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THE SUFFICIENT CONDITION FOR THE POINTWISE CONTACT IN THE
TWO-LEAF CURVED ELASTIC ELEMENT OF THE FOOT PROSTHESIS
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Abstract: The problem of the joint weak bending of the curved leaves of two-leaf spring
is considered. This spring is a part of an elastic element of the foot prosthesis. The
uniqueness of the solution of the problem is proved. New sufficient condition, which is not
stronger than one established before, is found for the pointwise contact between the
leaves (when the leaves profiles contact only at one point except for the clamped point).
The results obtained contribute to the still incomplete theory of bending of the leaf-
springs, which are used in the foot prostheses.
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Introduction
Some prosthetic foot designs use the elastic element representing the multiple-leaf spring —
see Fig. 1a (borrowed from [1]) and Fig. 1b (borrowed from [2]).

Making the design for these prostheses includes the calculation of the spring leaves
bending under the given loading (the ground reaction forces).

At first consider one-leaf spring. The following mathematical model of this spring
bending has been suggested in [3]. The slender curved beam (leaf) has one edge clamped and
the other free (Fig. 2). The beam has constant rectangular cross-section. The natural shape of
the beam is described by the function ¢(x), where x is the length of the beam segment placed
between the clamped point and some arbitrary point; ¢ is the angle formed by the tangent to
the beam profile (it is assumed that the tangent exists) at these points (Fig. 2); 0 <X <A; A is
the beam length. It is assumed below that the function ¢(x) is continuous, non-decreasing and
o(X)<m/2 for 0<x<A. Since @(0)=0, ¢(x)>0. The normal loading with the given

density q(x) is applied to the lower side of the beam (Fig. 3; the loading is uniformly
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Fig. 1. The elastic elements of the foot prostheses.
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Fig. 2. The model of one-leaf spring; the Fig. 3. The loading is normal to the beam.
definition of the function ¢(x) .

distributed over the beam width). We assume that q(x) can be represented in the form of

u(x)+ > U _8(x-x_ ), (1)

where u(x) >0 is the piecewise continuous function, which is continuous on the right at
x=0 and on the left at x> 0; the running integer index o has the finite range; x >0;

U, >0. It is assumed that the bending of the beam under loading is weak (linear

approximation with respect to the loading).

The shape of the beam under bending is described by the normal displacements y(x).
Let A be the point of the beam without bending with the curvilinear coordinate x; let B be the
position of the same point of the beam under bending. Then y(x) is the projection of the
vector AB onto the normal to the beam at the point A (Fig. 4). The function y(x) (which is to
be found) is expressed in terms of q(x) as follows [3]

A
y() =k [ G(xs)a(s)ds, 0
0
where k >0 is the bending compliance of the beam,
G(x,8) = G, (max(x,s), min(x,s)), (3)
m
G,(M,m) = [g(s,M)g(s,m)ds, (4)
0
n
9(s,) = [ cos((n) — o(t)) dt (5)
S
Note that the function g(s, ) is defined and continuous for 0<s,u<Ax;
20 (u25),
g(s,p) <0 (us<s), (6)
=0 (u=5s);
G(x,8)>0; (7)
G(u,n) >0 for pu>0. (8)
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Fig. 4. The definition of the function y(x) . Fig. 5. The model of two-leaf spring.

C
Integral of type Ih(s)S(s—s*)ds is considered to be equal to h(s ) in the cases
b
s, =bors_=c.

Now consider two-leaf spring (this article does not deal with the springs which have
more than two leaves). The corresponding model is shown in Fig. 5 (the beams thicknesses
are exaggerated for distinctness). Two beams (leaves) are pressed close up to each other
(without loading). There is no friction between the beams. The lengths of the beams 1 and 2
are denoted as L and ¢ respectively. Function ¢(x) should meet the above-mentioned

requirements for 0 < x <L ; function g(s,u) is then defined and continuous for 0<s,u<L.
The loading with the given density q(x) is applied to the lower side of the beam 1. The
beams undergo the weak joint bending (with the unbonded contact).

The shapes of the beams 1 and 2 are described by the functions y,(x) (0<x<L),
Y, (X) (0<x<?). It is required to find y, (x), y,(x). In order to solve this problem, it is
convenient to reformulate it so that to regard the density f(x) of the forces of interaction
between the plates as the function to be found. The functions vy, (x), y,(X) are expressed in

terms of f(x) as follows (see (2)):

L l
y, (X) = klj'G(x, s)q(s)ds — kle(x, s)f(s)ds, 9)
0 0
l
y, () =k, j G(x,s) f (s)ds, (10)
0

where k, , k, >0 are the bending compliances of the beams. We assume that f(x) is of type
(1). We introduce the notation r(x) =y, (x) — y, (x); then using (9), (10) we find

/ L
r(x)=(k, +k,) j G(x,5) f (s)ds —k, j G(x,3)q(s)ds . (11)
0 0
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Fig. 6. 4 and B are the contact points of the beams profiles.

The beams are impenetrable to each other; this constraint can be formulated as
r(x) >0 for 0< x</; besides, if f(x)>0 then r(x)=0. Finally we come to the following
problem.

Problem 1. It is required to find f(x) (0<x</¢) which is of type (1) and should
satisfy the conditions

r(X){:O (f(x) >0), 12)
>0 (f(x)=0),

where r(x) is expressed by (11).

The special case ¢(x) =0 of the problem 1 has been considered in [1]. The solution of

this problem has been constructed explicitly and its uniqueness has been proved. It has been

found that the inequality
¢

L
& j (s — £)q(s)ds — j s(¢ —s)(20 —s)q(s)ds > 0 (13)
[ 0
is the necessary and sufficient condition for the pointwise contact between the beams (Fig. 6),
i.e. for the solution of the problem 1 to be
f(x)=Fo(x—-1). (14)
The formulation of the condition for the pointwise contact is of great importance
because the multiple-leaf elastic elements of the foot prostheses are calculated on the
assumption that the contact is pointwise [4], [5].
The sufficient condition for the pointwise contact in the case of an arbitrary ¢(x)
(which meets the above-mentioned requirements) has been obtained in [3]:
g(x)=0for 0<x< /. (15)
The uniqueness of the corresponding solution (14) of the problem 1 has not been
proved in [3]. Besides, the condition (15) is not necessary for the pointwise contact. In fact, if
we consider q(x)=Fyd(x— L)+ 2(L/¢ —1)Fy8(x - ¢/2), where F,>0, then (13) holds
(hence, the pointwise contact takes place) but (15) does not hold.
The uniqueness of the solution of the problem 1 is proved (under one additional
requirement on ¢(x)) in the present study and new sufficient condition for the pointwise
contact is obtained.
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The proof of the uniqueness of the solution of the problem 1
Theorem 1. Suppose that function ¢(x) meets the above-mentioned requirements and

besides, has the piecewise continuous first derivative for 0 <x < /. Then the problem 1 may
have only one solution.
Proof. Let f(x), f_(x) be the solutions of the problem 1; 0 < x < /. We introduce the

notation p(x) = f(x) - f_(x). Since f(x), f_(x) are of type (1), p(x) is also of type (1) but
u(x), U  may be negative. We introduce the notation

! /
| = j o(X)[ j G(x, s)p(s)ds]dx .
0 0

Then it follows from (11), (12) that |1 <0 (either one of the co-factors in the integral over
0<x</ is equal to zero or these co-factors have different signs). On the other hand, using
(3), (4), we obtain

¢
=3 2 (x)dx, (16)
0
where
l
300 =] g(x,s)p(s)ds . (17)
X
It follows from (16) that 1 >0. Hence, | =0. Then, if the above-mentioned properties of

p(x) and equality (6) are taken into account, it can be proved that J(x) is the continuous

function (the simple proofs using the standard methods of mathematical analysis are not
adduced in the present study). Then it follows from (16) and the equality 1 =0 that J(x) =0.

Using (5), (17), we obtain
J(x) = j H(s)ds, (18)
where '
H(x) = f cos(¢(s) — ¢(x)) p(s)ds .

Taking the above-mentioned properties of p(x) into account, one can prove that H(x) is the

piecewise continuous function, which is continuous on the left for 0 < x </ and on the right
at x=0. Then it follows from (18) and the equality J(x) =0 that H(x) =0, i.e. (the variable

is denoted as t)

¢

[ cos(o(s) - 9(t)) p(s)ds =0 (19)
for 0<t< /. Multiplying (19) bytcp’(t) and integrating over x <t </ vyields

0

[sin(o(s) - 0(x)) p(s)ds = 0. (20)
It follows from (19), (20) that '

¢ 0
J'cos o(s)p(s)ds = J'sin o(S)p(s)ds=0.
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Using these equalities and taking the above-mentioned properties of p(x) into
account, one can prove that p(x) = 0. Hence, f(x) = f_(x). This proves the theorem 1.

The sufficient condition for the pointwise contact
It is not assumed that the function ¢(x) has the first derivative in the formulation and

proofs of the following lemmas 1, 2 and theorem 2.
We introduce the notation

This function is defined for 0<m,M < L. It follows from (4) that

M
Q(M,m)z—jg(s, M)g(s, m)ds. (22)

Lemmal. If M >m then {(M,m)>0;if M >0 then {(M,0)>0.
Proof. Substituting (5) into (22) yields

&M, m) = [ [ cos(o(M) - o(t)) cos(p(m) — (x))dt d s, (23)
B

where B:(m<s<M,s<t<M,m<t<s). The volume of the region B is equal to (M —m)?.
The statements of lemma 1 then follow from the fact that integrand function in (23) is
continuous, non-negative and is not identical with zero.

Lemma 2. If 0<a<B<y<d<L then g(B,9)g(e,y)—9(B,v)9(ct,6)>0 and
9(8! B)g(% OL) - g(% B)g(& OL) >0.

The first inequality of lemma 2 has been proved in [3]. The proof of the second

inequality can be performed analogously.
We introduce the notations

L
1
P= G(4, x)q(x)dx, 24
GW)! (£, )a(x) (24)
(it follows from (8) that denominator is not equal to zero),
L
¢, =P9(0,0) - [9(0.x)a(x)dx, (25)
0
L
c, = Psing(f) - j sin o(x)q(X)dx. (26)
0
Theorem 2. If
¢, 20,¢c,20 (27)
then the function
K
f(x)=—2L  P§(x—0) (28)
k, +k,

is the solution of the problem 1.
Proof. Using (7) and the fact that g(x) is of type (1), we obtain from (24) that P >0.
Hence, f(x) is of type (1). Then (12) should be proved. Substituting (28) into (11) yields

L
r(x)/k, = PG(x, £) - j G(x,s)q(s)ds. (29)
0

38



Russian Journal of Biomechanics, Vol. 4, Ne 3: 33-41, 2000

The inequality f(x) >0 may hold, according to (28), only at x=/. It follows from
(24), (29) that r(¢)=0. Hence, we should establish that r(x) >0 for 0<x< /¢ in order for
(12), and consequently the theorem 2, to be proved.

Using the functions G_(M, m) and (M, m) (see (3) and (21)), we rewrite (29) in the
form

X L
r(x)/k, = PG, (£,X) - j £(x,$)q(s)ds — j G, (s, X)q(s)ds.
0 0

Using this  representation of r(x), we compose the expression
C(,0)r(x) —C(x,0)r(¢); it is equal to £(¢,0)r(x) because r(¢) =0. After the transformations
we obtain

S0 (X)/k, = 1, () + 1, (x) + 1,(X), (30)
where
/
L) = [Ex0)C(ts)als)ds, (31)
x+0
1, (x) = j A(x,5)q(s)ds , (32)
0
A(X, S) = C(zl S)C(X!O) - C(Xl S)C(&O) ! (33)
1,() = P(G, (£, X)L(£.0) - G, (£, )E(x,0))+
L
+f (G, (5, 0)¢(x,0) - G, (s, X)5(£,0) ) g(s)ds . (34)
0

We will prove that 1, (x), I,(x), 1;(x) 20 for 0<x<¢.

The inequality
I,(x)=0 for O0<x</ (35)

follows from (31) and lemma 1.
Using (22), we obtain from (33)

A(X, s) = j j A (x,s,t,T)dt dt — j j A, (x,s,t,T)dt dr, (36)
Bl BZ

where
O0<s<x</, B :(s<t</,0<t<x), B,(s<t<x,0<t</),

A (xs,1,71)=g(ts)g(t, 0)g(r.0)g(r. X), A, (X s,t, 1) =g(t,s)g(t, x)g(r,0)9(z, £).
Then we put (36) in the form

A(x,5) = [[ At D)t dr+”(A1(t,r) — A, (t,7))dt de +
B, B,

+;H(Al(t,t) — A, (L) + A (L) - A (nd)dtde+ [[(A G - A, (nD)dtde, (37)
B, :
where
B, (x<t</,0<t<s), B,:(s<t<x,0<t<s),

Boi(sst<xs<t<X), By :(X<t</,s<t<X).
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The variables x, s of the functions A, A, are not written out. Using (6) and lemma 2,

one can prove that the integrand functions in all integrals (37) are non-negative in the
corresponding regions. Hence, A(x,s)>0 for 0<s<x </ and it follows from (32) that

I,(x)>0 for O<x</. (38)
We substitute (4), (22) and (5) into (34) and take (25), (26) into account. After the
transformations we find
I;(X)=¢,C,(x) +¢,C,(X), (39)
where
cl(x)=”El(x,t,r)dtdr, cz(x)=HEz(x,t,r)dtdr, D:(0<t</,0<t<X),
D D

t t(r
E, (xt,7)=9(x, x)g(t,z)jcos o(s)ds, E,(x,t,7)=g(x, x)g(t,ﬁ)jUsin((p(s) - (p(u))du} ds .
T 0o\o0
Then we put C, (x) in the form

C, (0= [[E,(xt, dtde+ z !) | (E,(x,t, 1) + E, (x,7,1))dt d, (40)

Dl 2

where
D, :(x<t</,0<1<x), D,:(0<t<Xx,0<t<X).

Using (6) and lemma 2, one can prove that the integrand functions in both integrals
(40) are non-negative in the corresponding regions. Hence, C,(x)>0 for 0<x</. It can be

proved in analogous manner that C, (x) >0 for 0<x < /. Then it follows from (27) and (39)

that
1,()=0 for 0<x</. (41)

We obtain from (35), (38), (41), (30) that r(x) >0 for 0<x</¢ (£(¢,0) >0 according
to lemma 1). This proves the theorem 2.
Note 1. Suppose that ¢(x) =0. Then the second inequality (27) becomes identity and the first
inequality (27) turns into (13) (and at the same time becomes the necessary condition for the
pointwise contact). As it has been shown above, the condition (13) is weaker in this case than
the condition (15). Hence, new condition (27) is not stronger than the condition (15), which
has been obtained in [3]. It is the merit of the sufficient condition.

Note 2. If ¢(x)=X/R, where R>2L/n then the inequalities (27) coincide.

Conclusions

The uniqueness of the solution of two-leaf spring bending problem is proved. New
sufficient condition, which is not stronger than one established before, is found for the
pointwise contact between the spring leaves. These results widen the set of the leaf-spring and
loading parameters for which the presence of the pointwise contact can be guaranteed. For the
flat leaves the new condition is at the same time necessary. But it remains unknown whether
this condition is necessary for the curved leaves. All the more, the general solution of the
problem 1 (including the cases of the non-pointwise contact) is not obtained. This solution
should be the subject of the further investigation.
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AOCTATOYHOE YCJIOBUE TOYEYHOI'O KOHTAKTA IMNMPU U3Ir'MBE
ABYXJITUCTOBOIO UCKPUBJIEHHOIO YINPYIrOro 3JIEMEHTA
NMPOTE3A CTOIbI

M.A. OcuneHko, 0.U. HawwuH, P.H. PyaakoB (Mepmb, Poccusn)

JlokazaHa eIUHCTBEHHOCTh pEIICHUS 3aJaud O COBMECTHOM ciaboM wu3rube
UCKPUBJICHHBIX JIMCTOB JBYXJHCTOBOH pPECCOpBI, HCHOIb3YEMOM B YIPYroM »3lEMEHTE
npore3a cromnsl. HalineHo HOBoe, He sBisromieecss 0ojiee CUIBHBIM, YeM H3BECTHOE paHEe,
JIOCTaTOYHOE YCJIOBHE TOUEYHOT0 KOHTAKTa JINCTOB (KOrAa Mpo(uiIn JUCTOB COPUKACAIOTCS,
KpOME TOYKM 3allleMJIEHHs, TOJBKO B OJHOM Touke). [lomyueHHble pe3ynbTaThl BHOCST
ONpeNleIeHHBI BKJAaJ B €IIe HE 3aBEPLICHHYI0 TEOpUI0 U3ruba JIMCTOBBIX peccop,
IPUMEHSIEMBIX B IPOTE30CTpoeHUH. buodi. 5.

KiroueBbie ciioBa: mpoTe3 CTOMBI, YINPYTUd 3JIEMEHT, JIUCTOBas pPeccopa, MCKPUBJICHHBIC
JINCTHI, CIA0BIA U3TH0, TOUEYHBIH KOHTAKT
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