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Abstract: Dentofacial system with a laminar denture cannot function in the same way as
with natural teeth. The use of the denture has harmful effects on the condition of denture-
supporting tissues. By means of mathematical modeling an optimal construction of the
removable laminar maxillary denture was found for some denture materials. Also the
possibility of denture detachment while eating was investigated and it was found to be
impossible. The investigations were performed for mastication and biting. In addition the
stochastic optimization problem taking into account the statistical distribution of some
mucosa characteristics was formulated and solved.
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Introduction

One of prevailing ways to restore masticatory ability of an edentulous jaw is the use of a
complete laminar denture. The appearance of a removable laminar maxillary denture is shown
in Figure 1. However the use of such a denture results in many problems. Pathologic changes
of the prosthetic bed mucosa and bone resorption under the denture are the most essential
ones [3, 4, 7]. These adverse effects take place owing to irregular distribution of the
masticatory load. During mastication the denture basis distributes load applied to artificial
teeth over the prosthetic bed mucosa. But the supporting function is not natural for the
mucosa. Mucosa compression causes ischemia of the mucosa tissues and then bone
resorption. Moreover a low pain threshold of the mucosa restricts the masticatory load
magnitude. As a result patients are forced to exclude hard food from their ration.

There is another serious problem. The denture basis can come off the prosthetic bed.
Three conditions are needed to provide denture fixation in the patient’s mouth. Namely, a thin
saliva layer between the denture basis and the mucosa, high correspondence between the
prosthetic bed relief and the denture shape, and dynamic suction. An appropriate denture
construction provides first two conditions. The third condition must be tested.

In our previous work [2] we created a mathematical model of the removable laminar
maxillary denture together with the prosthetic bed mucosa. By means of the model the
optimal values of the denture basis thickness for some basis materials were determined. Also
dependence of the optimal basis thickness on elastic properties of the basis material was
investigated.

In writing this paper we had three goals in mind. First we are going to find an optimal
construction of the removable laminar maxillary denture. This optimal construction has to
magnify the masticatory load without pain and prevent bone resorption. Second we examine a
possibility of denture detachment during eating. Finally we present an attempt to take into
account stochastic nature of some mucosa characteristics.
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Fig. 1. The appearance of a removable laminar maxillary denture: 1 — artificial teeth (made from plastic),
2 — the external part of the denture (made from plastic), 3 — the internal part of the denture
(made from metal or plastic).

Materials and methods
Before we start out we need to define some relative values.
The relative pressure in a point X (when p(X)<0) and the specific detachment force

(when p(x)>0):

'?(X) .100%, p(X)<0,

h
pox)={ P &) 1)
° @ 100%, p(X)>0,

where pth is the pain threshold pressure, p? d —0.1MPa is the adhesion force [5].
The relative masticatory force:

F, = .100%, @)
Fav
and the relative threshold masticatory force:
th
e =P 000, 3)
Fav

where F is the masticatory force; FM is the threshold force (when a patient feels pain);

F,v Is the average force value: F,, =150 N for mastication, F,, =20 N for biting [1, 5].

At this point it will be useful to introduce some terminology. The inner layer of the
denture basis is said to be the internal part of the denture; the outer layer of the denture basis
with artificial teeth is spoken of as the external part of the denture (Fig. 1).

Relative equivalent stresses in the internal and external parts of the denture:

int
oint @) = 7% 10006, (4)
! —1
ext( )_ ant(X) 100%, (5)
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where oM(x) and o£*(x) are equivalent stresses in a point X of the internal and external

parts, respectively; cri_”lt and of’f are the fatigue limits for the internal and external part

materials, respectively.

After these preliminary remarks, we can formulate an optimization problem. As the
objective function we choose the relative threshold force th. It defines restoration of
masticatory ability. The threshold force can be magnified only by more uniform distribution

of the relative pressure. Hence th also describes a degree of bone resorption. The internal

part thickness t was selected as a variable parameter. Here we assume this thickness to be
constant.

The optimization problem is to maximize the relative threshold force within
restrictions on fatigue strength (8)-(9) and on the internal part thickness (10):

Fo — max, (6)

max pq(X) =100% (7)
XeSy

max " (%) <100% , (8)
XEVint

max oSX(X) <100%, )
XEVeXt

0<t<2mm, (10)

where S is the prosthetic bed area; Vine and Ve, are domains occupied by the internal and

external parts, respectively. In the above system maximizing the relative force with restriction
(7) is equivalent to maximizing the relative threshold force. We use restriction (10) because
the denture with too thick basis makes speech unclear.

In order to determine pressure on the mucosa and stresses in the denture we must
solve the boundary-value problem of elasticity. This problem has the following boundary
conditions. The adhesion condition is given on the area where the mucosa contacts with bone
tissue. A distributed load is preassigned on the contact area of the artificial teeth with the
antagonistic teeth. The remaining area considered as a free surface.

To solve the problem we developed a mathematical model of the laminar maxillary
denture with the prosthetic bed mucosa [2]. In accord with the model we consider the denture
basis with the prosthetic bed mucosa as a two-ply elastic shell on an elastic layer, covering a
rigid foundation (bone). Artificial teeth are considered as an elastic beam with a variable
cross-section: triangle for incisors and canines and rectangle for premolars and molars. The
appearance of the model is shown in Figure 2.

Fig. 2. The appearance of the denture model.
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To determine pressure on the mucosa we use the Winckler’s law [6]. Computations
were provided by the finite element method. To solve the optimization problem we use an
algorithm based on linearity of the elasticity problem [2].

Above we have described the determinate optimization problem. But the elastic
properties of denture materials, the thickness and the pain threshold pressure of the prosthetic
bed mucosa, the denture configuration and the applied masticatory force are stochastic values.
So if we use mean values to solve the optimization problem, we might obtain practically
useless results (since deviation of model characteristics from their mean values can essentially
change the optimal solution). That is why it is important to solve a stochastic problem of
denture optimization.

Before we go into this problem, we need to find values producing the greatest effect
on the optimal denture thickness. According to our study, the mucosa thickness t,, and the

pain threshold pressure P, are these values. We consider these values having the Gaussian

distribution with the statistical expectation and dispersion, specified from an experiment [9].

For our present purposes it is essential to introduce some definitions. Let @ be a
simple event, namely — the denture construction with specified values for all initial
parameters. A variable parameter of the optimization problem is the internal part thickness
t(w). A stochastic function q(t(e ),@) is the relative force F, : q(t(@).w)=F, .

Now we can formulate the stochastic optimization problem as follows: to define the
internal part thickness t( ), maximizing the objective function F (t(w),®):

F (t(w),0) > max (11)
within determinate restrictions (7)-(10).

We choose the objective function according to our task. First of all it is interesting to
explore the maximal average value of the relative force. Here the objective function is the
statistical expectation of the relative force

F ((w).0)=[q((e)e)P(do)=Mq(t(e)e), (12)
Q
where M q(t(w),») is the statistical expectation of the stochastic function q(t(w),®),

Q is an event set with a probability P. This model is nhamed M-model [8]. M-model
determines the optimal thickness corresponding to the maximum of the average relative force.
It resembles the determinate optimization problem more than any other.

Also it is appropriate to investigate the maximal relative force with the minimal spread
in values. Here the objective function is a combination of the statistical expectation and the
dispersion

F (@) 0)=AMa(t(w)o)-(1-2)yDa(l(o)e), (13)
where A > 0 is a weighting coefficient and D q(t(w ),®) is the dispersion of the stochastic
function q(t(w ),®). In our research we use A =0.6. This model is named M-D-model [8].

To solve this problem we reduce the stochastic optimization problem to a nonlinear
programming problem [8, 10]. The algorithm for M-model is described below.
1. We define noncrossing subsets of Q and denote they as

2. Suppose the coming of t,, and P, to be independent events, we calculate the probability
tm P
P(A)=P;"P,
where

22



Russian Journal of Biomechanics, Vol. 4, Ne 4: 19-28, 2000

. _J __ K
P{" =P(ty € Atd), j=1J, _zlpgm =1, P =P(Py c AP ),k:l,K,kzlPchr -1,
J: =

n
3. The definition of the statistical expectation is F (t(® ), )= lim > q(t,A; )P(A ). Using

nN—0j=1
item 2 we determine an approximate value of the objective function
J K
tmo P,
Fyk(tA)=2 2 a(t,A)P"P .
j=1k=1

4. The stochastic function q(t,A; ) is calculated as a polynomial function for fixed t,, and
P, from the subset A;. In the present paper we use the second-degree Lagrange

polynomial: q(t,A; ) = ag +a1t+a2t2, where aq, o, ap are undetermined coefficients.

Results and discussion

Before presenting results we need some background. We provide our research for
three internal part materials: cobalt-chromic alloy KHS, titanic alloy VT1-00 and plastic
AKR-15 (elastic and fatigue properties of these materials and elastic properties of the mucosa
are described in [2]). The mucosa thickness and the pain threshold pressure were obtained
experimentally and reported in [9]. The distributions of these data are shown in Fig. 3.

We carry out all calculations for an occlusion moment, when the masticatory force is
maximal. For mastication it is the central occlusion and for biting it is the sagittal one. The
part of the masticatory force acting on an artificial tooth is determined according to the
masticatory efficiency of the tooth [1, 5]. Table 1 presents values of the masticatory efficiency
and force distribution over artificial teeth. Force direction is represented in Fig. 4. For the
sagittal occlusion lower frontal teeth make contact with corresponded upper teeth at a line on
the palatine surface of the late ones. The location of this line depends on an individual angle

of the sagittal canine path (Fig. 4b). The average value of this angle is 45° [5]. The force is
normal to the palatine surface of upper incisors (Fig. 4b).

Q

1.02 0.094

1.601 0.123

2.182 0.153

2.764 0.182

y 3.345 y 0.212
3.927 0.241

4508 0.270

X 5.090 X 0.300

a b
Fig. 3. The thickness (mm) (a) and the pain threshold pressure (M Pa/mmz) (b) of the prosthetic bed

mucosa.
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Table 1. The distribution of the masticatory force over artificial teeth.

Masticatory Force, %
Tooth ficient — —
coethicien Mastication Biting
Central incisor 8 0 66.67
Side incisor 4 0 33.33
Canine 12 0 0
First premolar 16 21.05 0
Second premolar 16 21.05 0
First molar 24 31.58 0
Second molar 20 26.32 0
F
F o
a b

Fig. 4. Force direction for mastication (a) and biting (b): F is the masticatory force, ¢« is the angle of the
sagittal canine path.
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Fig. 5. Dependencies Fy (t) (O), maxo, . (1) (©)and maxoyg ao (1) (D)
int F=F (1) ext F=F; (1)

in the titanic denture for mastication (a) and biting (b).
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Table 2. Optimal values of the internal part thickness and the
maximal relative threshold force for mastication and biting.

_ Mastication Biting
Basis - - - -
material Optimal thickness, Fth o Optimal thickness, Fth o
mm Omax ' mm Omax '
KHS 0.17 92.4 2 172
VT1-00 0.20 99.4 2 169
AKR-15 1.73 92.7 14 158

Now let us discuss the obtained results. The dependence of the relative threshold force

and the relative stresses on the internal part thickness is shown in Figure 5. The results of the
optimization problem (6)-(10) are listed in Table 2. Results presented above can be
generalized as follows.

1.

For mastication all dependencies F(}h(t) have the only maximum in the investigated

interval. However for biting these dependencies for the metallic dentures are increasing
monotonically.
For mastication the relative threshold force strongly depends on the internal part
thickness. But for biting the dependence takes place only for a small thickness area.
The optimal thickness values for mastication and biting are quite different (Table 2). But
the threshold force for biting weakly depends on the internal part thickness. Also it is well
known that a person executes much more masticatory acts than biting ones. So we
recommend using the optimal thickness values determined for mastication. That is why in
the rest of this paper we will discuss results for mastication.

As Fig. 6a indicates the denture basis leans on the alveolar process and the palatine

torus during mastication. We can manage basis rigidity by changing the internal part thickness
and the internal part material. So we can redistribute the masticatory load between two
supports. That is why the optimal solution corresponds to an equal force distribution between
two support areas. Unlike mastication, the denture basis has only one support during biting. It
is the frontal part of the alveolar process (Fig. 6b). So changing the internal part thickness
cannot essentially effect on neither pressure distribution nor the relative threshold force value.

y

-100.0 -100.0
-83.018 77.229
66.037 -54.458
-49.056 -31.687
32,074 0.0
3 N -15.093 y 13.854
0.0 36.625
X 17.856 X 59.396

a b
Fig. 6. The distribution of the relative pressure on the prosthetic bed mucosa (%) in the titanic denture with
the optimal thickness basis for mastication (a) and biting (b).
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0.120 -100.0
0.170 -79.863
0.325 -59.726
0.480 -39.590
y 0.635 y -19.453
t 0.790 t 0.0
0.945 20.819
X 0.100 X 40.956

b

Fig. 7. The distribution of the internal part thickness (MM ) (a) and the relative pressure on the prosthetic bed
mucosa (%) (b) for the titanic denture with variable thickness.

Table 3. The optimal denture thickness and objective function values
for different models in the stochastic optimization problem.

Model Optimal thickness, mm Objective function, %
Determinate model 0.20 99.4
M-model 0.18 97.3
M-D-model 0.17 56.3

For mastication the area between two supports remains weakly loaded. The use of a
denture with variable internal basis thickness can help this situation. Therefore the
optimization problem was solved for the denture with variable thickness. The optimal denture
construction is characterized by three thickness values: t; =0.17 mm in the palatine torus

area; t3 =1.10 mm in the alveolar process area; to =0.12 mm in the remaining area (Fig. 7a).

In Fig. 7b one can see the area between two supports now contains zones of the maximal
pressure. The maximal threshold force runs up to 102 %.
As expression (1) indicates, positive values of the relative pressure p, tell about the

possibility of denture detachment. Two dangerous regions: the vast area at the frontal part of
the denture, between the alveolar process and the palatine torus, and the area beyond the
dentition are shown in Figure 6b. Although the second area is small, localization near the
denture edge makes it more dangerous since air can penetrate between the denture and the
mucosa and lead to denture detachment. But our investigation proves the positive relative
pressures for the optimal thickness values to be under 100 %, so the denture does not detach.

We want to complete this paper by presenting results of the stochastic optimization
problem. We solved the optimization problem for the titanic denture in mastication process.
The results are displayed in Fig. 8 and Table 3. Table 3 documents the stochastic optimal
solution to be different from the determinate one. Also Table 3 shows the M-model solution
to be closer to the determinate one than the M-D-model solution. But the difference between
the determinate and stochastic solutions is not so large. According to the analysis given here,
determinate results can be used instead of stochastic ones, if only mucosa characteristics are
assumed to be stochastic.
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Fig. 8. Objective functions for M-model (.J) and M-D-model (O) in the stochastic optimization problem.

Conclusions
In this paper we have explored the behavior of the removable laminar maxillary

denture during mastication and biting. The main findings of the study may be summarized in
what follows.

w

With the help of the mathematical model the optimal denture structure was determined for
some basis materials. This optimal construction enables to enlarge the threshold
masticatory force applied to the denture and reduce bone resorption.

The optimization problem was solved for mastication and biting. The threshold force for
biting was determined to be weakly dependent on the denture thickness. So it is
recommended to use the optimal thickness values determined for mastication.

For mastication the optimal denture thickness was found to provide an equal pressure
distribution between the alveolar process and the palatine torus areas.

The optimal construction of the denture with variable thickness was determined. It was
shown that this denture construction enlarges the maximal threshold force and leads to
better pressure distribution over the prosthetic bed mucosa.

The possibility of denture detachment was investigated and it was found to be impossible
for the dentures with the optimal thickness.

The influence of changing some model characteristics on the optimal solution was
analyzed. The stochastic optimization problem was formulated and solved. Small
difference between stochastic and determinate results proves using determinate results
instead of stochastic ones, if only mucosa characteristics are assumed to be stochastic.
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MCMNMOJIb3OBAHUE MATEMATUYECKOI'O MOAEJINPOBAHUA ONA
ONTUMU3ALIMN KOHCTPYKLUUN MIACTUHOYHOI'O NMPOTE3A

O.U. Oypapsb, H.C. WabpbikuHa (Mepmb, Poccusn)

Hcnonb3oBaHWe CBhEMHBIX IUIACTMHOYHBIX MPOTE30B HE MOXKET MOJHOCTBIO
BOCCTAHOBUTL KCBATCJIbHYIO CIIOCOOHOCTHL OOJBHOTO W MNPpUBOJAUT K TMATOJIOTHYCCKHUM
M3MEHEHMSIM CIIM3MCTOM 00O0JIOUKM MPOTE3HOIo JIoKa M aTpoduu KOCTU MoJ mpore3oMm. B
paboTe C NOMOIIbIO MaTeMaTU4eCKOW MOJENN OCYIIECTBISIETCS MOUCK ONTUMAaIbHOM
KOHCTPYKIIMM CBEMHOI'O IJIACTUHOYHOI'O IPOTE3a Ha BEPXHIOI YETIOCTh, MO3BOJIAIOLICH
MOBBICHTh BEIUYMHY JKEBATEIbHOW HArpy3KH, HE TpPHUBOJAIEH K Oonmu, W wu30exarb
NaTOJIOIMYECKMX W3MEHEHMH TKaHed NpPOTE3HOro Jioka. 3ajada pemaercs Ui MpOLEecCOoB
JKCBaHHA U OTKYCbIBAHUA.

B pesynbraTe mnosyuyeHsl ONTHUMAaJbHBIE KOHCTPYKIHMM MpoTe3a Uil HEKOTOPBIX
MaTepuajoB B ClIy4dae TIOCTOSIHHOM U IIEpEMEHHOM ToNamMHbI Oas3uca. lccinemoBaHa
BO3MOYKHOCTh HapylleHHus (ukcanuu mpore3a B pPOTOBOM monoctu. Pemena 3anava
CTOXaCTHYECKOMU OIITUMHU3AIUU ITPOTE3a, MMO3BOJIAIOIIAA n30exarh HOI‘pGHIHOCTGfI, CBA3aHHBIX
C HCIIOJIb30BaHUEM B pacyeTax OCPEAHEHHBIX AaHHbIX. [lo pe3ynbraTam pelieHus ciaeiaH
BBIBOJI, YTO IPU yYETE€ CTOXACTHUECKOI'O XapaKTepa TOJBKO CBOMCTB CIM3UCTON OOOJOUKH,

6e3 ocoboro yiiep0a MOXKHO MOJIB30BAThCS PEIICHUEM JETePMUHUPOBAHHOM 3amaun. buoi.
10.

KitoueBbie cnoBa: CheMHBIH TUTACTUHOYHBIM TPOTE3, CIU3HCTas 000J0YKa, ONTUMAIbHOE
MPOEKTUPOBAHKE, CTOXACTUUECKAsl ONTUMU3AIUS
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