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Abstract: Two models of bone tissue internal remodeling are basically in use now, both of them
include the balance equation of the bone matrix density, but the difference is in mechanical
nature of the remodeling stimulus (strain tensor or strain energy density). Analysis of these
models by means of their phenomenological analogues is carried out in present paper. The idea
of taking the phenomenological approach to an adaptable elastic media consists in an obvious
assumption that elastic modulus, stresses and strains are continuous and monotonous time
functions during the adaptation process and have continuous derivatives. Phenomenological
analogues of both models are nonlinear first degree differential operators of similar structure but
differ by power of non-linearity in strain. The response of each model to the step change in axial
load was investigated in the test problem of axial contraction of an elastic thick hollow cylinder
made of an adaptable material. As a result of numerical solution and known experimental data
that confirm the bone remodeling is just strain sensitive, preference is given to strain stimulus
model.
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Introduction
The problem of mathematical description of internal remodeling of the bone tissue considered as a
result of bone adaptability to changeable physiological loads is one of main problems of the bone
tissue biomechanics. Its solution has important practical applications in the bone tissue orthopaedy
and surgery, and makes possible to predict the evolution of different pathological processes (e.g. the
femoral head necrosis, the bone resorption around implants), recovering processes of bone
mechanical properties after a surgical intervention, etc.

Kinetic equations of adaptive remodeling known in present time have the same form but are
based on two different assumptions about bone cell response to mechanical disturbance. S.C. Cowin
and D.H. Hegedus [1] assumed that bone cell remodeling activity depends on the difference
between the actual strain and the strain under normal physiological conditions in a normal bone at
the same locations. The corresponding equation may be written in the following form:

px,) =[5 0] ~[5,00] ), x e (1)

where p is a mean density of spongy bone tissue; €, g, are Cauchy strain tensors during the
remodeling and at homeostatic equilibrium respectively; || || is an appropriate norm of strain tensor
(strain intensity, for instance); C is a remodeling rate parameter, x is a bone particle site vector in a
considered area Q.

This assumption was verified by tests with a functionally isolated turkey ulna preparation
[5], that showed high sensitivity of the adaptation process to strain distribution in the bone tissue.

The equation (1) describes such a process of bone tissue adaptation in which bone cell
deformation (or some observable related to it) tries to keep its constant equilibrium value &,.
However, it turns out that application of this equation for simulation of femur morphogenesis is
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impossible inasmuch as the value g, in the beginning of life is not a constant because of

predominant influence of growth deformations and genetic factors. This fact induced D.P. Fyhrie
and D.R. Carter [2] to suppose that bone cells react on the deviation of actual strain energy density
u(x,t) away from its mean value over the whole area u(t) .

Equation suggested by these authors
p=C(u(x,t) —T(t)) )

allowed them to construct a model of morphogenesis in the proximal part of human femur that
agrees with the Wolf law. However, we are not acquainted with any confirmation of the fact that
bone cells react on such a mechanical stimulus as the density of strain energy.

Good results received by equation (2) do not mean that model (1) is biased as declared in
[7], but show the difference of adaptive mechanisms during the morphogenesis and after it.
Adaptation in an adult bone is a process of maintenance (or stabilization) of mechanical conditions
of individual cells vital activity and may be described by the equation (1) or by the equation (2) in
site dependent form

p(x,t) = C, (u(x,t) = u, (x)) (3)

where u, (x) is homeostatic distribution of strain energy density. The equation (3) was used for the

first time with reference to femoral implant [6].
When the balance equations (1) or (3) are used in the problem of the stressed and strained
conditions of bone, it is necessary to transform calculated density p to the elastic modulus of the

bone E . The following relation is usually applied for this aim:
E=Ap°, 4)

where the coefficient A depends on the structure parameters of bone tissue (shape and dimension of
pores and bone beams), and hence it is a site dependent factor. The range of factor A values over
the femoral head runs into 20% [3]. Consequently, the hypothesis about factor A constancy used in
existing models of internal remodeling results in distortion of stress and strain fields. That’s why in
present paper, likewise to [4], the equation (4) is excluded from the model of internal adaptation,
and bone density in kinetic equations (1) and (3) is replaced with the elastic modulus:

E(xt) = C,( [ )] - [5, ] ), (5)
E(x,t) = C, (u(x,t) —u, (X)) . (6)

It is interesting to compare models (5) and (6). Such a comparison is made from two points in
present paper: by building up and analysing of their phenomenological analogues, and by numerical
solution of test adaptability problem of dense bone tissue cylinder under step increasing of axial
compressive load on it.

Methods

The idea of use the phenomenological approach to simulate the bone adaptation turns out to
be successful because the structure and power of non-linearity of operator equations permits to
make qualitative and quantitative comparative analysis of different models.

During the adaptive process, stresses and strains in the bone tissue and its mechanical
parameters are continuously and monotonously varied. Hence, the equation of Hook low contains
continuous time functions, and we can differentiate it with respect to time. In one-dimensional
problem it may be written as

6 =Eg+Eg, (7)
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Fig. 1. Recovering of axial strain and strain energy density (SED) in thick hollow cylinder to their initial
values: 1 - axial strain calculated by the phenomenological model (8);

2 - axial strain calculated by the phenomenological model (9);

3 - strain energy density calculated by the phenomenological model (9).

where o, E, ¢ are stress, Young’s modulus and strain respectively.
Substitution of relation (5) in the equation (7) gives us desired phenomenological analogue
of this kinetic equation

6=C,(e—¢,)e+Ee. (8)
The phenomenological analogue of kinetic equation (6) is derived in the same way:
&=C,(Ee’ —u )e+E&. ©)

In order to compare models (5) and (6) quantitatively, the test problem about the adaptability
of dense bone tissue cylinder is solved. The axial compressive load s on this hollow cylinder
changes instantaneously from c,=2.22 MPa to c,=3.0 MPa. The Young modulus of the cylinder

material E, = 15,000 MPa when ¢ = o, and the Poisson’s ratio v=10.3.

After the step change of load & = o, = const, therefore in equations (8) and (9) & = 0. We
have linear differential equations with respect to €(t) in both cases.. For their numerical solution

the Euler’s scheme is used, with a constant time step A t equal to arbitrary unit of time. On the k-
th time step the following non-dimensional equations are under solution:

e =¢, - E (e, —De AT, k=12..., (10)
(11)

(Ek e —De, AT, k=12,
where EO(CSsh)fl is a time scale factor; €y, is a strain scale factor, and E, is Young’s modulus

scale factor. Initial conditions were the following: E(0)=E,, o(0)=0c,, €(0)=0,/E,.
Homeostatic values of remodeling stimuli are determined as ¢, =,/ E, and u, = % / 2E,.
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Results and discussion
The response of the adaptable cylinder on instantaneous step change of compressive stress is
shown on Fig. 1, two curves on it are corresponding with two adaptation models described by
equations (8) and (9). These curves were calculated according to equations (10) and (11) with C, =

C, = 6-10°, At =0.01135. They show that the remodeling processes in both cases run monotonously

with equal rates. The relative strain, calculated by the equation (8), and the strain energy density
reach their steady-state values, both equal to one. However, the relative strain, calculated by

equation (9), reaches its steady-state value equal to E 2, where E is the elastic modulus after the
adaptation. Both models qualitatively right reflect the remodeling process but the preference is
given to the relation (8) as it is more confirmed by experiments [5].

Thus, the results obtained in present paper show that proposed phenomenological approach
allows to compare the influence of known mechanical stimuli on the remodeling process in an
adaptable bone tissue with different kinetic equations of internal adaptation. As the deformational
stimulus is experimentally confirmed, we may regard that equation (8) at simulation of bone tissue
remodeling is more preferable than equation (9).
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DeHOMEHO0JI0THYEeCKasi MO/IeJIb MPUCIOCA0JINBAIONIECSl CIOHTHO3HOM KOCTHOMH TKAHU
B3POCJIOT0 YeI0BeKa

10.B. Akynuu, P.M. Tloaraen

B Hactosmiee BpemMs B OCHOBHOM IPUMEHSIOTCA JABE MOJETH BHYTPEHHEH aJamnTaiuu
KOCTHBIX TKaHEW, HCIIONb3YIOIUE YypaBHEHUS OalaHca IJIOTHOCTH KOCTHOTO MaTpHKca U
OTIIMYAIOIINECS MEXaHUYECKOH MpUpoNIoi cTumyna (TeH3op AedopManuu U MIOTHOCTh SHEPTUU
nedopmaruu). B manHol pabore mpeanaraercs aHanu3 o0eUX MoJeled C IMOMOIIBI0 X
dbeHoMeHoNnornueckux anamoroB. Maes mnpumeHeHHs (PEHOMEHONOTHYECKOTOo TMOAXOola K
npucrnocabIuBaroeiicss YIpyroil cpeie COCTOMT B OYEBHAHOM MPEANONIOKEHWH O TOM, 4YTO B
Mpolecce aJanTalid K HOBBIM Harpy3kam MOIYJb YIOPYTOCTH, HampsDKeHHs W JedopMaluu
HENPEPHIBHO MOHOTOHHO HW3MEHSIIOTCS M HUMEIOT HENpEpPhIBHBIE TIEPBHIE  MPOU3BOJIHEBIE.
DEeHOMEHOJIOTUYECKUE aHANIOTH O00eUX MOJENeHl SIBIAIOTCS HEeTMHEHHBIMU AuddepeHrnalIbHbIMU
orepaTopamM TEpPBOTO TMOpPsAKAa OAMHAKOBOW CTPYKTYPHI, OIHAKO OTIUYAIOTCS MOPSIKOM
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HEJTMHEHHOCTH mo Aedopmanuu. Peaknms oOemx MOJENed Ha CTYIEHYaTOe M3MEHEHHE OCEBOM
Harpy3kd HCCIeoBaJlach Ha TECTOBOM 3amadye 00 OCEBOM CXKATHHM YIPYroro IOJIOro
TOJICTOCTEHHOTO ITWJIMHApPAa W3 TpHcHocabauBarIIerocss marepuana. Ha ocHOBe pe3ysibTaToB
pPEIICHUS W W3BECTHBIX OKCIIEPUMEHTAJBHBIX JaHHBIX, MOATBEPKIAOIINX YyBCTBUTEIBHOCTH
aJlanTallMOHHON CIMOCOOHOCTH KOCTHOM TKaHM K HM3MEHEHHI0 MMEHHO aedopmaruii, B pabote
OT/aeTCs MPEANOYTCHHE MOJIENH ¢ Ie(hOpMaAIMOHHBIM CTUMYJIoM. buoi. 7.

KiroueBsle cnosa: BHYTPCHHA nepeCTpoﬁKa, KOCTHad TKadHb, IICPECTPOCYHLIC CTUMYIJILI,
Q)GHOMeHOHOFI/I‘IeCKI/Ie MOACIH.
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