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Abstract. Compliance of damping biotissue and its hypothetical artificial analogues
(sheetings, implants) made of adaptive poromaterial is analysed. The adaptive reaction
provides for minimisation of traumatic contact stress initiated by static or quasi-static
loading of human body. An individual pore of high-density poromaterial is assumed as a
mezoscopic structural unit with a priori unknown moving internal boundary. For numerical
solution of contact problem the variational theory and boundary elements technique are
implemented. The optimal pore localisation is determined by iteration procedure. Aimed
at rehabilitation effect, the activated implants from metastable poromaterials are
proposed.
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Introduction
When developing promising designs, it is often useful to turn to natural objects because
biostructures impress by their exclusive rational perfection. Remarkable advantages of
biostructures in many instances are connected with the fact that these systems become
adaptable, i.e. they acquire an ability to modify their properties in response to changes in
outer conditions.

So, the high durability of locomotor system may be explained by adaptive damping
reaction, which is possible, probably, due to controlling compliance of biotissues, in
particular, due to resorption process. This reaction helps to effectively reduce peak contact
stresses in vertebral column, hip and knee joints.

But in prosthetic designs, adaptive damping properties have been realised inadequately
because the compliance of artificial materials and structures is constant for any traumatic
action, as a rule. At present, only numerical modelling of adaptive damping reaction provides
for the possibility to study the mechanism of adaptation carefully and to create more effective
functional materials mentioned above.

This paper is devoted to the mezoscopic analysis of biotissue with porous structure
that plays the role of an adaptive damping material. An individual pore is assumed as a
structural unit of material and optimal pore localisation under static or quasi-static contact
load is determined by iteration procedure. Using the space discretisation by boundary element
method it is possible also to overcome limitations of rod model of low-density foams
proposed in the first part [1] of the present study.
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The numerical model of adaptive damping sheeting

Mechanical properties of existing and perspective types of prostheses are determined
by material structure (Table 1). Ideal prostheses should imitate non-linear deformation
behaviour of vital prototypes. Stress state of the simplest variant of damping implants made of
homogeneous material under contact loading is heterogeneous and causes the irrational
utilisation of material strength. Even fabrication of gradient materials ensures only static
optimal structure. Most effective (perspective at present) metastable type of implant structure
demonstrates adaptive damping reaction, i.e. reversible changing of local compliance based,
for example, on multimodulus deformation behaviour [2]. Utilisation of metastable
poromaterials also makes grounds for reversible changing of local compliance and, therefore,
for creating dynamically optimal implants.

Table 1. Stress states of some generations of implants.

Type of structure Stress state characteristics
Homogeneous Heterogeneous
Layered Interface stress concentration
Gradient Statically optimal
Metastable Dynamically optimal

For example, two biostructures related to locomotor system with porous damping
sheeting (coating) are shown in Fig. 1. These are vertebras and intermediate elastic fibrous
rings filled with viscous core, hip or knee head and cavity having quasi-elastic cartilage filled
with synovial fluid. It must be clear that a compliance of intermediate damper element
mentioned above is a dominant in comparison with practically underformed counterbody
made of high-modulus bone material.

It is important to note the dependence of contact parameters versus pores localisation.
Thus we have a possibility to control local compliance of sheeting.

~ 4 l T 1 — vertebras
1 2 —fibrous ring
3 —core
3
4 — nerve
1

N.'_,T 1 — hip (knee) head

P(x) 2 - cartilage

3 — cotyloid cavity

Fig. 1. The examples of biostructures with porous damper sheeting (vertebral disk, cartilage).
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p(X)

Fig. 2. Mezoelement of porous sheeting.

For simplification of numerical model we assume that a thick elastic porous layer
between non-Hertzian (conformed) contacting surfaces may approximately reproduce
deformation behaviour of both damper structures under normal loading. Contact interactions
by shear loading in these biojoints are essentially different: strong adhesive bonds in case of
vertebral column and low friction resistance to relative motion in joints. But we may easily
consider these ultimate situations of tangential stress factor in terms of one model if describe
the tangential resistance by very high and very low friction coefficient, respectively.

According to mezomechanical approach let us introduce a minimal fragment of
poromaterial, namely, an individual pore as a finite length elastic layer (unit) with a cavity
(Fig. 2). The scheme of loading illustrates compression of this mezoelement adhered to rigid
foundation by another rigid body under normal (N) and tangential (T) loads. Pressure
distribution p(x) may be calculated by solving contact problem for known values of elastic
moduli, loads and prescribed geometry of interacting bodies.

It follows that expected redistribution of contact pressures on the surface and
complience of poromaterial due to physical resorption process could be described in terms of
localisation principle, i.e. optimal stabilisation of moving boundaries in time. Similar to other
biostructures with moving boundaries [2], localisation result is not given a priori, but is
determined in the process of numerical studies with the help of a certain criterion similar to
well-known condition of attained full-strength of bone tissues.

Let us consider the numerical simulation of adaptive damping reaction as time-
dependent process of transition from the initial non-uniform contact stress distribution to
uniform one.

The theoretical possibility of adaptive damping reaction is based on the existence of
relation between pressure distribution p(x) and geometry of poromaterial structure. This
implicit relation is stated by the criterion: “pores localisation should minimise deviation
between pressure distribution and its mean value”

min [(py - p(x))*dx, (1)

Sc
where po is the mean value of pressure; S, is the contact area.
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It is important that mean value of pressure po is a priori unknown in general case
(excluding the joint with prescribed size of contact interface). But using the criteria (1), the
dynamic configuration of porous structure may be calculated by iteration procedure.

Two commonly used boundary conditions are implemented to characterise the contact
problem with friction [3]: characteristics of unilaterial contact when there is the constant sign
of pressure

v (X, U) =y (X) +v(X) - 3n() =0, p(x)>0;
vy (x,u)>0, p(x)=0, )
(where w (x) is the function of counterbody profile; v(x) is the normal displacement of

surface; oy is the gap function), and relation between tangential stress t(x) and distributed
frictional force fp(x) in accordance with Amonton's law, for example, in static form

|t|<f|p|, u=0;
|t|=f|p|, u=-At, >0 3)
(where f is the friction coefficient; u is the tangential surface displacement (microslip)).

For each step of minimisation (1), the contact problem may be formulated in terms of
variational inequality theory developed by Duvaut and Lions [3]. The numerical solutions of
similar problems are given in [4, 5].

It was shown in [3, 4] that the classic quasi-static formulation of contact problem with
friction is equivalent to variational inequality solution or optimisation problem with
limitations in the form of inequalities

J (u)=minmax[0.5(a (w, w)— L (w)+ j (w))];

WeK,pSO,'ch|p| )

where a(w,w)= jai i1 € (W)e;(w)dw is a quadratic component of the functional;
Q
L(w)= fF wds is the linear one and j (w)= J'[ py (x,w)w; —u; )|ds is the non-linear one;
SE Se
w is a kinematically possible displacement; ajjq is the tensor of elasticity; ¢ is the tensor of
strain; F is the vector of external forces; y (x,w) is the function describing contact geometry;
ur is the exact solution for tangential displacement.
Thus, adaptive damping reaction modelling consists of sequence of solutions (4) for
some cavity coordinates varying to satisfy condition (1).

The boundary element method implementation

There are two peculiarities of numerical modelling adaptive reaction under discussion:
high gradient of contact stresses and time-dependent boundary conditions. For simulation of
corresponding transient phenomenon, i.e. for compliance optimisation, we have developed the
effective numerical procedure based on relaxation algorithm using space discretisation by the
boundary element method techniques since this approximation gives an opportunity to solve
similar problems with high accuracy and more economically than by the finite element
method code [6].

Let us turn to the solution of Kelvin's problem for concentrated force in infinite

region.
In case of plane strain, this solution is expressed by [6]
_ 1 2 27-05
90 Y) == oy IO Y1), (5)

where X, y are coordinates of the point under consideration; v is Poisson's ratio.
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Fig. 3. Menu of computer program.

The displacements may be determined by the formulae

[(3 4v)g - xg x]+ (yg x) (6)

—ﬁ(—xg,y)+%[(3—4v)g—yg,y], (7)

where F, and F, are force components; G is shear modulus.

For the boundary element method calculations of displacements a simple
approximation has been implemented with partitioning of the surface into linear segments.
Nodal displacements were determined by the superposition

T TN
il 5 {T‘} ®)

NT NN )
Un j Kij Kij Pj

The coefficients in matrix equation (8) in case of elastic unit with finite sizes have
been determined in terms of the boundary element method fictitious loads version using the
expressions for stress and displacement of the boundary element with number i [6]

ZB'JPJ+ZB'JPJ, ZB”P’+ZB”P’ ©)

ZA'JPJ+ZA'JPJ csin:ZAnisszj+ZAniannj, (10)
j=1 j=L

i=1,.., M
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Fig. 4. Dimensionless contact pressure p(x) vs. cavity localisations.
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Fig. 5. Compliance of sheeting v(x) vs. cavity localisations.
where M is the number of boundary elements; B!/ ..., AlJ are influence coefficients obtained

from singular solution of Kelvin’s problem; st, Pnj are tangential and normal components of
fictitious (imaginary) loads.

Numerical results
Menu of the original computer program "BEL/CONLAY™, which is given in Fig. 3,
contains data and calculated values of normal and tangential components of stresses p(i), < (i)
and displacements v(i), u(i) at the interface for initial state of mezoelement when cavity is
placed on symmetrical axis.
Test results were obtained for rectangular mezoelement (see Fig. 2) made of elastic
material with Young’s modulus E =1000 MPa, Poisson’s ratio v = 0.4 and friction
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coefficient f = 0.3 pressed by rigid plate with a large radius of curvature (approximately flat
surface) in plane strain conditions. Length L and height H of mezoelement were 5 cm and 3
cm, respectively (Fig. 2). The data includes constant normal load N =80 kN/m and static
friction coefficient f, = 0.4. The range of discretisation of expected interface includes 10-100
boundary elements. Good convergence rate and accuracy have been achieved for 10 contact
elements.

Variations of most important parameters — normal pressure and displacement
distributions, which characterise local sheeting compliance for some moments of adaptive
damping reaction are illustrated in Figs. 4, 5.

The initial state corresponds to contact deforming of mezoelement without cavity. For
testing of procedure the optimisation has been performed only on the right side of
mezoelement.

It was shown that at the finite stage of adaptation process (curves 5 of distributions
mentioned above) effective decrease of stress concentration occurred near the right sharp edge
of the counterbody in comparison with the similar zone near its left edge, where material
adaptation was absent.

Conclusions
Estimation of compliance of high-density porous material under contact load may be
realised by mezoscopic analysis. It was shown that numerical solution based on variational
inequality theory and boundary element method demonstrated high efficiency.
Development of metastable poromaterials with moving boundaries of pores allows to
improve damping characteristics of biomedical sheeting and coating, including the
orthopaedic implants.
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AHANKN3 NOOATIIMBOCTU 3ALLUTHBIX MOKPbITUX
BUOMEAOULIMHCKOIo HASHAYEHUA HA OCHOBE
NMOPOMATEPUAIOB. HACTb 2

C.B. Wvnbko (Tomenb, Benapychk)
AHanuzupyercs NOJATINBOCTh AeMI(PHUPYIONINX OMOTKaHEH W MX THIIOTETHYECKUX
HMCKYCCTBEHHBIX aHAJIOTOB (MIPOKJIAJOK, MMIUIAHTATOB) M3 aJalNTHBHOTO IOpoMarepuara.
AI[aHTI/IBHaSI pCaKknu-g O6€CH€‘-II/IB8,€T MHUHUMHA3AIUIO  TPaBMHUPYIOUICTO KOHTAKTHOT'O
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HaNpsDKEHHs,  BBI3BAHHOTO  CTAaTMYECKUM WM KBA3UCTATHYECKUM  HArpyKeHHEM
yenoBeueckoro tena. OtaenbHas — sYeiika  rmopoMaTepHanta  BBICOKOH — IIOTHOCTH
paccMarpuBaeTcss KaK MeE30CKOIHMYECKash CTPYKTypHas eIuHHIA, HUMeolas a pPriori
HEHM3BECTHYIO IMOJBM)KHYIO BHYTPEHHIOIO TpaHUIly. J[Jsl YMCIEHHOTO pemieHns: KOHTaKTHOU
3aJ]auM UCIIOJIb30BaHbl BAPUALMOHHAS TEOPUS U METOJI IPAaHUYHBIX 3JIEMEHTOB. ONTHMAaIbHAs
JIOKaNM3aIysl sTYeHKH OINpeneNnsieTcss NPy IOMOIIM HWTEpPaluoHHON mponenypsl. C Imeibro
5GGEKTUBHOTO  MPOTE3UPOBAHMUSA  TpeNIararoTcs HMMIUIAHTAaThl W3 METacTaOMIIbHBIX
nmopomMarepuaioB. buon. 6.
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