = \gamma_0(1 - \gamma_0 f_v/4w),
\]

где \(f_i \) и \(f_v \) – химические потенциалы межузелльного кремния и вакансий в кремни.

\[
f_i = kT \ln(C_i/C_w), \quad f_v = kT \ln(C_v/C_{ve}),
\]

где \(C_i \) и \(C_v \) – концентрации межузелльного кремния и вакансий \((C_w, C_{ve} – их равновесные значения), k – постоянная Больцмана, T – температура. Подставляя эти значения эмиссионных отношений в (3), (4), получим \(p = p_{f_{i,v}} \) или

\[
p = pkT \ln(C_i/C_w), \quad (3')
\]

\[
p = pkT \ln(C_v/C_{ve}) \quad (4')
\]

соответственно.

Систему, состоящую из частицы преципитата и окружающего его кремния, будем моделировать как сферический слой кремния с бесконечным внешним радиусом и внутренней сферической полостью радиуса преципитата, заполненной окислом SiO₂, находящимся под давлением \(p \). Воспользуемся результатом, полученным в [2]. В [2] получены деформации и напряжения в полом сферическом слое (наружный и внутренний радиусы \(R_1 \) и \(R_2 \)), внутри которого действует давление \(p_1 \), а снаружи – \(p_2 \). В сферических координатах компоненты тензора деформаций \(\sigma_{ik} \) в слое имеют вид:

\[
\begin{align*}
 u_{rr} &= a - \frac{2b}{r^3}, \\
 u_{\theta\theta} &= u_{\phi\phi} = a + \frac{b}{r^3},
\end{align*}
\]

(5)
где

\[a = \frac{p_1 R_1^3 - p_2 R_2^3}{R_2^3 - R_1^3} \frac{1 - 2\sigma}{E}, \quad b = \frac{R_2^3 R_3^3 (p_1 - p_2)}{R_2^3 - R_1^3} \frac{1 + \sigma}{2E}, \]

(6)

\(\sigma \) и \(E \) – коэффициент Пуассона и модуль Юнга материала слоя.

Перейти в (2), (3) (5), (6) к случаю поля напряжений, создаваемых за-
родышем преципитата радиуса \(R \) в окружающей бесконечной среде, можно,
положив в (2) и (3) \(R_2 = \infty, R_1 = R, p_2 = 0 \) и \(p_1 = p \), где \(p \) – давление внутри
преципитата. Тогда, используя (6) и закон Гука, для постоянных \(a \) и \(b \), а так-
же компонент тензора напряжений \(\sigma_{ik} \) и деформации \(u_{ik} \) в сферических коор-
динатах получим \(r \geq R \):

\[a = 0, \quad b = -pR^3 \frac{1 + \sigma}{2E}, \]

\[\sigma_{rr} = -pR^3 \frac{R^3}{r^3}, \quad \sigma_{\theta \theta} = \sigma_{\phi \phi} = p \frac{R^3}{2r^3}, \]

\[u_{rr} = a - \frac{2b}{r^3} = \frac{p(1 + \sigma)}{E} \frac{R^3}{r^3}, \quad u_{\theta \theta} = u_{\phi \phi} = a + \frac{b}{r^3} = -\frac{p(1 + \sigma)}{E} \frac{R^3}{2r^3}. \]

(7)

Здесь давление \(p \) внутри преципитата может быть взято из (3) или (4). Отметим, что решения (5)–(7), которыми мы воспользуемся в дальнейшем,
получены для изотропной упругой среды, не учитывающей тип кристалличе-
ской решетки. Однако поскольку цель работы в том, чтобы показать принципиальну
ную необходимость рассмотрения влияния внутренних механических
напряжений в системе на протекающие процессы и дать некоторые оценки
по порядку величины, то на данном этапе влияние этого фактора не учитывалось.

3. Молекулярно-кинетическая модель
преципитации кислорода в кремнии

Поле напряжений (7) должно сказываться на скорости атомно-
молекулярных процессов, обеспечивающих рост преципитата.

Для иллюстрации эффекта рассмотрим одну из возможных моделей
преципитации этого уровня [3]. Согласно этой модели кинетика роста части-
цы преципитата происходит по той же схеме, по которой образуются части-
цы (кластеры) новой фазы (см., например, [4]):

\[A + A C \xrightarrow{g(i)} A_{i+1} C, \]

(8)
где A — мономер, за счет присоединения которого происходит рост прецпи-питета, i — количество мономеров, содержащихся в преципитате перед присое-динением нового мономера, C — центр зарождения мономеров, концентрация которых по предположению модели не меняется со временем, $k(i)$ и $g(i)$ — эффективные константы скорости присоединения и выброса мономера соответст-венно.

Реакция (8) является бимолекулярной. Если считать, что комплексы A,C неподвижны, а столкновения с ними мономеров A осуществляются за счет диффузии последних, то согласно общей теории бимолекулярных реак-ций в конденсированных средах [5] эффективная константа скорости прямой реакции (8) дается выражением

$$k(i) = \frac{v}{\tau_D(i) + \tau_R(i)},$$

где v — единичный удельный объем в кремнии, $\tau_D(i)$ и $\tau_R(i)$ — характерные времена диффузии на расстояние порядка размера реакционного объема про-цесса (8) (т.е. примерно радиус частицы $R(i)$) и присоединения мономера к нему к преципитату, соответственно:

$$\tau_D = v/k_D \equiv v/4\pi R(i)D, \quad \tau_R = v/k_R,$$

где D — коэффициент диффузии мономеров в кремнии, k_D — так называемая диффузионная константа скорости, $k_D = 4\pi R(i)D$, k_R — истинная константа скорости прямой реакции (8). Тогда соотношение (9) запишется в виде

$$1/k(i) = 1/k_D + 1/k_R.$$

Укажем, что согласно [3] для преципитатов различной геометрии име-ют место следующие соотношения:

$$R(i) = b(i + m)^\alpha, \quad S(i) = 4\pi b^2(i + m)^\beta,$$

где $S(i)$ — площадь поверхности преципитата, b — величина порядка среднего расстояния между частицами в преципитате, величина m находится из усло-вия, что центр зарождения имеет размер $R(0) = bm^\alpha$, а значения показателей α и β определяются геометрией преципитата (см. таблицу в [3]).

С учетом (12) константа скорости k_R дается выражением [3]

$$k_R = \frac{S(i)D}{r_0} \exp \left[-\frac{E_a(i)}{kT} \right],$$

где $E_a(i)$ — энергия активации реакции захвата мономера кластером преципи-питета, содержащим i мономеров, r_0 — величина порядка периода решетки кремния.

40
Подставляя выражения (10), (12) и (13) в соотношение (11), получим

\[k(i) = \frac{4\pi DR(i)}{1 + [4\pi R(i)r_0 / S(i)] \exp \left\{ \left[E_a(i) / kT \right] \right\} } = \]

\[\frac{4\pi Db(i + m)^\alpha}{1 + (r_0 / b)(i + m)^{\alpha-\beta} \exp \left\{ E_a(i) / kT \right\} }. \]

(14)

Укажем, что из принципа детального равновесия для процесса, описываемого схемой (8), для константы обратной реакции \(g(i) \) имеет место соотношение

\[g(i) = k(i - 1)N_E C_E (i - 1) / C_E (i) = k(i)N_E, \]

где \(N_E \) – равновесная концентрация мономеров (межзеленого кислорода), \(C_E \) – равновесная концентрация центров зарождения.

Для целей настоящей работы представляют интерес еще два соотношения, получаемые из (14). Так, если в (14)

\[E_a(i) \ll kT \ln \left\{ b(i + m)^{\beta-\alpha} / r_0 \right\}, \]

то

\[k(i) = 4\pi DR(i) = 4\pi Db(i + m)^\alpha \equiv k_D (i + m)^\alpha. \]

(17)

В этом случае преципитация ограничена диффузией мономеров.

В случае же, когда знак в неравенстве (16) противоположный, из (14) вместо (17) имеем:

\[k(i) = \frac{S(i)D}{r_0} \exp \left\{ - \frac{E_a(i)}{kT} \right\} = \frac{4\pi b^2 (i + m)^\beta D}{r_0} \exp \left\{ - \frac{E_a(i)}{kT} \right\} \equiv k_E (i + m)^\beta, \]

(18)

t.e. преципитация ограничена актом присоединения мономера. В дальнейшем будем считать, что энергия активации \(E_\alpha(i) \) не зависит от размера преципитата, т.e. \(E_\alpha(i) = E_0 = \text{const.} \)

4. Влияние механических напряжений
на константы скоростей процессов,
определяющих преципитацию

Из рассмотренной в предыдущем пункте модели видно, что кинетика роста преципитата определяется его размером, коэффициентом диффузии кислорода и константой скорости акта его химического присоединения
к преципитатному кластеру с образованием окисла SiO₂ (см. выражение (14)). Целый ряд экспериментальных и теоретических исследований показывает, что обе эти константы \((k_D и k_E) d\) должны зависеть от имеющихся в системе механических напряжений.

Диффузия в твердотельной среде, подверженной механическим нагрузкам

Проблема описания воздействия механических напряжений на коэффициент диффузии возникла, в частности, при моделировании ряда особенностей, наблюдаемых в кинетике окисления кремния сухим кислородом [6, 7]. Объяснить эти особенности удается, если в классической модели окисления поверхности Si [8] учесть еще зависимость коэффициента диффузии кислорода через нарастающий слой SiO₂ от местного механического напряжения, генерируемого границей SiO₂–Si в окисле. Она возникает, если принять во внимание изменение свободной энергии \(\Delta F_S\) системы вследствие ее деформирования:

\[
D = D_0 \exp \left(-\frac{\Delta F_S}{kT} \right) = D_0 \exp \left(-\frac{\sigma_{ox} \Delta V}{kT} \right) = \frac{D_0}{\exp \left(-\frac{E_a + \sigma_{ox} \Delta V}{kT} \right)},
\]

где \(\sigma_{ox}\) – механическое напряжение, \(\sigma_{ox} = \sigma_{ox}(x, \ell_{ox})\), т.е. \(x\)-компоненты тензора механических напряжений \((x – расстояние от границы SiO₂–Si, \ell_{ox} – толщина окисной пленки), монотонно убывающее с ростом \(x\); \(\Delta V\) – изменение элементарного диффузионного объема, обусловленное действием \(\sigma_{ox}\). \(D_0\) – коэффициент диффузии кислорода при \(\sigma_{ox} = 0\), \(D_0\) – предэкспоненциальный множитель коэффициента диффузии, \(E_a\) – энергия активации диффузии при \(\sigma_{ox} = 0\).

Для системы SiO₂–Si с плоской границей раздела величина \(\Delta V\) связана с напряжением \(\sigma\) соотношением \(\Delta V = \left(V_0 / K\right) \sigma_{ox}\), где \(V_0\) – удельный объем окисла, приходящийся на одну молекулу SiO₂, \(K\) – модуль всестороннего сжатия SiO₂.

В настоящей работе используем более общее, чем в (19), выражение для изменения свободной энергии \(\Delta F_S\) при деформировании системы в поле механических напряжений, записывая его в следующем виде [2]:

\[
\Delta F_S = V_0 \sigma_{ik} u_{ik} / 2 \equiv V_0 \left. \frac{E}{2(1+\sigma)} \left(u_{ik}^2 + \frac{\sigma}{1-2\sigma} u_{ij}^2 \right) \right|_0,
\]

где \(\sigma_{ik}\) и \(u_{ik}\) – тензоры напряжения и деформации и в последнем равенстве использован закон Гука.

Применительно к рассматриваемой здесь кинетике преципитации \(\sigma_{ik}\) и \(u_{ik}\) определяются выражениями (7), а \(V_0\) – элементарный диффузионный
объем в кремнии. Подставляя выражения (7) в (20) и учитывая, что \(u_{//} = 0 \), получим

\[
\Delta F_s = V_0 \frac{E}{2(1 + \sigma)} u^2_{ik} = V_0 \frac{E}{2(1 + \sigma)} \left(u^2_{rr} + u^2_{\phi\phi} + u^2_{\theta\theta} \right) = 2V_0 \left[p^2(1 + \sigma)/E \right] R^6. \tag{21}
\]

Подставляя это выражение в (19), получим зависимость коэффициента диффузии кислорода в кремнии от поля механических напряжений, создаваемых частицей промышленности сферической формы:

\[
D = D_0 \exp \left(-\Delta F_s / kT \right) = D_0 \exp \left(- \frac{2V_0(1 + \sigma)p^2 R^6}{E kT} \right), \tag{22}
\]

где \(r \geq R \). Таким образом, из (22) следует, что механическое напряжение приводит к уменьшению коэффициента диффузии, но этот эффект очень быстро падает по мере удаления от промышленности. Максимальное уменьшение имеет место на границе \(r = R \), где \(D = D_{\min} \):

\[
D_{\min} = D_0 \exp \left(- \frac{2V_0(1 + \sigma)p^2}{E kT} \right), \tag{23}
\]

где \(p \) можно задавать выражениями (3), (4) или (3'), (4').

Твердотельные химические реакции в поле механических напряжений

Проблема зависимости констант скоростей химических реакций в твердой фазе от приложенных механических напряжений относится к области механохимии и исследуется уже достаточно давно (см., например, обзор [9] и ссылки в нем). Однако только относительно недавно [10–12] были предложены теоретические модели, описывающие на микроскопическом уровне возможные механизмы этого влияния для реакций некоторых конкретных типов.

Модель, развитая в работах [10, 11], основана на исследовании поведения потенциальной энергии взаимодействия деформированных молекул, участвующих в реакции, вблизи седловой точки, т.е. переходного состояния. Из этого исследования для ряда конкретных химических реакций вытекало, что изменение энергии активации \(\Delta E_a \), вызванное действием механического напряжения, приближенно описывается квадратичной формой вида

\[
\Delta E_a = -\left(L^* - L_0 \right) f - \left[\left(D^* \right)^{-1} - D_0^{-1} \right] f^2 / 2, \tag{24}
\]
где \(f \) – действующая механическая сила, \(L^* \) – длина молекулы вдоль координаты реакции в состоянии активированного комплекса (седловая точка поверхности потенциальной энергии), \(L_0 \) – та же длина в ненагруженном состоянии, \(D^* \) и \(D_0 \) – жесткость молекулы вдоль координаты реакции в состоянии активированного комплекса и ненагруженном состоянии соответственно. Моделирование с помощью выражения (24) дало хорошее сопоставление с экспериментальными данными.

В отличие от работ [10, 11] модель, предложенная в работе [12], базируется на рассмотрении термодинамических флуктуаций так называемого свободного объема в системе [13]. Согласно этой модели в элементарном акте реакции образование активированного комплекса требует дополнительного объема \(\Delta V^* \), называемого объемом активации (для некоторых реакций он может быть отрицательным). Предполагается, что в веществе есть распределенный свободный объем \(v_f \). Тогда константа скорости реакции \(k_R \), которая имеет смысл вероятности (в единицу времени) совершения элементарного акта, дается выражением \(k_R = k_0P \), где \(P \) – вероятность образования полости объемом \(V_e \geq \Delta V^* \), \(k_0 \) – константа скорости в том случае, если непосредственно в месте образования активированного комплекса уже имеется готовая полость с таким объемом. Далее в [12] полагается, что вероятность \(P \) для твердого тела дается таким же выражением, которое имеет место для газов, жидкостей и полимеров: \(P = \exp(-\Delta V^*/v_f) \). Тогда для константы скорости имеем

\[
k_R = k_0 \exp(-\Delta V^*/v_f). \tag{25}
\]

Если учесть также, что в ряде случаев элементарный акт реакции происходит с \(\Delta V^* < 0 \), т.е. не требует движения молекул окружающей матрицы, то в этом случае влияние механической нагрузки \(\sigma \) состоит в упругой деформации реагента по координате реакции. В результате энергия активации уменьшается на величину, пропорциональную квадрату нагрузки. Тогда с учетом этого фактора и соотношения (25) в общем случае можем записать [12]:

\[
\ln(k_R/k_0) = -\Delta V^*/v_f + c\sigma^2/kT, \tag{26}
\]

где \(c \) – коэффициент, величина которого определяется особенностями конкретной реакции, \(c > 0 \). В [12] указывается также, что согласно экспериментам в первом члене в (26) приближенно \(v_f \sim 1/\sigma \). Тогда из (26) имеем

\[
\Delta E_a = \alpha \Delta V^* \sigma - c\sigma^2, \tag{27}
\]
где α – некоторый коэффициент, зависящий от природы реакции и определяющий чувствительность реакции к внешней нагрузке. Зависимость (27), следующая из данной модели, имеет тот же вид, что и зависимость (24).

Применительно к процессу преципитации следует иметь в виду, что модель, развитая в [12], была ориентирована на мономолекулярные реакции распада. В то же время в реакции преципитации $S+O_2 \rightleftharpoons SiO_2$ такойя является обратная. Однако в силу соотношения (15) константы скоростей прямой и обратной реакций преципитации пропорциональны. Поэтому можно рас пространить зависимость (27) и на константу скорости прямой реакции.

Таким образом, основываясь на выражениях (24) и (27), в настоящей работе для моделирования влияния механической нагрузки на константы скоростей химических реакций в кинетике преципитации будем использовать линейно-квадратичную зависимость по механическому напряжению. Запишем ее не в скалярном, как (24), (27), а в более общем тензорном виде (σ_{ik} – тензор механических напряжений):

$$\Delta E_a = -kT \ln \left(\frac{k_R}{k_0} \right) = -\frac{1}{2} \Delta V^* \sigma_{ik} u_{ik}^* - \frac{1}{2} \Delta V^* \sigma_{ik} u_{ik}^{(b)},$$

$$u_{ik}^{(b)} = \frac{1}{9K^*} \delta_{ik} \sigma_{ll} + \frac{1}{2\mu^*} (\sigma_{ik} - \delta_{ik} \sigma_{ll}),$$

где u_{ik}^* – деформации, связанные с флукутациями свободного объема в матрице в области активированного комплекса реакции, $u_{ik}^{(b)}$ – деформации реагента вдоль координаты реакции, ΔV^* – объем активации, K^* и μ^* – модули всестороннего сжатия и сдвига в активированном комплексе. Для поля напряжений (7) $\sigma_{ll} = 0$ и из (28) $u_{ik}^{(b)} = \sigma_{ik} / 2\mu^*$. Тогда также из (28) имеем

$$\Delta E_a = -\frac{1}{2} \Delta V^* \sigma_{ik} u_{ik}^* - \frac{1}{4\mu} \Delta V^* \sigma_{ik}^2 = -\frac{1}{2} \Delta V^* \left(\sigma_{rr} u_{rr}^* + \sigma_{\varphi\varphi} u_{\varphi\varphi}^* + \sigma_{\theta\theta} u_{\theta\theta}^* \right) -$$

$$-\frac{1}{4\mu^*} \Delta V^* \left(\sigma_{rr}^2 + \sigma_{\varphi\varphi}^2 + \sigma_{\theta\theta}^2 \right).$$

5. Влияние механического напряжения на условия реализации диффузционного и «химического» (захватного) режимов кинетики преципитации; некоторые оценки

Рассмотрим, как полученные в предыдущем пункте зависимости сказываются на кинетике преципитации в модели, описанной в п. 3. Проанализируем полученное в п. 3 соотношение (16), которое задает условие реализации кинетики, ограниченной либо диффузией, либо реакцией присоединения (8).
Согласно (16) значения параметров модели, разграничивывающие два указанных кинетических режима, связаны соотношением

$$E_a(i) = kT \ln \left[b(i + m)^{\beta-\alpha} / r_0 \right].$$

(30)

Как говорилось ранее, здесь мы ограничиваемся только случаем сферических частиц пресс-плюнта. В этом случае согласно [3] $\beta = 2/3$ и $\alpha = 1/3$, а радиус частиц из (12) соответственно $R(i) = b(i + m)^{1/3}$. Тогда соотношение (30) можно записать как условие на критический радиус пресс-плюнта $R_c(i)$ в следующем виде:

$$R_c(i) = r_0 \exp \left[E_a(i) / kT \right].$$

(31)

Соотношение (31) является, на самом деле, сложным уравнением на критическое количество мономеров (кислорода) i в пресс-плюнте. Для его решения требуется раскрыть зависимость $E_a(i)$. Однако, если принять, как это было сделано в [12], что $E_a(i) = E_0 = \text{const}$ и учесть добавку ΔE_a к энергии активации, связанную с действием механических напряжений, вместо уравнения (31) получим его приближенное решение для критического радиуса в виде

$$R_c = r_0 \exp \left[(E_0 + \Delta E_a) / kT \right] = R_{c0} \exp \left(\Delta E_a / kT \right),$$

(32)

где ΔE_a дается выражением (29), R_{c0} – критический радиус без учета механических напряжений. Таким образом, смысл критерия (16) сводится к следующему. Если радиус пресс-плюнта меньше критического значения R_c, определяемого выражением (32), то процесс его роста лимитируется диффузией кислорода. В противоположном случае кинетику роста определяет реакция захвата кислорода с образованием SiO_2.

Из выражения (32) следует, что в зависимости от знака ΔE_a величина R_c может быть как больше, так и меньше R_{c0}. Используя выражение (29), попробуем оценить по порядку величины отношение

$$R_c / R_{c0} = \exp \left(\Delta E_a / kT \right).$$

Следует только иметь в виду, что параметры активированного комплекса могут быть оценены лишь достаточно приблизительно. Для прямого будет учитывать в (29) только слагаемые, в которые входит σ_{rr}, т.е. оценивать будем выражение

$$\Delta E_a = -\frac{1}{2} \Delta V^* \sigma_{rr} u_{rr}^* - \frac{1}{4\mu^*} \Delta V^* \sigma_{rr}^2 \equiv \Delta E_{a1} + \Delta E_{a2}.$$

(33)
Оценивая первое слагаемое в (29), примем по данным [12], что
\[\Delta V^* = (1+10)10^{-9} \text{ м}^3. \]
Поскольку реакция захвата происходит на поверхности преципитата, то для \(\sigma_{rr} \) используем выражение (7) при \(r = R_0 \), т.е. \(\sigma_{rr} = -p. \) Для оценки \(p \) будем считать, что преципитация обусловлена конденсацией вакансий, и возьмем выражение (4)'
\[p = \rho k T \ln \left(\frac{C_v}{C_{ve}} \right). \]
Считаем также температуру преципитации 700 °C, т.е. \(T = 1000 \) К, начальную температуру \(T_0 = 1400 \) К [14], энергию активации образования вакансий \(E_v = 4,5 \text{ эВ} [1] \), плотность атомов в кремнии \(\rho = 5 \cdot 10^{28} \text{ м}^{-3} \). Тогда, учитывая, что
\[C_v (T_0) / C_{ve} (T) = \exp \left[\frac{E_v (T_0 - T)}{k T_0 T} \right], \]
и уменьшая \(C_v \) на полпорядка [1], со всеми этими данными получим, что \(p = 8 \text{ ГПа}, что близко к значению, полученному в [15]. \]

Деформацию \(u_{rr} \) оценим, полагая, что \(u_{rr} \approx (L^* - L_0) / L_0 = (\Delta V^*)^{1/3} / L_0 \), откуда, взяв \(L_0 = 5 \text{Å} = 5 \cdot 10^{-10} \text{ м}, получим \(u_{rr} \approx 0,4...1 \). Окончательно для первого слагаемого в (33) получим
\[\Delta E_{a1} = \frac{1}{2} \Delta V^* \mu^* u_{rr} \sim (0,1...2,5) \text{ эВ}. \]

Верхняя граница, конечно, завышена. Взяв более реалистичный интервал \(\Delta E_{a1} = (0,1...1) \text{ эВ} \) (это отвечает несколько меньшей верхней границе в \(\Delta V^* \)), получим, что \(R_c / R_{c0} \approx \exp((0,1...1) / 0,1) \sim 3 \cdot 10^4. \)

Используя те же данные, что и выше, и полагая значение модуля \(\mu^* \) по порядку величины на уровне SiO2 (кварц), т.е. \(\mu^* = 50 \text{ ГПа}, получим \(\Delta E_{a2} \sim - (0,02...0,2) \text{ эВ, что по абсолютной величине значительно меньше, чем } \Delta E_{a1}. \)

Относительно этого сравнения следует иметь в виду, что величина \(\mu^* \) может быть на самом деле несколько меньше, чем взятая здесь (из-за относительной «рыхлости» активированного комплекса), что увеличит оценку \(\Delta E_{a2}. \)

Сделанные оценки показывают, что влияние внутренних механических напряжений, возникающих в системе преципитат–матрица, может быть существенным и его следует учитывать в уравнениях, описывающих кинетику преципитации, например в рамках модели [3].

Заключение

В настоящей работе начата разработка модели, описывающей кинетику образования преципитатов кислорода в кремниевых пластинках с учетом внутренних механических напряжений, возникающих в системе преципитат – кремниевая матрица.

С целью конкретизировать постановку задачи и основные соотношения рассмотрен случай преципитата сферической формы и записаны механиче-
ские напряжения, вызываемые в кремниевой матрице разностью удельных объемов Si и SiO₂. Рассмотрена возможная кинетическая модель преципитации, согласно которой рост частицы преципитата происходит за счет последовательности процессов диффузии кислорода и его захвата поверхностью уже существующего преципитатного кластера с образованием новых молекул SiO₂. В этой модели имеется два кинетических параметра, определяющих скорость процесса преципитации: коэффициент диффузии и константа скорости реакции образования двуокиси кремния на поверхности кластера.

В работе введены конкретные механизмы влияния механических напряжений на оба указанных кинетических параметра. В соответствии с этими механизмами получены выражения для энергий активации диффузии и реакции захвата кислорода, которые учитывают поля механических напряжений, имеющихся в системе. Найденные зависимости позволили проанализировать, как изменяется, в частности, количественный критерий, определяющий, какой из процессов, диффузии кислорода или его захвата, лимитирует скорость преципитации. В соответствии с критерием при размерах кластера больше определенного критического доминирует диффузия, а при меньших — захват. Получено, что величина критического размера оказывается существенно (экспоненциально) зависящей от механических напряжений.

Для преципитата сферической формы в работе выполнены оценки изменения величины критического размера преципитата в результате действия механического напряжения, возникающего на границе преципитата, при типичной температуре преципитации T = 700 °C. Оценки показали, что изменение может составлять до нескольких порядков. Результаты работы подтверждают необходимость учитывать такой эффект при моделировании кинетических закономерностей процесса.

Библиографический список

Получено 12.07.2010