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THE SUFFICIENT CONDITION FOR THE POINTWISE CONTACT IN THE 
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Abstract: The problem of the joint weak bending of the curved leaves of two-leaf spring 
is considered. This spring is a part of an elastic element of the foot prosthesis. The 
uniqueness of the solution of the problem is proved. New sufficient condition, which is not 
stronger than one established before, is found for the pointwise contact between the 
leaves (when the leaves profiles contact only at one point except for the clamped point). 
The results obtained contribute to the still incomplete theory of bending of the leaf-
springs, which are used in the foot prostheses. 
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Introduction 
Some prosthetic foot designs use the elastic element representing the multiple-leaf spring – 
see Fig. 1a (borrowed from [1]) and Fig. 1b (borrowed from [2]). 

Making the design for these prostheses includes the calculation of the spring leaves 
bending under the given loading (the ground reaction forces). 

At first consider one-leaf spring. The following mathematical model of this spring 
bending has been suggested in [3]. The slender curved beam (leaf) has one edge clamped and 
the other free (Fig. 2). The beam has constant rectangular cross-section. The natural shape of 
the beam is described by the function )(x , where x is the length of the beam segment placed 
between the clamped point and some arbitrary point;   is the angle formed by the tangent to 
the beam profile (it is assumed that the tangent exists) at these points (Fig. 2);  x0 ;   is 
the beam length. It is assumed below that the function )(x  is continuous, non-decreasing and 

2)(  x  for  x0 . Since 0)0(  , 0)(  x . The normal loading with the given 
density )(xq  is applied to the lower side of the beam (Fig. 3; the loading is uniformly 

  a       b 
Fig. 1. The elastic elements of the foot prostheses. 
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distributed over the beam width). We assume that )(xq  can be represented in the form of 
 )()( 


  xxUxu , (1) 

where 0)( xu  is the piecewise continuous function, which is continuous on the right at 
0x  and on the left at 0x ; the running integer index   has the finite range; 0x ; 

0U . It is assumed that the bending of the beam under loading is weak (linear 
approximation with respect to the loading). 

The shape of the beam under bending is described by the normal displacements )(xy . 
Let A be the point of the beam without bending with the curvilinear coordinate x; let B be the 
position of the same point of the beam under bending. Then )(xy  is the projection of the 
vector AB  onto the normal to the beam at the point A (Fig. 4). The function )(xy  (which is to 
be found) is expressed in terms of )(xq  as follows [3] 

 



0

)(),()( dssqsxGkxy , (2) 

where 0k  is the bending compliance of the beam, 
  ),min(),,max(),( sxsxGsxG  , (3) 
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Note that the function ),( sg  is defined and continuous for  ,0 s ; 
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q x( )

Fig. 2. The model of one-leaf spring; the 
definition of the function )(x . 

Fig. 3. The loading is normal to the beam. 
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Integral of type  
c

b

dssssh )()(  is considered to be equal to )( sh  in the cases 

bs   or cs  . 
Now consider two-leaf spring (this article does not deal with the springs which have 

more than two leaves). The corresponding model is shown in Fig. 5 (the beams thicknesses 
are exaggerated for distinctness). Two beams (leaves) are pressed close up to each other 
(without loading). There is no friction between the beams. The lengths of the beams 1 and 2 
are denoted as L and   respectively. Function )(x  should meet the above-mentioned 
requirements for Lx 0 ; function ),( sg  is then defined and continuous for Ls  ,0 . 
The loading with the given density )(xq  is applied to the lower side of the beam 1. The 
beams undergo the weak joint bending (with the unbonded contact). 

The shapes of the beams 1 and 2 are described by the functions )0()(1 Lx  xy  , 
)0()(2  x  xy . It is required to find )(),( 21 xy  xy . In order to solve this problem, it is 

convenient to reformulate it so that to regard the density )(xf  of the forces of interaction 
between the plates as the function to be found. The functions )(),( 21 xy  xy  are expressed in 
terms of )(xf  as follows (see (2)): 

  


00
111 )(),()(),()( dssfsxGkdssqsxGkxy

L
, (9) 

 


0
22 )(),()( dssfsxGkxy , (10) 

where 0, 21 kk  are the bending compliances of the beams. We assume that )(xf  is of type 
(1). We introduce the notation )()()( 12 xyxyxr  ; then using (9), (10) we find 

  
L

 dssqsxGkdssfsxGkkxr
00

121 )(),()(),()()(


. (11) 

A

B

x

y x( )

Fig. 4. The definition of the function )(xy . 

1
2

Fig. 5. The model of two-leaf spring. 
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The beams are impenetrable to each other; this constraint can be formulated as 
0)( xr  for  x0 ; besides, if 0)( xf  then 0)( xr . Finally we come to the following 

problem. 
Problem 1. It is required to find )(xf  (  x0 ) which is of type (1) and should 

satisfy the conditions 

 







),0)((0
),0)((0

)(
xf      
xf     

 xr  (12) 

where )(xr  is expressed by (11). 
The special case 0)(  x  of the problem 1 has been considered in [1]. The solution of 

this problem has been constructed explicitly and its uniqueness has been proved. It has been 
found that the inequality 

  
L

dssqs


 )()(2
 



0

0)()2)(( dssqsss  (13) 

is the necessary and sufficient condition for the pointwise contact between the beams (Fig. 6), 
i.e. for the solution of the problem 1 to be 
 )()(  xFxf . (14) 

The formulation of the condition for the pointwise contact is of great importance 
because the multiple-leaf elastic elements of the foot prostheses are calculated on the 
assumption that the contact is pointwise [4], [5]. 

The sufficient condition for the pointwise contact in the case of an arbitrary )(x  
(which meets the above-mentioned requirements) has been obtained in [3]:  
 0)( xq  for  x0 . (15) 

The uniqueness of the corresponding solution (14) of the problem 1 has not been 
proved in [3]. Besides, the condition (15) is not necessary for the pointwise contact. In fact, if 
we consider    212)()( 00   xFLLxFxq , where 00 F , then (13) holds 
(hence, the pointwise contact takes place) but (15) does not hold. 

The uniqueness of the solution of the problem 1 is proved (under one additional 
requirement on )(x ) in the present study and new sufficient condition for the pointwise 
contact is obtained. 

A

B

Fig. 6. А and B are the contact points of the beams profiles. 
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The proof of the uniqueness of the solution of the problem 1 
Theorem 1. Suppose that function )(x  meets the above-mentioned requirements and 

besides, has the piecewise continuous first derivative for  x0 . Then the problem 1 may 
have only one solution. 

Proof. Let )(xf , )(xf  be the solutions of the problem 1;  x0 . We introduce the 
notation )()()( xfxfx  . Since )(xf , )(xf  are of type (1), )(x  is also of type (1) but 

)(xu , U  may be negative. We introduce the notation 

  


00

])(),([)( dxdsssxGxI . 

Then it follows from (11), (12) that 0I  (either one of the co-factors in the integral over 
 x0  is equal to zero or these co-factors have different signs). On the other hand, using 

(3), (4), we obtain 

 


0

2 )( dxxJI , (16) 

where 

  


x

dsssxgxJ )(),()( . (17) 

It follows from (16) that 0I . Hence, 0I . Then, if the above-mentioned properties of 
)(x and equality (6) are taken into account, it can be proved that )(xJ  is the continuous 

function (the simple proofs using the standard methods of mathematical analysis are not 
adduced in the present study). Then it follows from (16) and the equality 0I  that 0)( xJ . 
Using (5), (17), we obtain 

 


x

dssHxJ )()( , (18) 

where 

   dssxsxH
x

)()()(cos)(  


. 

Taking the above-mentioned properties of )(x  into account, one can prove that )(xH  is the 
piecewise continuous function, which is continuous on the left for  x0  and on the right 
at 0x . Then it follows from (18) and the equality 0)( xJ  that 0)( xH , i.e. (the variable 
is denoted as t) 

   0)()()(cos  dssts
t


 (19) 

for  t0 . Multiplying (19) by )(t  and integrating over  tx  yields 

   0)()()(sin  dssxs
x


. (20) 

It follows from (19), (20) that 

   
 

x x

dsssdsss 0)()(sin)()(cos . 
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Using these equalities and taking the above-mentioned properties of )(x  into 
account, one can prove that 0)(  x . Hence, )()( xfxf  . This proves the theorem 1. 

The sufficient condition for the pointwise contact 
It is not assumed that the function )(x  has the first derivative in the formulation and 

proofs of the following lemmas 1, 2 and theorem 2. 
We introduce the notation 

 ),(),(),( MmGmMGmM   . (21) 
This function is defined for LMm  ,0 . It follows from (4) that 

 
M

m

dsmsgMsgmM ),(),(),( . (22) 

Lemma 1. If mM   then 0),(  mM ; if 0M  then 0)0,(  M . 
Proof. Substituting (5) into (22) yields 

     dsddtmtMmM
B

  )()(cos)()(cos),( , (23) 

where ),,(: smMtsMsmB  . The volume of the region B is equal to  3mM  . 
The statements of lemma 1 then follow from the fact that integrand function in (23) is 
continuous, non-negative and is not identical with zero. 

Lemma 2. If L0  then 0),(),(),(),(  gggg  and 
0),(),(),(),(  gggg . 

The first inequality of lemma 2 has been proved in [3]. The proof of the second 
inequality can be performed analogously. 

We introduce the notations 

 
L

dxxqxG
G

P
0

)(),(
),(

1 


, (24) 

(it follows from (8) that denominator is not equal to zero), 

 
L

dxxqxgPgc
0

1 )(),0(),0(  , (25) 

  
L

dxxqxPc
0

2 )()(sin)(sin  . (26) 

Theorem 2. If 
 0,0 21  cc  (27) 
then the function 

 )()(
21

1 


 xP
kk

k
xf  (28) 

is the solution of the problem 1. 
Proof. Using (7) and the fact that )(xq  is of type (1), we obtain from (24) that 0P . 

Hence, )(xf  is of type (1). Then (12) should be proved. Substituting (28) into (11) yields 

  
L

dssqsxGxPGkxr
0

1 )(,),()(  . (29) 
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The inequality 0)( xf  may hold, according to (28), only at x . It follows from 
(24), (29) that 0)( r . Hence, we should establish that 0)( xr  for  x0  in order for 
(12), and consequently the theorem 2, to be proved. 

Using the functions ),( mMG  and ),( mM  (see (3) and (21)), we rewrite (29) in the 
form 

    
x L

dssqxsGdssqsxxPGkxr
0 0

1 )(),()(),(),()(  . 

Using this representation of )(xr , we compose the expression 
)()0,()()0,(  rxxr  ; it is equal to )()0,( xr  because 0)( r . After the transformations 

we obtain 
 )()()()()0,( 3211 xIxIxIkxr   , (30) 
where 

 






0

1 )(),()0,()(
x

dssqsxxI , (31) 

 
x

dssqsxAxI
0

2 )(),()( , (32) 

 )0,(),()0,(),(),(   sxxssxA , (33) 
    )0,(),()0,(),()(3 xGxGPxI   

    

L
dssqxsGxsG

0

)()0,(),()0,(),(  . (34) 

We will prove that 0)(),(),( 321 xIxIxI  for  x0 . 
The inequality 

 0)(1 xI   for   x0  (35) 
follows from (31) and lemma 1. 

Using (22), we obtain from (33) 
  

21

),,,(),,,(),( 21
BB

ddttsxAddttsxAsxA , (36) 

where 
  xs0 , )0,(:1 xtsB   , )0,(:2  xtsB , 
 ),()0,(),(),(),,,(1 xggtgstgtsxA   , ),()0,(),(),(),,,(2  ggxtgstgtsxA . 

Then we put (36) in the form 
     ddttAtAddttAsxA

BB 43

),(),(),(),( 211  

   

5

),(),(),(),(
2
1

2121
B

ddttAtAtAtA    ddttAtA
B6

),(),( 21 , (37) 

where 
 )0,(:3 stxB   , )0,(:4 sxtsB  , 
 ),(:5 xsxtsB  , ),(:6 xstxB   . 
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The variables sx,  of the functions 21 , AA  are not written out. Using (6) and lemma 2, 
one can prove that the integrand functions in all integrals (37) are non-negative in the 
corresponding regions. Hence, 0),( sxА  for  xs0  and it follows from (32) that  
 0)(2 xI   for   x0 . (38) 

We substitute (4), (22) and (5) into (34) and take (25), (26) into account. After the 
transformations we find 
 )()()( 22113 xCcxCcxI  , (39) 
where 
  

D

ddttxExC ),,()( 11 ,  
D

ddttxExC ),,()( 22 , )0,0(: xtD   , 

 



t

dsstgxgtxE )(cos),(),(),,(1  ,   dsdstgxgtxE
t

  
















0 0
2 )()(sin),(),(),,(  . 

Then we put )(1 xC  in the form 

     ddttxEtxEddttxExC
DD 21

),,(),,(
2
1),,()( 1111 , (40) 

where 
 )0,(:1 xtxD   , )0,0(:2 xxtD  . 

Using (6) and lemma 2, one can prove that the integrand functions in both integrals 
(40) are non-negative in the corresponding regions. Hence, 0)(1 xC  for  x0 . It can be 
proved in analogous manner that 0)(2 xC  for  x0 . Then it follows from (27) and (39) 
that  
 0)(3 xI   for   x0 . (41) 

We obtain from (35), (38), (41), (30) that 0)( xr  for  x0  ( 0)0,(    according 
to lemma 1). This proves the theorem 2. 
Note 1. Suppose that 0)(  x . Then the second inequality (27) becomes identity and the first 
inequality (27) turns into (13) (and at the same time becomes the necessary condition for the 
pointwise contact). As it has been shown above, the condition (13) is weaker in this case than 
the condition (15). Hence, new condition (27) is not stronger than the condition (15), which 
has been obtained in [3]. It is the merit of the sufficient condition. 

Note 2. If Rxx  )( , where  LR 2  then the inequalities (27) coincide. 

Conclusions 
The uniqueness of the solution of two-leaf spring bending problem is proved. New 

sufficient condition, which is not stronger than one established before, is found for the 
pointwise contact between the spring leaves. These results widen the set of the leaf-spring and 
loading parameters for which the presence of the pointwise contact can be guaranteed. For the 
flat leaves the new condition is at the same time necessary. But it remains unknown whether 
this condition is necessary for the curved leaves. All the more, the general solution of the 
problem 1 (including the cases of the non-pointwise contact) is not obtained. This solution 
should be the subject of the further investigation. 
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ДОСТАТОЧНОЕ УСЛОВИЕ ТОЧЕЧНОГО КОНТАКТА ПРИ ИЗГИБЕ 
ДВУХЛИСТОВОГО ИСКРИВЛЕННОГО УПРУГОГО ЭЛЕМЕНТА 

ПРОТЕЗА СТОПЫ 

М.А. Осипенко, Ю.И. Няшин, Р.Н. Рудаков (Пермь, Россия) 
 
Доказана единственность решения задачи о совместном слабом изгибе 

искривленных листов двухлистовой рессоры, используемой в упругом элементе 
протеза стопы. Найдено новое, не являющееся более сильным, чем известное ранее, 
достаточное условие точечного контакта листов (когда профили листов соприкасаются, 
кроме точки защемления, только в одной точке). Полученные результаты вносят 
определенный вклад в еще не завершенную теорию изгиба листовых рессор, 
применяемых в протезостроении. Библ. 5. 
 
Ключевые слова: протез стопы, упругий элемент, листовая рессора, искривленные 
листы, слабый изгиб, точечный контакт 
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