Russian Journal of Biomechanics, Vol. 4, Ne 1: **-** 2000
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Abstract: In terms of moving boundaries localization a model of circulation system
adaptation to varying functioning conditions through self-regulating permeability based on
passive and active (muscle) reaction of vessels is proposed.
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Introduction
It is to be ascertained that most of organism pathologies are connected with different
disturbances in blood supply. Investigation of self-regulation of blood flow is very actual and
must take into account a number of factors, including ones connected with peculiarities of
living tissue deformation [1-5].

Self-regulation contributes to constancy of blood flow under considerable variations of
arterial pressure. It is observed in fact in all organs and tissues and is most prominent in brain
and kidneys, where blood flow is invariable under varying arterial pressure within 80-160
torrs.

However a biomechanical aspect of this process has been insufficiently investigated
due to several reasons:

e extremely complex deformation mechanism of biotissues;
e branching of the circulatory system (CS);
e sensitivity of hemodynamic characteristics to chemical and physical nature factors.

That is why formulation and solution of hemodynamic problem with account of
different-scale vessels anisotropy and physical nonlinearity of biotissues are of great
significance. Of interest are, in particular, modelling and estimation of the efficiency of blood
flow self-regulation as a consequence of active deformation behaviour of precapillaries on the
example of quite lesser arteries (arterioles) which are just discussed in the present paper.

CS self-regulation signs

The CS is known to be divided into the central part and the peripheral circulation. A
number of useful reactions providing for optimum functioning of the system under different
effects takes place. Analysis of clinical observations and experimental studies summarized in
[1-4] makes grounds to specify an important adaptive reaction of the CS assisting in optimum
blood supply under varying outer conditions, namely functional load, temperature and
environmental conditions.

The reaction is displayed in self-regulation of blood flow proceeding from priority of
brain and other vital organs supply at the expense of reducing blood flow at the periphery
(e.g., in the area of skin integument). This adaptive reaction is the result of either reduced or
increased permeability of blood channel. When we speak about perfusion of tissues, then
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efficient regulation is supported by the presence of a great amount of subsidiary capillary
involved in blood supply when necessary. So far, periphery blood supply is accompanied by
expedient change of active vessel topography. In other words, optimal solid-liquid phase
interfaces are formed in biotissues.

It follows that observed redistribution of blood flow could be described in terms of
localization principle (stabilization of moving boundaries). Like in other biostructures with
moving boundaries [4], localization result is not given a priory, but is determined in the
process of numerical studies by a certain criterion, similar with condition of attained full-
strength condition of solid tissues.

To choose main characteristics of localization and a regulated optimum parameter, let
us employ the method of systematic analysis of adaptive systems suggested in [7].

Vessel lumina (inner diameter) is used in this case as a movable boundary effecting
volume of blood flow in circulation zone. So, the regulated parameter is inner contour
diameter in the considered cross section. Its value is defined by a competing effect of blood
pressure tending to expand the vessel and opposite directed forces from the side of
surrounding tissues, elastic (passive) reaction of walls and active reaction (tonus) of smooth-
muscle elements of vessels.

The role of active reaction conditioned by tonus is especially pronounced in arterioles
having most developed muscle layer.

Experimental data prove that a threshold pressure value po exists below which vessel
permeability is absent due to closure of walls at uncompensated initial tonus of muscular
tissue [4]. Hence, vessel tonus, i.e. stress originated at muscular contraction, is the governing
parameter.

Proceeding from above, localization criterion will be a condition of minimum
deviation from sufficient blood supply (provision of physiologically normal minute volume)
to vital organs.

CS model in terms of moving boundaries

To investigate CS self-regulation let us consider a model of arterial blood supply
including different-scale vessels (in Fig.1a the minimum set of single arterial vessels is
shown). Heart fulfilling pumping function supplies blood to the main vessel - aorta. Then
blood passes sequentially medium and small arteries, arterioles and a net of capillaries at the
final stage of perfusion. Because of different sizes of vessels a stepwise change of blood flow
takes place in the branching points. Thus, vascular channel can be presented as an
inhomogeneous structure with varying permeability (Fig.1b).

Suppose that effective diameter d characterizing permeability of a structure, blood
pressure p and blood flow velocity v through some vessel section are interrelated through
elastohydrodynamic relations. Besides, let pressure values p= be known in some vessel points.
The model of adaptive reaction under discussion is reduced to formulation of an extreme
problem with bounds as inequalities. It is necessary to find distribution of channel’s effective
diameter d(x) along vessel length | which minimizes the error functional of both theoretical
(calculated) and experimental diameter d values

|
J,(d)=[(d®(x)—d"(x))*dx 1)
0
with limits as inequalities defining wall closure upon critical pressure po attainment
p<po = d=0; p=p=d>0 )

in case of meeting the condition of relevant blood flow volume Q in a chosen cross-section
S(x) during time T
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Fig. 1. Scale levels of arterial blood flow (a) and its interpretation (b) in terms of moving boundaries: 1 —
heart; 2 — aorta; 3 — arteries; 4 — arterioles; 5 — capillaries.

[S(xtv(xt)dt=Q, 3)

2
where S(x,t):w.

To fulfil condition (3) let us introduce the penalty function into functional (1)
1
3o(d)=>([(S(tmB)dt-Q)*, (@)
T

where &> 0 is the penalty parameter.

Even when p© is measured correctly, distribution d(x) is calculated with fluctuations
due to incorrectness of analogous problem. To stabilize the solution one can demand its
smoothness, i.e. elimination of d(x) oscillations on the length I. Since oscillations are
characterized by high values of the first derivative, the following functional can be used as a
stabilizer

J5(d) = o] d' (x)%dx, )
|

where a > 0 is the regularization parameter. So, we finally have
min,{J,(d)+J,(d)+J,(d)}. (6)
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Deformation behaviour of vessels

To specify relations (1) - (6) let us discuss the possibility of determining dependence
of vessel diameter on arterial pressure d = d(p). Vessel walls possess complex structure being
built of concentric layers of elastin laminae and collagen fibres. Upon their deformation, the
relaxation properties are generated. For most of biotissues relaxation time limit t is,
nevertheless, very small - about 10 s, that is, such materials can be to be considered elastic.
It simplifies much stress-strain analysis.

Experiments, e.g. in [9], also proved that artery walls behave a like nonlinear
homogeneous anisotropic compressible material whose properties are described by six elastic
constants at each loading level. More complex situation is with arterioles which are unique
arterial vessels having a muscular layer and, consequently, showing an active deformation
behaviour. Particularly, arterioles with 70-100 um diameter have an additional outer layer
formed by three rows of muscular cells (5 um thick) [3].

Direct tests of such small-size vessels are rather problematic, so only estimates of
mechanical characteristics obtained for large arteries can be employed in calculations.

As for arteriole and capillary scale, thickness of vessel walls is commensurable with
the radius. Loads on the vessels involve arterial pressure p applied to the inner surface, axial
force N characterizing vessel wall tension in vivo, pressure of neighbouring tissues and (for
arterioles) additional circumferential stresses oy conditioned by outer muscular layer tonus.
Analytical solutions (like dependencies for thin-walled shells and Lame formula for
homogeneous isotropic cylinders) which do not consider the pointed peculiarities of
deformation and loading probably introduce a noticeable error. So far, we discussed a model
of a blood vessel as a two-layer cylinder with coaxially located main (inner) and muscular
(outer) layers from anisotropic nonlinear material (Fig. 2). Geometrical characteristics of the
model were given based on the known data listed in Table 1 for shoulder artery and arteriole

[1].

Table 1. Initial data for vessel deformation calculations.

Vessel Geometrical characteristics Tonus Tension
type stress force, N
Diameter, | Length, Total wall Muscular layer
mm mm thickness, mm | thickness, mm
Shoulder 3 20 0.5 0 0 0.32-10°
artery
Arteriole 0.007 0.09 0.001 0.0002 Gy 75-10°¢

To simulate valve function of the vessel the initial stress o in the outer layer was set

which corresponded to threshold blood pressure value po below which vessel permeability
becomes equal to zero.

When deformation behaviour was studied, elastic constants cited in Table 2 were
obtained with taking into account experimental data for a human shoulder artery [9].

Table 2. Elasticity constants of shoulder artery material.

N=0 N=032N
p’ E91 EZG! Ere; rz 7 r Ee! EZG! Ere; rz 7 r
torr | Mpa | MPa | mpa | £ | H0 | H | vpa | mpa | mpa | M| B | He

50 0.6 0.3 0.2 | 0.75] 05 1.70 | 2.25 | 0.60 | 0.10 | 0.90 | 0.40

100 1.3 0.6 0.3 | 0.60 | 0.5 230|240 | 0.70 | 0.25 | 0.79 | 0.25

150 2.2 1.1 04 | 055 05 3.00 | 265 | 0.75 | 0.30 | 0.75 | 0.15

200 | 29 | 16 | 06 | 06 | 05 3.50 | 2.80 | 0.76 | 0.40 | 0.70 | 0.10

oO|0O|0|O|o

250 | 3.7 | 19 | 0.8 | 0.75 | 0.5 3.75 | 2.85 | 0.78 | 0.45 | 0.65 | 0.12
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Fig. 2. Vessel model (a) and fragment of its wall (b).

Conclusions

Biomechanical analysis of blood flow self-regulation made grounds for formulation of
a problem on blood flow redistribution in terms of localization principle (control of moving
boundaries). The main characteristics of localization process can be distinguished, namely:
regulated parameter - inner diameter (lumen) of the vessel, regulating parameter - vessel
tonus, and optimum criterion as a physiologically normal minute volume of circulation. To
describe deformation behaviour of vessels, including regulating function of arterioles a model
has been proposed consisting of a two-layer hollow shell from anisotropic nonlinear material
with a prestressed outer layer.

Analysis of vessel deformation and calculation of blood flow characteristics using the
hydrodynamic theory will follow in ensuing publication.
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MOLEJIb ABTOPETYNALUUUN KPOBOOBPALLEHUA NMPU AKTUBHOM
AE®OPMALIMOHHOM NOBEAEHUX COCYAOB

C.B. lWUunbko (Fomenb, Benapycsk)

Obcyxmaercs  nepOopMaAllMOHHBIA ~ MEXaHM3M  PEryasiuu  nepudepuitHoro
apTepHalbHOTO  KPOBOTOKA,  CIIOCOOCTBYIOIIEH  ONTHUMAIbHOMY  (YHKIIMOHUPOBAHHIO
CepAeYHO — cocyaucToi cuctembl. llpeaymaraemass Monenb OCHOBaHAa Ha (POPMYIHUPOBKE
3aJlauM JTOKaNU3aluy (yrpaBieHHs MOJBUKHBIMU T'PaHUIIAMH ) IPOCBETA COCYAOB PA3IUYHOTO
MacmTabHOro ypoBHs. st BbIOOpa OCHOBHBIX XapaKTEPHCTUK Ipolecca JIOKAIU3ALUU -
PETYIUPYEMOTO M YIPABISAIOIIETO0 MapaMeTpoB, a TaKKe KpPUTEpHUs ONTUMAIbHOCTH
MCIOJIb30BaHA METOAMKA CHCTEMHOTO aHajH3a aJIallTHBHBIX MaTepUANIOB M KOHCTPYKIHA. B
KauecTBE KPUTEPHs JIOKAIM3AlMKU TMOCTYIUPYETCS MHUHUMAIbHOE OTKJIOHEHHE OT JOJKHOTO
YPOBHSI KPOBOCHA0XKEHHUSI ((PU3HOTOTUIECKH HOPMAITLHOTO MHHYTHOTO 00beMa) BaKHEUIITUX
OTJIEJIOB OpraHU3Ma.

Hccnenyercs aktyaTtopHass (YHKIHS MPEKaNmwUIIPOB KaK CIIOCOOHOCTh H3MEHSThH
MIPOHUIIAEMOCTh MOCPEICTBOM MBIIIEYHOTO TOHYCA MPU HATMYUU YIpaBisomero curnaia. C
STOM LENbI0 YYUTHIBACTCS HAa4YaJbHOE HANpPSHKEHHE BO BHEIIHEM CIIOE, COOTBETCTBYIOIIEE
MOPOTOBOMY 3HAUEHUIO MaBJICHUS KPOBU, HUXKE KOTOPOrO IMPOCBET COCyJa CTAaHOBUTCS
HyJeBbIM. Iyl pacuera pajuaibHBIX TEPEMENICHHH CTEHOK COCYIOB pPaccMaTpUBaeTCs
JIBYXCIOWHBIM [WJIMHAP W3 OPTOTPOIMHOTO HEJIMHEHMHO - YIpPyroro Marepuaiga cC
MpeJHANpsHKEHHBIM BHEUIHMM CJIOEM. XapaKTepUCTHKM MaTepuana (monynu FOHra u
koaddunmentsl [lyaccona) onpenensroTcsi HA OCHOBAHMM W3BECTHBIX SKCIIEPUMEHTAIBHBIX
MaHHbBIX. buo. 9.

KitoueBble crmoBa: KpoBOOOpallleHHe, apTepHabHOE JaBJICHUE, aJalTalus, MOJBH)KHbIC
TpaHuIlbl, AedopMaIus COCyI0B, MBIIIEUHBIH TOHYC, aHU30TPOTIHS
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