Б.С. Юшков, Е.А. Отчик, В.А. Сабурова
Пермский национальный исследовательский политехнический университет, Россия

ИССЛЕДОВАНИЕ ВОДНЫХ ВЫТЯЖЕК
СИСТЕМЫ ГРУНТ — ИЗВЕСТЬ

Рассматривается влияние водных вытяжек извести на структурно-деформационные свойства грунта.

Ключевые слова: водная вытяжка, грунт, известь, растворы, ионы, гидратация.

Основной путь приведения переувлажненных грунтов в удобообрабатываемое состояние заключается в повышении сцепления грунтовых частиц путем удаления или связывания избыточной воды. Для удаления избыточной воды могут быть применены следующие методы обработки грунта: аэрация, термический метод, электрообработка, механические методы (вibrationдействие, вакуумирование, ударные нагрузки или их различные комбинации). Для связывания избыточной воды применяются методы физические (введение инертных добавок) и химические (обработка реагентами, связывающими воду и взаимодействующими с минеральной частью грунта).

Химические методы наиболее эффективны. Для实践ческого использования этих методов имеются достаточно подробно разработанные теоретические предпосылки, а также большой ассортимент веществ, которые можно было бы использовать для обработки переувлажненных грунтов. Имеются и средства механизации для введения этих веществ в грунт и перемешивания компонентов в смеси.

Распространено мнение, что водосвязывающий эффект при укреплении переувлажненных грунтов известью обусловлен химическим связыванием воды при гидратации окиси кальция. Однако проведенные исследования показывают, что водосвязывающий эффект определяется главным образом физико-химическим поглощением ионов кальция коллоидной частью грунтов с образованием продуктов, связывающих воду [1].
Известно, что между твердой и жидкими фазами грунта постоянно существует динамическое адсорбционное равновесие [4, 6], которое к тому же устанавливается почти мгновенно.

Жидкая фаза грунта содержит в растворенном или коллоидно-растворенном состоянии ряд минеральных веществ. При изучении минеральной части веществ, находящихся в грунтовом растворе, их удобно расчленять на анионы и катионы. Нами определялись анионы HCO₃⁻, OH⁻, CO₃²⁻, Cl⁻, SO₄²⁻ и катионы Ca²⁺, Mg²⁺, H⁺, Na⁺ и K⁺, которые встречаются в грунтовых растворах в заметных количествах и именно они в основном влияют на концентрацию и ионную силу раствора, на активность в нём ионов, а также характеризуют твердые фазы, образующиеся в системе грунт – известком.

Водные вытяжки отличаются от грунтового раствора. К основным видам воздействия воды на грунтовые соединения при получении водных вытяжек относятся растворение и гидролиз. Но так как нас интересуют цементирующие вещества на основе известки (CaCO₃, CHS, CAN и др.), которые относятся к труднорастворимым соединениям и концентрация вытяжек которых остается почти постоянной при разных объемах воды, соответствующих их растворимости, то разница между грунтовым раствором и водной вытяжкой практически для нас неощутима. Гидролизирующее действие воды проявляется в том, что она расщепляет находящиеся в грунте соли сильных кислот и слабых оснований или слабых кислот и сильных оснований, придавая раствору в первом случае кислоту, а во втором – щелочную реакцию. Однако этот процесс при незначительном количестве легкорастворимых солей компенсируется изменением реакции раствора в сторону нейтрального значения pH за счет разбавления водой. Так, например, при расщеплении соды:

$$\text{Na}_2\text{CO}_3 + \text{H}_2\text{O} = 2\text{NaOH} + \text{H}_2\text{CO}_3,$$

имеем щелочную реакцию, т.е. щелочность раствора увеличивается. Но за счет разбавления водой, имеющей нейтральную реакцию, щелочность будет уменьшаться. Поскольку в исследуемых нами системах легкорастворимые соли присутствуют в весьма незначительных количествах (менее 0,1 %), то изменения pH при их гидролизе практически неощутимы. Выясненные положения подтверждаются и работами ряда исследователей [3], которыми доказано, что «в случае разбавленных суспензий механизм гидратации и продукты взаимодействия идентичны тем, которые получаются при нормальном количестве воды, разница лишь в скорости реакции» [3].
Результаты анализа водных вытяжек из грунтов, обработанных известью, показывают, что происходит изменение щелочности порового раствора (pH) и содержания в нем ионов HCO₃⁻, CO₃²⁻, OH⁻, Ca²⁺, Mg²⁺, SO₄²⁻, Cl⁻ (табл. 1–3). Количество ионов K⁺ и Na⁺ практически не изменяется. pH раствора увеличивается с увеличением дозы извести. При дозах извести 0,5–1,0 % (по CaO) от веса грунта наблюдаются буферные эффекты, что является следствием замещения кальцием обменных катионов гуминовых кислот. Максимальные значения pH (12,0–12,5) достигаются при дозах извести от 2 до 5 % по CaO. Для более легких грунтов (супесь) максимальные значения pH соответствуют меньшим дозам извести, а для тяжелых грунтов (тяжелый суглинок) – большим дозам. С увеличением сроков выдержки образцов pH снижается, особенно интенсивно в области средних значений, что подтверждает результаты ранее проводимых исследований, а для значений pH менее 9 повышается, что отмечается впервые.

Таблица 1

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Дозы извести, % (по CaO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>pH</td>
<td>8,6</td>
</tr>
<tr>
<td>Концентрация ионов, мг-экв:</td>
<td></td>
</tr>
<tr>
<td>HCO₃⁻/OH⁻</td>
<td>1,2</td>
</tr>
<tr>
<td>CO₃²⁻</td>
<td>0,1</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>0,17</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>0,44</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>1,0</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>0,67</td>
</tr>
<tr>
<td>Na⁺ + K⁺</td>
<td>0,22</td>
</tr>
<tr>
<td>Ионная сила раствора I</td>
<td>0,005</td>
</tr>
<tr>
<td>Наличие твердой фазы:</td>
<td></td>
</tr>
<tr>
<td>CaCO₃</td>
<td>+</td>
</tr>
<tr>
<td>Ca(OH)₂</td>
<td>–</td>
</tr>
<tr>
<td>Mg(OH)₂</td>
<td>–</td>
</tr>
<tr>
<td>Индекс (И) насыщения раствора CO₂</td>
<td>+0,45</td>
</tr>
</tbody>
</table>

Примечание: (±) – расчет проведен относительно исходной влажности смеси; (+) – твердая фаза имеется; (–) – твердая фаза отсутствует.
Таблица 2

Результаты анализа водных вытяжек из грунтов, обработанных известью через 1 месяц после смещения

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Дозы извести, % (по CaO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>pH</td>
<td>7,35</td>
</tr>
<tr>
<td>Концентрация ионов, мг-экв:</td>
<td></td>
</tr>
<tr>
<td>НСО₃⁻/ОН⁻</td>
<td>0,65</td>
</tr>
<tr>
<td>СО₃²⁻</td>
<td>–</td>
</tr>
<tr>
<td>СΙ⁻</td>
<td>0,26</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>0,54</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>0,50</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>0,85</td>
</tr>
<tr>
<td>Na⁺ + K⁺</td>
<td>0,10</td>
</tr>
<tr>
<td>Ионная сила раствора I</td>
<td>0,009</td>
</tr>
<tr>
<td>Наличие твердой фазы:</td>
<td></td>
</tr>
<tr>
<td>CaCO₃</td>
<td>–</td>
</tr>
<tr>
<td>Ca(OH)₂</td>
<td>–</td>
</tr>
<tr>
<td>Mg(OH)₂</td>
<td>–</td>
</tr>
<tr>
<td>Индекс (И) насыщения раствора CO₂</td>
<td>–1,35</td>
</tr>
</tbody>
</table>

ИИ > 0

Характер изменения концентрации ионов НСО₃⁻, СО₃²⁻, Ca²⁺, ОН⁻ в грунтовом растворе определяется количеством внесенной извести и находится в постоянном соотношении рН раствора независимо от типа грунта. [НСО₃⁻] с увеличением дозы извести сначала возрастает, достигая при рН = 8,8…9,75 максимального значения – 1,75–1,60 мг-экв, а затем уменьшается и при значениях рН > 11,0 ионы HСО₃⁻ отсутствуют. [СO₃²⁻] появляется в растворе при рН > 8,4 и с увеличением дозы извести продолжают возрастать. До значения рН = 11 содержание анионов CO₃²⁻ практически остается на уровне 0,40–1,2 мг-экв, а затем возрастает более интенсивно.

[Ca²⁺] с увеличением дозы извести возрастает, но в диапазоне рН = 8,4…11,6 изменяется весьма незначительно – от 0,4 до 1,5 мг-экв, а затем резко увеличивается и при рН = 12 может достигать 10 мг-экв и более. Концентрация ионов Ca²⁺ в интервале рН = 8,4…12,2 опреде-
ляется наличием в растворе твердой фазы CaCO₃ и, возможно, труднорастворимыми соединениями типа CSH, CAH и др., а при pH > 12,2 – Ca(OH)₂. Присутствие ионов Ca²⁺ в поровом растворе с pH < 8,4 определяется, вероятно, адсорбционным равновесием с поглощающим комплексом грунта. [Cl⁻], [SO₄²⁻] с увеличением дозы известны снижаются. Но при сроках выдержки более 4 месяцев, концентрация ионов Cl⁻ повышается по сравнению с исходным грунтом. В начальные сроки твердения (1-е сутки) отмечается повышенное содержание в растворе ионов SO₄²⁻ (см. табл. 1). [Na⁺ + K⁺] практически не изменяется. Но для некоторых грунтов уже при начальной дозе известны концентрация Na⁺ и K⁺ в растворе резко увеличивается и остается постоянной при дальнейшем ее увеличении. Очевидно, увеличение Na⁺ и K⁺ в растворе происходит за счет ионообменных процессов.

Таблица 3

Результаты анализа водных вытяжек из грунтов, обработанных известкой через 8 месяцев после смещения

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Дозы извести, % (по CaO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>0</td>
</tr>
<tr>
<td>Концентрация ионов, мг-экв:</td>
<td></td>
</tr>
<tr>
<td>HCO₃⁻/OH⁻</td>
<td>0,30</td>
</tr>
<tr>
<td>CO₃²⁻</td>
<td>–</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>0,15</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>0,39</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>0,49</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>0,20</td>
</tr>
<tr>
<td>Na⁺ + K⁺</td>
<td>0,15</td>
</tr>
<tr>
<td>Ионная сила раствора I /</td>
<td>0,003</td>
</tr>
<tr>
<td>Наличие твердой фазы:</td>
<td></td>
</tr>
<tr>
<td>CaCO₃</td>
<td>–</td>
</tr>
<tr>
<td>Ca(OH)₂</td>
<td>–</td>
</tr>
<tr>
<td>Mg(OH)₂</td>
<td>–</td>
</tr>
<tr>
<td>Индекс (И) насыщения раствора СО₂</td>
<td>–1,45</td>
</tr>
</tbody>
</table>

114
Технико-химические расчеты позволили определить динамику образования твердой фазы CaCO$_3$, Mg(OH)$_2$ и Ca(OH)$_2$, а также ионную силу раствора (I) и индекс (И) насыщения раствора CO$_2$. При значениях рН < 8,4 CaCO$_3$ в твердой фазе отсутствует, что хорошо согласуется с теорией: система, состоящая из CaCO$_3$ и находящаяся в равновесии с атмосферой ($P_{CO_2} = 10^{−1.5}$ Па), имеет рН = 8,4 [6]. Отсюда, если равновесия нет, то рН будет более 8,4. Интересно, что CaCO$_3$ отсутствует в системе грунт – известь при рН < 8,4 даже в том случае, если он вводится с навеской извести, т.е. он растворяется и взаимодействует с грунтом. Но в последующий период времени (месяц и более) образуется кальцит и с этим связано повышение рН, [Ca$^{2+}$],[CO$_3^{2−}$]. Возможно, что процессы карбонатизации здесь протекают при каталическом воздействии гумусовых веществ.

Расчеты показывают, что в системе имеется в твердой фазе и Mg(OH)$_2$. Появляется он при значениях рН > 10,2, являющихся для него равновесным. MgCO$_3$ и MgCO$_3$·2H$_2$O так же, как и CaSO$_4$·0,5H$_2$O и CaSO$_4$·2H$_2$O, отсутствуют. При расчетах мы не получили доказательств наличия в твердой фазе Ca(OH)$_2$, хотя при рН > 12,2 (его равновесия) он должен быть. Отсутствует он потому, что, во-первых, вследствие сравнительно высокой растворимости (1,17 г/л) Ca(OH)$_2$ при разбавлении весь переходит в раствор и концентрация его ионов в растворе ниже равновесной; и, во-вторых, с концентрированными растворами извести аналитические работы затрудняются из-за процесса карбонатизации. Причем этот процесс идет настолько интенсивно, что наблюдается даже визуально. Поэтому присутствие Ca(OH)$_2$ в твердой фазе определялось по значению рН (≥ 12,2), а также расчетом по концентрации его ионов в грунтовом растворе до разбавления водой; количество ионов Ca$^{2+}$ и OH$^−$, определенное в водной вытяжке, рассчитывалось по отношению к исходному объему воды грунтового раствора на момент затворения смеси за вычетом мертвого запаса ($0,9W_t − K·W_t$). Исследование характера изменения рН и концентрации ионов Ca$^{2+}$, CaOH$^−$ в грунтовом растворе подтверждает известный механизм гидратации и растворения CaO [3].

Ионная сила раствора (I) изменяется от 0,002–0,003 до 0,04–0,05. В области образования труднорастворимых веществ она практически не изменяется, но резко начинает расти при образовании в твердой фазе Ca(OH)$_2$, т.е. при образовании среднерастворимых веществ. Актив-
ность ионов при этом снижается от 0,97 до 0,87 для одновалентных и от 0,88 до 0,57 для двухвалентных. Важно отметить, что активность двухвалентных ионов снижается более резко. Определение индекса насыщения раствора CO₂ (I) проводилось по методике, разработанной И.Э. Апельцинм. При избытке в растворе CO₂, по сравнению с равновесной концентрацией для CaCO₃ (I<0), CaCO₃ в растворе отсутствует; если же CO₂ недостаточно (I>0), то CaCO₃ в твердой фазе имеется. Определение наличия твердой фазы CaCO₃ в растворе через степень насыщения его CO₂ (I) согласуется с расчетами по произведению концентрации ионов Ca²⁺ и CO₃²⁻ с учетом их активности, т.е. при pH > 8,4 в растворе всегда присутствует в твердой фазе CaCO₃.

Определить же качественный состав гидросиликатов (CSH) и гидроалюминатов кальция (CAH) через произведение растворимости их ионов не представляется возможным, так как для этого нужно знать состав анионов (SiₙOₙ⁻ₘAlₙOₘ⁻ₚ) и уметь количественно определять каждый из этих анионов при их совместном присутствии. Поэтому возможность их образования в системе грунт – известно необходимо анализировать другими методами.

Список литературы

Получено 28.02.2012