Б.С. Юшков, В.И. Кычkin, В.С. Юшков, Е.А. Отчик
Пермский национальный исследовательский политехнический университет, Россия

РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ ВЗАИМОДЕЙСТВИЯ АВТОМОБИЛЯ И ШУМОВОЙ ПОЛОСЫ

Представлена математическая модель двухчастотного колебания автомобиля. Выполнены расчеты частот галопирования и подпрыгивания. Показана возможность создания некомфортных колебаний водителя и исследованы параметры конструкции шумовой полосы.

Ключевые слова: шумовая полоса, транспортное средство, частота колебаний, автомобильная дорога.

В последние годы с ростом автомобилизации в нашей стране увеличивается число дорожно-транспортных происшествий (ДТП). В связи с этим роль дорожной разметки значительно возрастает. Разметка всегда находится в поле зрения водителей и пешеходов, информируя их о порядке движения [1]. Поэтому условия нанесения (применяемые технологии и материалы) и эксплуатации (состояние автомобильной дороги) должны обеспечивать ее постоянное наличие и хорошую видимость. Для удовлетворения этих требований разрабатываются новые виды разметки, требующие качественно новых технологий [3, 4].

Проблема безопасности дорожного движения связана с состоянием транспортных средств, дорожных конструкций, условиями движения, психофизиологическим поведением водителей, плотностью транспортных потоков и др. Одним из путей решения этой проблемы является создание конструктивных элементов на дорожной одежде, способствующих генерации колебаний транспортных средств в режимах некомфортного восприятия водителем условий движения, что ведет к изменению параметров движения по направлению и скорости. Для выбора оптимальных параметров такой конструкции необходимы математические модели, включающие в себя характеристики автотранспортных средств (АТС), скорость движения, общую длину, глубину, ширину и шаг неровности, материалы элементов конструкции шумовой полосы [5].

УДК 625.7:621.317

79
Цель работы заключается в построении и исследовании математической модели плоских колебаний подрессорного автомобиля в режимах подпрыгивания и галопирования.

Для исследования влияния параметров вибрации необходимо определить собственные частоты и собственные формы колебаний автомобиля. Будем рассматривать автомобиль как систему упруго связанных жестких тел 1–5 (рис. 1, а). Здесь тело 1 схематически представляет собой кузов автомобиля, а тела 2–5 колеса, массы которых примем сосредоточенными [2].

![Рис. 1. Расчетная схема](image)

Движение такой системы в процессе колебаний характеризуется семью координатами: y_1 — вертикальное перемещение центра масс кузова; y_2, y_3, y_4, y_5 — вертикальные перемещения центров колес; y_6 — угол поворота кузова относительно поперечной оси; y_7 — угол поворота кузова относительно продольной оси.

Распределение масс автомобиля и жесткостей упругих связей практически симметрично относительно срединной продольной плоскости. Общий процесс колебаний можно рассматривать состоящим из двух взаимно не связанных процессов:

1) продольных колебаний (рис. 1, в), характеризуемых вертикальным перемещением кузова (y_1), поворотом кузова вокруг поперечной оси (y_6) и попарно равными перемещениями обоих передних колес ($y_2 = y_1$) и обоих задних колес ($y_3 = y_5$);
2) поперечных (боковых) колебаний (рис. 1, б), характеризуемых поворотом кузова вокруг продольной оси \(y_7 \) и попарно равными перемещениями обоих левых колес \(y_2 = y_3 \) и обоих правых колес \(y_4 = y_5 \).

Соответственно продольные колебания описываются четырьмя, а поперечные колебания — тремя дифференциальными уравнениями. Рассмотрим продольные колебания динамической системы.

Обозначим жесткости передних и задних рессор соответственно \(C_n \) и \(C_3 \), массы кузова и колеса – \(m \) и \(m_k \). Радиус инерции кузова относительно поперечной оси, проходящей через его центр масс, обозначим \(\rho \). Используя эти обозначения, осадки передней \((\Delta_n) \) и задней \((\Delta_3) \) рессор можно представить в виде

\[
\Delta_n = y_1 + a \cdot y_6 - y_2;
\]
\[
\Delta_3 = y_1 - b \cdot y_6 - y_3,
\]

где \(a, b \) – расстояния от центра масс тела 1 до передней и задней осей.

Уравнения движения составим в форме Лагранжа. Кинетическая энергия системы складывается из следующих частей: кинетической энергии кузова, кинетической энергии передних и задних колес. Суммарная кинетическая энергия находится по формуле

\[
T = \frac{1}{2} \left[m \left(y_1^2 + \rho y_6^2 \right) + 2m_k \left(y_2^2 + y_3^2 \right) \right].
\]

Потенциальная энергия состоит из энергии деформации рессор и энергии сжатия шин. Суммарная потенциальная энергия определяется по формуле

\[
\Pi = C_n \left(y_1 - y_2 + ay_6 \right)^2 + C_3 \left(y_1 - y_3 - by_6 \right)^2 + C \left(y_2^2 + y_3^2 \right).
\]

В данном случае уравнения Лагранжа имеют следующий вид:

\[
m_1 \ddot{y}_1 + 2C_n \left(y_1 - y_2 + ay_6 \right)^2 + 2C_3 \left(y_1 - y_3 - by_6 \right) = 0;
\]
\[
2m_k \ddot{y}_2 - 2C_n \left(y_1 - y_2 + ay_6 \right) + 2Cy_2 = 0;
\]
\[
2m_k \ddot{y}_3 - 2C_3 \left(y_1 - y_3 - by_6 \right) + 2Cy_3 = 0;
\]
\[
m_\rho \ddot{y}_6 + 2C_n \left(y_1 - y_2 + ay_6 \right) a - 2C_3 \left(y_1 - y_3 - by_6 \right) b = 0.
\]
Частное решение этой системы:

\[y_i = A_i \sin(pt + \alpha), \quad i = 1, 2, 3, 6. \] \hfill (3)

Задача может быть упрощена, если считать шины недеформируемыми.

Частотное уравнение второй степени \(p^2 \) имеет вид

\[p^4 - 2p^2 \left[C_n (a^2 + \rho^2) + C_3 (b^2 + \rho^2) \right]/(mp^2) + 4C_nC_3 (a + b)^2 / (m^2 \rho^2) = 0. \]

Рассмотрим частный случай распределения масс, когда \(\rho^2 = ab \), т.е. когда радиус инерции автомобиля равен среднему геометрическому между величинами \(a \) и \(b \). Отметим, что для этого расстояние \(a + b \) между осями автомобиля должно быть меньше его общей длины (это на самом деле имеет место в автомобилях современной компоновки). Тогда корни частотного уравнения:

\[p_1 = \sqrt{\frac{2C_n(a + b)}{mb}}; \]
\[p_2 = \sqrt{\frac{2C_3(a + b)}{ma}}. \] \hfill (4) \hfill (5)

Для примера рассмотрим возможность применения параметров модели автомобиля ГАЗ-3221 «Газель». Технические характеристики, необходимые для расчетов, принимаем следующие: \(a = 2800 \) мм; \(b = 1900 \) мм; \(m = 3250 \) кг.

Изменение жесткости передней подвески берем в пределах 10–14,4 кН/м, изменение жесткости задней подвески – 30–34,4 кН/м.

Результаты расчетов представлены на рис. 2, 3.

![Рис. 2. Зависимость собственных частот колебаний кузова от жесткости](image.png)
Рис. 3. Зависимость собственных частот колебаний кузова от массы автомобиля

По полученным зависимостям видно, что при увеличении жесткости увеличивается и частота собственных колебаний, а увеличение массы автомобиля приводит к снижению частоты собственных колебаний.

Выбор параметров шумовой полосы проводим при условии однократного колебания АТС. Это значительно упрощает задачу, но позволяет установить предельные значения виброскорости и виброскорения, действующие на физиологическую систему водителя с целью обеспечения адекватного управления АТС.

Повышение уровня вибрации возможно лишь до определенного предела, достижение которого связано с отрицательным влиянием на водителя, вызывающим ухудшение самочувствия и снижение работоспособности. В связи с этим необходимо оценивать практически возможные предельы повышения вибрации, снижающих уровень комфорта движения и свидетельствующих об изменении траектории движения АТС в нежелательном и опасном направлении.

Рассмотрим структуру неровности шумовой полосы в соответствии с зависимостями:

\[q(l) = q_0 \cos(2\pi \frac{V}{H} t), \]
\[q = q_0 (1 - \cos \frac{2\pi x}{H}), \]

где \(q_0 \) – амплитуда отклонения поверхности от средней линии; \(V \) – скорость АТС; \(H \) – шаг неровности; \(x \) – пройденный путь; \(t \) – время прохождения неровности.
Кanal вибраций включает в себя колесо, корпус, амортизаторы и водителя АТС. По модели одночастотного колебания без демпфирования амплитуду колебаний водителя запишем в форме

\[Y_v = q_0 \frac{p^2}{p_1^2 - p^2}, \]

где \(p_1 \) — собственная частота колебания АТС; \(p \) — частота воздействия.

В реальных условиях система амортизации АТС существенно снижает амплитуду колебаний водителя. Если принять во внимание коэффициент снижения в диапазоне 50...2000, то по результатам расчета виброскорости можно установить некомфортную зону движения (таблица).

Параметры колебательного процесса

<table>
<thead>
<tr>
<th>Параметр, см/с</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>300</th>
<th>500</th>
<th>1000</th>
<th>1500</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y_v)</td>
<td>0,2</td>
<td>0,1</td>
<td>0,07</td>
<td>0,02</td>
<td>0,01</td>
<td>0,006</td>
<td>0,006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\dot{Y}_v)</td>
<td>104</td>
<td>52</td>
<td>37</td>
<td>11</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Полагаем, что перегрузку в центре тяжести АТС при движении по неровности (см. формулу (6б)) с учетом обжатия пневматика и без учета работы амортизатора запишем в следующем виде:

\[n_a = \frac{1}{g} \frac{d^2 Y}{dt^2} = \frac{1}{g^2} \left(\frac{2\pi V}{H} \right)^2 \left[h - \left(\delta_{\text{м.д.}} - \delta_{\text{пр}} \right) \right] \cos \left(\frac{2\pi V}{H} t \right). \]

где \(\delta_{\text{м.д.}} \), \(\delta_{\text{пр}} \) — максимально допустимое и фактическое обжатие пневматика; \(g = 9,8 \text{ м/с}^2; h = 2q_0 \).

Максимальная перегрузка

\[n_{\text{домакс}} = \frac{2\pi^2 V^2}{gH^2} \left[h - \left(\delta_{\text{м.д.}} - \delta_{\text{пр}} \right) \right]. \]

Меру «неудобства» устанавливаем в пределах по октавным полосам частот при синусоидальном воздействии: 16 Гц — \(\dot{Y} = 5 \text{ см/с}; \) 32 Гц — \(\dot{Y} = 3,5 \text{ см/с}; \) 63 Гц — \(\dot{Y} = 2,5 \text{ см/с}. \) При этом амплитуда колебаний составляет: \(Y_1 = 0,049 \text{ см}; Y_2 = 0,017 \text{ см}; Y_3 = 0,0063 \text{ см}. \) Время воздействия вибрации менее 30 мин.
Порог восприятия виброскорости считается 10^{-4} м/с, порог болевого ощущения 1 м/с. Сопоставляя результаты, представленные в таблице, и меры дискомфорта, определяем, что коэффициент снижения амплитуд колебаний по принятой модели изменяется в пределах от 50 до 150. Это позволяет принять решение о назначении параметров шумовой полосы: шаг 0,2 м, глубина 0,1 м, длина полосы 1 км.

В дальнейшем предполагается продолжение исследований воздействия шумовой полосы на АТС с целью повышения безопасности движения и снижения количества ДТП. Проблема заключается в преодолении системы вибросзащиты АТС и в создании локальной зоны повышенной колебательной энергии, действующей на тело сидящего человека и управляющего автомобилем. Степень распространения колебаний по телу человека зависит от их частоты и амплитуды, продолжительности воздействия, площади участков тела, соприкасающихся с вибрирующим объектом, место приложения и направление оси вибрационного воздействия, демпфирующих свойств ткани, явление резонанса и других условий.

Список литературы

Получено 28.02.2012