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Abstract. Circulatory and lymphatic systems deliver nutrients to organs and tissues of the 
human or animal body and the removal of wastes to the excretory system. The exchange 
of fluid, containing nutrients or metabolic products, takes place at the microcirculation 
level and consists of the following interrelated processes: blood flow in capillaries, 
transvascular exchange, fluid movement in the interstitium, exchange between interstitial 
fluid and tissue cells and lymphatic drainage. Filtration and diffusion are the main driving 
forces for the substances exchange. The present paper is a review of mathematical 
models dealing with exchange processes. 
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Introduction 
The delivery of nutrients to, and removal of metabolic products from the cells of the body is 
an important problem that all large organisms must solve. This task can be divided into two 
major steps. The first one is the macroscale circulation of the blood through the arteries and 
veins of the body, responsible for transporting large quantities of substances among the 
various organs and systems. Oxygen from the lungs and food from the gut are delivered to the 
rest of the body, and wastes are brought to the liver and kidneys. This process is almost purely 
convective. The second step is the microscale exchange of substances between the capillaries 
and living cells of the surrounding tissue. Although convection is important in the 
microcirculation, the spatial scales are small enough that molecular diffusion is also a 
significant process. 

Microcirculatory transport is governed by the structure of the capillary wall and 
interstitial matrix. Changes in these components play an important role in the development 
and progression of several diseases. Abnormally high capillary permeability developing with 
advanced diabetes and cardiac edema induced by heart failure, and the loss of proteoglycans 
and glycosaminoglycans from the extracellular matrix lead to the development of 
osteoarthritis. Changes in vascular permeability and interstitial matrix characteristics play a 
dominant role in the physiological response to a burn injury. Microcirculatory phenomena 
affect the delivery of drugs to a disease site. Additionally, the ability to generate normal mass 
transport characteristics in artificial tissues is crucial for creating usable products. 

Modern ideas about the nature of exchange between the circulatory and extravascular 
body fluids date back to the Starling’s hypothesis [17] that the flux of water across the 
capillary wall is determined by opposing hydrostatic and osmotic pressures. According to the 
Starling’s hypothesis, the capillary wall is a passive barrier to fluid exchange and the system  
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will reach equilibrium when the hydrostatic pressure difference between the capillary and 
interstitium is balanced by the opposing osmotic pressure difference. 

The next equation describes the Starling’s hypothesis: 
        PSLPPSLJ pivivpv , (1) 
where vJ  is the transcapillary volume flux, vP  and iP  are the capillary and interstitial fluid 
hydrostatic pressures, i  and v  are the interstitial fluid and blood plasma colloid osmotic 
pressures, pL  is the hydraulic conductivity of the capillary wall and S  is the surface area 
available for exchange. 

When the value vJ  is positive, the fluid filtrates from the capillary; when vJ  is 
negative, reabsorption takes place: fluid moves from the tissue back into the capillary. 
Starling believed that the hydrostatic interstitial pressure iP  is equal to the interstitial colloid 
osmotic pressure i . Thus filtration occurs at the arterial end of the capillary where the 
hydrostatic pressure is high and reabsorption occurs at the venous end where the pressure is 
low (Fig. 1). Also there is a spot in the capillary where there is neither filtration nor 
reabsorption due to equality of filtration and reabsorption driving forces. Besides Starling 
thought that under normal conditions filtration slightly exceeds reabsorption so a part of the 
fluid stays in the tissue and drainages into the lymphatic system afterwards. 

Investigations performed by Landis [11, 12] and Pappenheimer [13] gave the 
Starling’s hypothesis an experimental basis. 

Starling's ideas were developed more fully when Kedem and Katchalsky [9] used the 
ideas of nonequlibrum thermodynamics to derive equations for mass transport across 
membranes. The transport of solute and water across a membrane was now understood to be a 
process coupled by osmotic effects. 

Kedem and Katchalsky equations give volume and solute fluxes and can be written in 
the following form: 
   Tpv PSLJ  , (2) 

  CJCpSJ Tvs
~1  , (3) 

Fig. 1. A typical capillary: an illustration for the Starling’s hypothesis. 
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where sJ  is the solute flux, iv CCC   is the difference of solute concentration between 

vascular and interstitial fluids, C~  is the logarithmic mean of solute concentration on either 
side of the capillary wall and p  is the wall permeability. 

The first equation is identical to the Starling’s equation, with the addition of the factor 
T , the solute reflection coefficient. This parameter varies between 0 for a freely permeable 

solute and 1 for an impermeable solute, and is a measure of the relative selectivity of the 
membrane for the solute compared to the bulk solution. 

By the late 1950s it was understood that transcapillary exchange of water and solutes 
is governed by the differences in two driving forces on either side of the capillary wall: 
hydrostatic pressure and concentration gradient. From then on the development of 
mathematical models describing blood microcirculation in conjunction with transcapillary 
exchange, interstitial movement and lymphatic drainage was started. This paper presents a 
review of such models. 

Fluid movement in a microvessel with permeable walls surrounded by porous medium 
In this section models of fluid movement in a blood microvessel surrounded by porous 

medium are presented. Such models describe flow of both blood plasma (considered as a 
Newtonian fluid) and whole blood (considered as different types of non-Newtonian fluid). 
Boundary conditions on the vessel-tissue boundary are also different. Fluid movement in 
porous medium (tissue) is described by the Darcy’s law. 

It is usually assumed that all capillaries in an organ are similar with respect to 
dimensions, blood flow characteristics, etc. Thus only a single representative capillary needs 
to be modeled. The single capillary model introduced in 1919 by Krogh is the simplest one of 
this kind. The model consists of a straight capillary and a concentrically surrounding tissue 
mantle (Fig. 2). At GR  the medium becomes impermeable and rigid. The system therefore has 
a constant volume and cannot accumulate fluid. This condition means that there is no fluid 
exchange between neighbouring capillary regions. 

In [1] the slow flow of the blood plasma as a Newtonian incompressible fluid is 
examined. The complete set of equations (Navier-Stokes) governing fluid flow in the capillary 
is: 
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where U  is the velocity vector,   is the kinematic viscosity,   is the fluid density, P  is the 
fluid pressure and F  are the external forces. 

Fig. 2. A capillary surrounded by tissue (the Krogh’s model). 
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Since the flow is laminar equations (4) take the form: 
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In the above, u  and v  are the axial and radial components of the velocity, 
respectively,    ),();,(; rxvrxuvu U  and   is the viscosity. 

The tissue region is treated as an isotropic porous medium where the Darcy’s law is 
applicable: 

 PK



U . (6) 

The velocity vector is average over a tissue volume that is large compared with the 
volume of individual pore. K  is the Darcy’s constant characterizing the porosity of the 
medium. 

The equations of motion and the continuity equation for the tissue region are: 
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The quantities in the tissue region are denoted by superscript bar. 
The boundary conditions of the problem are: 
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It means that the non-slip conditions are applied to solve the problem. The last three 
equations express the fact that tissue is surrounded by an impervious cylinder. 

Equations (5), (7) with boundary conditions (8) have an analytical solution. Solution 
analysis for physiological parameters of the basic functional unit shows that the flow in the 
capillary with low wall permeability is very close to the Poiseuille’s flow. Therefore the 
solution is: 
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where uQ  is the total amount of fluid entering the basic functional unit per unit time - the total 
flow rate. Equations (9) give a parabolic velocity profile and a linear pressure distribution 
along the capillary. 

Distribution of pressure and streamlines in the tissue around the capillary are given in 
Fig. 3. Only the arterial (i.e. high pressure) half of the unit is shown. Filtration takes place 
mostly near the arterial end of the capillary. The tissue is mostly under an axial pressure 
gradient, which is close to the pressure gradient in the capillary, and the flow is for the most 
part parallel to the capillary axis. 

Fluid flow in an artery with an occlusion or stenosis is studied in [16]. The fluid is also 
assumed to be Newtonian but at the vessel-tissue boundary the condition proposed by Beavers 
and Joseph [8] is used: 

  Qu
K Brx 
 , (10) 

where   is the rate of strain tensor, Bu  is the mean velocity parallel to the surface,   is the 
slip parameter depending only on the medium properties and Q  is the tangential volume flow 
rate at the boundary. Beavers and Joseph proposed this condition empirically and then it was 
confirmed by different experiments. 

If the wall slope is everywhere negligible (as for the narrow capillary), equations (5) 
with the boundary condition (10) produce the following solution: 

Fig. 3. Distribution of pressure (dashed lines) and streamlines (solid lines) in the tissue surrounding the 

capillary, ?m300L , 214 cm10K . 
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where c  is a constant of integration. 
A Newtonian fluid was under consideration in above presented models. But for the 

blood flowing in microvessels this supposition cannot be applied since the size of blood cells 
is comparable with the size of a capillary. Therefore such models can describe only the flow 
of the blood plasma. In what follows we will discuss the flow of non-Newtonian fluid. 

The Casson constitutive equation has been used many times to simulate the 
rheological properties of the blood flowing in small tubes since the original suggestion in 
1959, and for a number of years it was considered to be the most accurate law. In such a way 
Das and Batra [4] applied the Casson’s equation to describe the blood flow in the form: 
  cy k , (12) 

where   represents the shear stress, 2
ck  is the Casson viscosity,   is the rate of strain 

component and y  is the yield value, which for blood is related to the hematocrit by the 

relation  
100

3 m
y

HtHta 
 . Here Ht  is the normal hematocrit, mHt  is the hematocrit below 

which there is no yield stress, and 3 2Н/m001.00037.0 a . 
Under given conditions the basic equation governing the flow 
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has the following solution: 
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under the condition that rx  is finite at 0r . 
Casson fluid possesses a yield value, so in the regions where shear stress is less than 

the yield value, there will be no flow and the material will move as a whole with a constant 
velocity, giving rise to a symmetrical plug core formation around the axis (Fig. 4). If Cu  is 
the velocity of the core and CR  is its radius, the following conditions are satisfied: 

 CC Rruu
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 at,0 . (15) 

Relation (12) can be written in terms of the velocity gradient as follows: 
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Now substituting the expression (14) into (16) we get the differential equation in the 
flow region: 
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The above equation is to be solved under the slip condition at the wall: 
 BRr uu 


, (18) 

where the slip velocity Bu  satisfies the relation 
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Here Q  is the velocity in the porous region given by: 
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Relation (19) is the modified Beavers and Joseph condition for porous medium. 
The volumetric flow rate can be defined as: 
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where RrrxR 
  is the wall shear stress. 

Another model of a non-Newtonian fluid flow is presented in the paper [19]. Authors 
consider the flow of Bingham fluid through a circular pipe with a permeable wall. For the 
flow we have Eq. (13) with the solution (14). Substituting the last expression in 

 Crx dr
du   ,  

we get 
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C 2
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where 
CRrC 

 . 

Fig. 4. Casson’s fluid in the capillary. 
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The boundary conditions are Beavers and Joseph conditions (18), (19), where 2
pQ   

and 
K
R

  is dimensionless parameter. 

The solution of the problem is: 
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Hogan and Henriksen [5] use micropolar extension of continuum mechanics to 
describe flow of the blood in small arteries. The distinguishing feature of the micropolar 
theory is the introduction of a particle rotation that is independent of the classical rotation of 
the surrounding fluid. The existence of particle microrotation gives rise to couple stresses in 
addition to traditional tractional stresses. The analysis indicates that results obtained using a 
micropolar fluid model differ substantionally from those obtained with a classical Newtonian 
formulation. Thus, the question of whether a micropolar fluid is indeed a more accurate model 
for the whole blood remains opened. The proper boundary conditions for microspin are an 
unresolved issue too. 

There are many kinds of blood constitutive equations other than considered ones. 
They can be categorized as Casson type (Casson equation, Luo and Kuang equation, 
Quemada equation, Cross equation, Wang equation) and power-law type (power law 
equation, Weaver equation, Walburn equation) because they can be obtained by developing 
the Casson equation and the power-law equation, respectively. Comparison with experimental 
data proves Luo and Kuang equation and Quemada equation to be the best models for the 
blood flow in a capillary [15, 21]. 

All presented models describe the blood flow in a capillary and surrounding tissue 
under the hydrostatic pressure gradient. Using different constitutive equations and boundary 
conditions these models give pressure and velocity distribution in the capillary and 
surrounding tissue. But none of these models consider the influence of diffusion on 
extracapillary fluid exchange or lymphatic drainage. These factors are taken into 
consideration in what follows. 

Dynamics of fluid movement between intravascular and interstitial spaces 
Isogai et al. [6] investigated dynamics of fluid movement between intravascular and 

interstitial spaces. Infusion of the Ringer's solution or transfusion of the whole blood into the 
intravascular space causes change in blood and plasma colloid osmotic pressures and induces 
a fluid redistribution between the intravascular and interstitial spaces. The redistribution 
results from a loss of equilibrium of the effective filtration pressure of water on the capillary 
wall. 

Fluid injected into the intravascular space changes the blood and colloid osmotic 
pressures, if the colloid osmotic pressure of the injected fluid differs from that of the blood. 
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Changes in these two pressures, in turn, alter the effective filtration pressure across the 
capillary wall and generate flows of water and proteins. The flows of water and proteins affect 
the volume and the colloid osmotic pressure of the intravascular and interstitial fluids. The 
changes of the volume and the colloid osmotic pressure of fluids in both of the spaces modify 
the effective filtration pressure across the capillary wall and affect the flow of the fluid across 
it in a recurrent dynamic fashion. 

The system under consideration is visualized as being composed of two tanks; one 
represents the intravascular space and the other represents the interstitial space. The two tanks 
are connected by a pipe through which fluid and proteins can exchange. The pipe represents 
the capillary wall. The intravascular and the interstitial spaces volumes are vV  and iV , 
respectively. A tank of the intravascular space has a faucet through which the infused fluid of 
the hematocrit value Ht  flows into the space with the rate J . 

Kedem and Katchalsky equations (2), (3) for the rate of protein flow through the 
capillary wall are applied in the analysis. Here the diffusional flow is neglected for simplicity 
( 0C ). The mean protein concentration C~  is defined as follows: 
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The net balance of the inflow and outflow rates of fluid expresses the volume change 
of the intravascular and interstitial spaces. Let us separate the intravascular space into the 
plasma ( p ) and the red cell ( rc ) spaces for the convenience of discussing the colloid osmotic 
pressure of the blood, which is governed by the plasma volume and not by the intravascular 
space volume. Then the following equations can be written: 
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The change in pressure caused by alteration of the volume in the intravascular or 
interstitial spaces has been analyzed by the Maxwell's visco-elastic law: 

  011
vv

vv

p

v

v PP
cdt

dV
cdt

dP



, (29) 

  011
ii

ii

i

i

i PP
cdt

dV
cdt

dP



, (30) 

where vc , ic , v , i  are the compliances and the viscosity coefficients of the intravascular 

and interstitial spaces, respectively, and 0
vP , 0

iP  are the stationary pressures of the spaces. 
The colloid osmotic pressure is described by the Vant Hoff's equation: 

 
V
nRT , (31) 

where R  is the gas constant, T  is the absolute temperature and n  is the quantity of a colloid 
osmotically active substance. 

The variation of n  for the intravascular fluid is given by a sum of protein flow 
through the capillary wall and the protein inflow: 
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where 0  is the colloid osmotic pressure of an inflow fluid. Substituting (32) and (33) into 
the expression of time derivative of the colloid osmotic pressure we get: 
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Volume is represented in equation (34) not by vV  but by pV , because the colloid 
osmotic pressure of blood is a function of the plasma volume and not the blood volume. 

So there is a set of differential equations (2), (3), (24)-(30), (34), (35). Its solution 
gives us all variables as functions of time if the inflow rate J , the hematicrit Ht  and the 
colloid osmotic pressure are given for the inflowing fluid. 

The dependences of the volume, the hydrostatic pressure and the colloid osmotic 
pressure of the blood on time were compared with experimental data (Fig. 5). Results were in 
good agreement. 

Jain et al. [7] present a mathematical model for transport of fluid and macromolecules 
in a tumor. A spherical uniformly perfused tumor embedded in normal tissue is under 
examination. A vessel in the tumor periphery is considered. According to the Starling’s 
hypothesis, a quantity of plasma filters from the arterial end of a vessel into the interstitial 
space, and most of it is reabsorbed at the venous end. In normal tissue this residual fluid is 
reabsorbed by the lymphatics. In tumors, due to the absence of anatomically well-developed, 

Fig. 5. The changes in blood volume ( vV ), central venous pressure ( vP ) and colloid osmotic pressure 
( v ) during saline infusion (the initial 10 min) and recovery (the following 50 min). Solid line – model 

data, dashed line – experimental data. 
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functioning lymphatics, the fluid leaked from a vessel can only go in two directions: towards 
the center of the tumor or towards the periphery. The inward flow would lead to an increase 
of the interstitial pressure. The outwardly flowing fluid would ooze into the surrounding 
normal tissue where it may be reabsorbed by the normal lymphatics. The velocity of this fluid 
in the interstitium iu  can be related to the interstitial pressure gradient by the Darcy law: 

 
dr
dPku i

i  , (36) 

where r  is the radial position in the tumor, 

Kk  . 

Balancing the fluid filtered from the vessels with the fluid moving towards the tumor 
periphery yields the following equation of mass conservation: 
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where V  is the tumor volume. 
Substituting equations (36) and (37) into (1) leads to: 
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The boundary conditions are: 
1 no fluid flux or pressure gradient at the center of the tumor; 
2 continuous pressure and flow rate across the interface between the tumor and the 

surrounding normal tissue. 
The outlet of the solute molecules from an exchange vessel and their following 

movement in the interstitium occurs by convection and diffusion. Mathematically the 
interstitial flux of macromolecules sI  is given by: 

 
dr

dCDCurI i
iifs  , (39) 

where D  is the interstitial diffusion coefficient and fr  is the retardation factor (the ratio of 
the solute velocity to the fluid velocity). Balancing the solute leaving the vessel (3) with the 
solute moving in the interstitium (39) leads to the following convection-diffusion equation: 
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This equation was solved using the finite element method under the following 
boundary conditions: 

1 the concentration and flux are continuous across the interface between the tumor 
and surrounding normal tissue; 

2 there is no interstitial flux in the center of the tumor. 
The solution gives ),( trCC ii   as a function of the radial coordinate and time after an 

injection. 
Fig. 6 shows the comparison of the mathematical model with experimental data for a 

spherical tumor. High interstitial fluid pressure can be observed in tumors and it is supposed 
to be associated with the lack of functioning lymphatics, high vascular permeability and 
vascular collapse resulting from cells proliferation in a confined space. Analysis of model 
results allows authors to propose some ways to cure tumors [2, 3]. The results show a 
relatively high and uniform pressure in the center of the tumor and a sharp gradient of 
pressure in the periphery of the tumor. This leads to very little filtration of macromolecules 
from blood vessels in the center, as well as a convective flow in the tumor periphery, which 
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tends to push the solute towards the edge of the tumor. Therefore the concentration of acting 
substances rapidly reaches a high value after a drug injection into the circulatory system while 
concentration at the periphery remains practically unchanged. To avoid the effect it was 
proposed either to increase filtration (by using vasoactive drugs) or to increase the diffusion 
component of the transcapillary flux because it helps to achieve a high drug concentration in 
the center of the tumor (Fig. 7). 

A linear biphasic framework is used by Swartz et al. [18] to describe fluid movement 
between the interstitium and lymphatics. A constitutive equation for the tissue deformation as 
a response to an interstitial fluid injection is proposed in the following form: 

Fig. 6. Interstitial hydrostatic pressure in the tumor:  
model data (solid line) and experimental data (circles). 

Fig. 7. Interstitial substance consentration in the tumor with a radius of 1 cm, during 72 h of continuous 

diffusion of this substance with concentration p
oC . 
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vJeK
t
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where e  is the dilatation of the solid phase ( Ue ;U  is the average solid displacement 
vector),   and   are Lame’s constants, vJ  is the net fluid drainage. Although the lymphatics 
is primarily responsible for the fluid drainage following an interstitial injection, the term vJ  
must incorporate all mechanisms of fluid drainage including capillary reabsorption. 

The simplest assumption for defining vJ  is that drainage is linearly proportional to the 
interstitial fluid pressure: 
 *)( PPPJ biv   , (42) 
where   is the bulk effective conductance and bP  represents the baseline somatic fluid 
pressure. This pressure results from the various factors (including myogenic activity of the 
collecting lymphatic vessels, muscular movements, and respiratory oscillations), maintains 
the driving force for systemic lymph circulation and was considered constant (i.e. unaffected 
by the infusion). 

The governing equation (41) can be expressed in terms of hydrostatic pressure: 
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with the boundary and initial conditions: 
 ** ),0( oPtP  , 0),(*  tP ,  (44) 

where )(*
boo PPP   is the applied pressure. 

The solution to Eq. (43) with the conditions (44) is: 
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 (45) 

where  K  is the characteristic penetration length. The higher the ratio, the more the 

interstitial fluid movement dominates lymphatic drainage as a response to increased 
interstitial pressure. 

By coupling experimental measurements with the theory the authors provide in vivo 
estimates of the tissue hydraulic conductivity, elastic modulus, and overall resistance to 
lymphatic drainage by measuring the response to the interstitial fluid injection under the 
constant pressure. It was also shown that the swelling associated with chronic lymphedema 
leads to an increase in hydraulic conductivity but not in lymphatic conductance; the decrease 
in lymphatic drainage seen with edema is rather due to a decrease in the driving force for 
drainage. The good agreement between the theory and experimental results, along with 
parameter estimations, which are within physiological ranges, supports the validity of the 
model and its assumptions. The model may serve as a foundation for studies of protein 
transport and drug delivery associated with lymphatic-based immune cells. 

Integrated models 
All models presented earlier consider only some aspects of microcirculation and 

extravascular fluid exchange. But since late 1990s there are attempts to describe the process 
as a whole. Such models depict coupled processes of the blood capillary flowing, the 
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transcapillary fluid and solute exchange and the interstitial fluid movement along with 
lymphatic drainage. 

A complex model considering the circulation, a general interstitium, and the 
lymphatics, is formulated by Xie et al. [20] to describe the transport and distribution of fluid 
and plasma proteins (albumin) in the human microvascular exchange system. Transcapillary 
mass exchange is assumed to occur via a coupled Starling’s mechanism. Unknown or poorly 
quantified model parameters are estimated by statistical fitting of simulation predictions to 
five different sets of experimental data. 

Another model proposed by Kellen [10] describes the exchange of water and 
hydrophilic solutes among vascular, interstitial, and intercellular compartments of a cardiac 
tissue (Fig. 8). An important addition to the blood-tissue exchange region is another 
compartment representing the parenchymal cells. In cardiac tissue myocytes comprise a 
sizable fraction of the total tissue space, and can significantly change their volume during 
disturbances to the system. The system of partial differential equations describing solute and 
water exchange is: 
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Fig. 8. The Kellen’s model of microcirculatory substances transport. 
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Here lower indexes c , i  and m  denote values for the capillary, interstitium and cells 
(myocytes), respectively, and the upper index j  denotes different solutes. The first three 
equations of (46) are Patlak’s equations [14] describing flux of water and solutes from the 
capillary into the interstitium and from cells into the interstitium. The Patlak’s model is the 
more correct than the model of Kedem and Katchalsky because it accurately accounts for the 
coupling of convective and diffusive fluxes across the membrane. The dimensionless Peclet’s 

number 
pS

JPe Tv )1( 
  characterizes the ratio of convective to diffusive solute flux. The 

Kedem and Katchalsky solute flux equation is only valid for small Pe . 
The next equation of the system gives the hydrostatic pressure distribution along the 

capillary. In the model, the assumption is made that changes in flow along the capillary length 
are minor, and the capillary pressure gradient is therefore linear and time invariant. 

Finally the last equations give the change rate of solute moles in the capillary and in 
the interstitium and the change rate of volume for interstitial and cell spaces. The compliance 
of the capillary is supposed to be fairly small so its volume does not change. Besides, in this 
model, solute transport across the myocyte plasma membrane is not considered. 

Lymphatic drainage of water and solutes is modeled as a distributed consumption term 
in the equation for the interstitium. The amount of interstitial fluid removed from the 
interstitium by the lymphatics is assumed to be proportional to the interstitial pressure, with a 
constant of proportionality LK . It is also assumed that solute leaves the interstitium in 
amounts proportional to its concentration. This means that filtering across the lymphatic wall 
is negligible. 

Conclusions 
Experimental study of microscale exchange processes was started at the end of 19th 

century and models describing separate aspects of microcirculation are proposed for over 50 
years but still there is no well-developed model of the whole process. This problem is 
complex, because it consists of the set of interdependent phenomena: blood flow in the 
capillary with extravascular fluid exchange, fluid movement in the tissue, exchange between 
tissue cells and interstitial fluid, fluid reabsorbsion into capillaries and lymphatics. Each of 
the set phenomena is not individually difficult to describe, but the interaction of many simple 
processes results in a fairly complex system. Nevertheless modeling of microcirculation and 
exchange process is a very important scientific and applied problem. 
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МОДЕЛИ МИКРОЦИРКУЛЯЦИИ И  
ТРАНСКАПИЛЛЯРНОГО ОБМЕНА ЖИДКОСТЕЙ 

Ю.И. Няшин, М.Ю.Няшин, Н.С. Шабрыкина (Пермь, Россия) 
 
Доставка питательных веществ к органам и тканям, а также удаление продуктов 

обмена происходит в организме животных и человека с помощью кровеносной и 
лимфатической систем. Обменные процессы происходят на микроциркуляционном 
уровне и включают в себя следующие взаимосвязанные процессы: течение крови в 
капиллярах, транскапиллярный обмен, движение жидкости в интерстиции, обмен 
веществ между интерстициальной жидкостью и клетками ткани, дренаж в 
лимфатические капилляры. Основными движущими механизмами обмена веществ на 
микроуровне являются фильтрация и диффузия. Данная статья представляет собой 
обзор математических моделей описанных выше процессов. Библ. 21. 

Ключевые слова: микроциркуляция, транскапиллярный обмен, математическое 
моделирование 
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