Целью работы является повышение эффективности вскрытия продуктивных пластов с аномально низкими пластовыми давлениями (АНГПД) путем использования облегченных буровых растворов на основе газожидкостных смесей. Для месторождений с аномально низкими пластовыми давлениями, вызванных как естественными геологическими причинами, так и искусственным путем (в процессе разработки и эксплуатации), необходимо обоснованное применение растворов пониженной плотности. Одним из путей снижения плотности очистных агентов является введение в раствор газовой составляющей. Перспективным является применение различных газожидкостных смесей, в частности стабильных пен.

В работе приведен анализ месторождений РФ с аномально низкими пластовыми давлениями, который показал актуальность данной проблемы и необходимость применения щадящих технологий вскрытия продуктивных пластов. Обосновано использование в качестве промывочного агента газожидкостных смесей на основе анализа научно-технической литературы.

Исследованы газожидкостные смеси, включающие в свой состав следующие компоненты: ПАВ (лаурилсульфат натрия, ЛАБС натрия), полимеры-структурирующие (полиакриламиды FP-107 и «Praestol»), биополимер «К.К. Робус», карбоксиметил крахмал КМК-БУР-2, карбоксиметил целлюлоза КМЦ, регулятор вязкости (глицирин), реагент для смягчения воды (каустическая сода), бактерицид (калий уксуснокислый плавленый), гидрофобизирующая добавка (ГЖК-11)

Реология полученных смесей исследовалась на ротационном вискозиметре «Rheotest RN 4.1» и приборе CHC-2. Экспериментальные данные и результаты их обработки показали, что течение исследуемых газожидкостных смесей в диапазоне скоростей сдвига от 100 до 600 с⁻¹ описывается реологическим уравнением Оствальда–де Ваалье со степенью определенности 0.96...1.0. Кроме того, исследуемые ГЖС обладают свойствами твердого тела, которые проявляются в наличии высоких значений статического напряжения сдвига.

Ключевые слова: Бурение скважины, аномально низкое пластовое давление, промывка скважин, газожидкостные смеси, реология, первичное вскрытие продуктивного пласта.

FOUNDATION THE APPLICATION AND INVESTIGATION OF LIQUID-GAS MIXTURES COMPOSITIONS FOR FLUSHING-OUT BOREHOLE CAVITIES IN CONDITIONS OF ANOMALOUS LOW FORMATION PRESSURE

A.A. Iakovlev, M.V. Turitsyna

National mineral resources University, Saint-Petersburg, Russia

The aim of the work consists in effectiveness increase of opening-up productive geological horizons with anomalous low formation pressure (ALFP) by using benign drilling agents on the base of liquid-gas mixtures. The application of lowered pressure solutions for deposits with anomalous low formation pressure generated both by natural geological causes and artificial impact (within development and production activity) is proved. Including of gas component in mixture is considered to be one of the methods for decrease the density of cleaning agents. It seems to be perspective to apply different liquid-gas mixtures, in particular stable foams.

The analysis of RF deposits with anomalous low formation pressure is presented. This analyze showed the actuality of the problem and the necessity of application cautious technologies for opening-up geological horizons. On the base of scientific and technical literature the application of liquid-gas mixtures as cleaning agent is proved.

Liquid-gas mixtures comprising the following compounds: surface-active substanc (sodium lauryl sulfate, sodium LABS), polymers- amendments (polycryliclamides FP-107 and «Praestol»), Biopolymer «K.K. Robus», carboxymethyl starch KMK-BUR-2, carboxymethoxyethyl cellulose KMC), viscosity controller (glycerol), reagent for water softening (caustic), germicide (potassium acetate fused), waterproofing admixture (GKJ-11) are investigated.

The rheology of received mixtures was investigated with the use of rotary viscometer «Rheotest RN 4.1» and device CHC-2. Experimental data and results of data processing showed that the current of liquid-gas mixtures over the shear rate range 100 to 600 с⁻¹ is described by rheological equation of Ostwald de Waele with the degree of definiteness 0.96...1.0. Besides, investigated liquid-gas mixtures are possessed of solids characteristics which are appeared with high value of CHC.

Keywords: well-drilling, anomalous low formation pressure, anomaly coefficient, промывка скважин, liquid-gas mixtures, rheology, opening-up of productive geological horizon.
Введение

Объектом исследования являются месторождения нефти и газа РФ с аномально низкими пластовыми давлениями (АНПД).

Цель работы – повышение эффективности первичного вскрытия продуктивных горизонтов с АНПД путем снижения дифференциального давления на забое скважины за счет применения облегченных буровых растворов.

При бурении скважин и первичном вскрытии продуктивных горизонтов велика вероятность загрязнения пласта с последующим снижением проницаемости и продуктивности. Большую роль играет плотность промывочного агента, поскольку она определяет значение давления на забое скважины. Для месторождений с АНПД существует необходимость снижения плотности ниже плотности воды (в некоторых случаях до 600 кг/м³ и ниже). Добиться этого можно благодаря применению различных очистных агентов, наиболее перспективными из которых являются газожидкостные смеси.

Выбор объекта исследования

По мере выработки месторождений, характеризующихся сравнительно простым геологическим строением, в разработку начинают вовлекаться месторождения с трудноизвлекаемыми запасами, что требует иного подхода по сравнению с ранее применявшимся ко всему процессу разведки и эксплуатации, начиная с первичного вскрытия продуктивного горизонта. К таким сложным геологическим условиям относятся аномальные пластовые давления, солевые толщи, многолетняя мерзлота и др. [1].

Если обратиться к географии распространения такого явления, как АНПД, то наиболее часто они встречаются на месторождениях Тимано-Печорской (25,4 % от фонда месторождений провинции) и Лено-Тунгусской (25 %) нефтегазоносных провинциях (НГП). В то же время по абсолютным показателям месторождения с АНПД получили широкое распространение на месторождениях Западно-Сибирской (44,5 %) и Волго-Уральской (34,5 %) провинций [2]. Для каждой нефтегазоносной провинции залегание пластов с аномально низкими давлениями приурочено к разным глубинам (рис. 1).

В качестве объекта исследования выбраны коллектики-песчанники, поскольку к ним относятся 60 % пород, слагающих продуктивные горизонты с АНПД. В табл. 1 представлена сводная характеристика этих горизонтов [2].

Кроме того, в процессе разработки и эксплуатации месторождений при отсутствии должной компенсации пластового давления нагнетанием различных агентов в продуктивный горизонт также происходит снижение пластовых давлений, вплоть до аномально низких. По результатам анализа динамики изменения пластового давления по мере эксплуатации (за последние 20 лет) месторождений Когальмского региона (Западная Сибирь) наблюдается снижение пластовых давлений от 12 до 50 % (рис. 2) в сравнении с начальными [2, 3].

Поскольку снижение пластовых давлений зависит от большого количества факторов, на каждом месторождении оно будет происходить с различной интенсивностью. С точки зрения строительства скважин повлиять на это можно, применяя щадящие технологии вскрытия продуктивного пласта.

Выбор промывочного агента
для первичного вскрытия пластов с аномально низкими давлениями

С точки зрения сохранения фильтрационно-емкостных свойств (ФЭС) продуктивных горизонтов наиболее эффективным является вскрытие пластов на депрессии или равновесии. Негативной стороной применения способа на депрессии является опасность возникновения газонефтеводопроводов (ГНВП) при вскрытии. Более щадящей является технология равновесного вскрытия горизонта.
Таблица 1

Характеристика продуктивных горизонтов (песчаники, коллекторы) с АНПД (средние значения для интервалов)

<table>
<thead>
<tr>
<th>Интервал залегания кровли пласта, м</th>
<th>Открытая пористость, %</th>
<th>Проницаемость, мкм²</th>
<th>Давление пластовое, МПа</th>
<th>Температура пластовая, °C</th>
<th>Газовый фактор, м³/т</th>
<th>Коэффициент аномальности, Kₐ</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1000</td>
<td>19,0–20,0</td>
<td>7,50–15,70</td>
<td>7,3</td>
<td>20–37</td>
<td>63–80</td>
<td>0,88</td>
</tr>
<tr>
<td>1000–1499</td>
<td>16,5–25,0</td>
<td>0,94–35,60</td>
<td>10,7</td>
<td>24–27</td>
<td>19–28</td>
<td>0,89</td>
</tr>
<tr>
<td>1500–1999</td>
<td>14,0–20,0</td>
<td>1,00–6,00</td>
<td>16,1</td>
<td>14–57</td>
<td>29–34</td>
<td>0,85</td>
</tr>
<tr>
<td>2000–2499</td>
<td>14,0–18,5</td>
<td>0,04–0,08</td>
<td>21,9</td>
<td>64–98</td>
<td>47–49</td>
<td>0,94</td>
</tr>
<tr>
<td>> 2500</td>
<td>14,0–18,0</td>
<td>0,04–1,20</td>
<td>25,2</td>
<td>79–94</td>
<td>48–90</td>
<td>0,97</td>
</tr>
</tbody>
</table>

Рис. 1. Распространение пластов с аномально низкими пластовыми давлениями по глубинам на месторождениях РФ (от фонда месторождений с АНПД)

Рис. 2. Динамика снижения пластовых давлений на месторождениях Когальмского региона (Западная Сибирь): — гидростатическое давление; — пластовое давление начальное; — пластовое давление на 01.03.2008

Та. Особенно актуально это для пластов АНПД. При этом поднимается вопрос о снижении гидростатического давления промывочной жидкости в скважине. Одним из путей снижения давления является применение облегченных растворов. В табл. 2 приведены основные типы промывочных агентов, используемых при бурении в пластах с АНПД [4–19]. Все представленные в таблице растворы имеют свои преимущества и недостатки, однако анализ современного состояния теории и практики первичного вскрытия продуктивных пластов с АНПД с применением облегченных буровых растворов (ПермНИПИнефть, КогальмНИПИнефть, СевКавНИПИ-газ, ВолгоуралНИПИгаз, НПО «Буро-

техника»), НПО «Бурение») позволил сделать вывод о том, что одним из наиболее перспективных направлений является применение газожидкостных смесей.
Таблица 2

<table>
<thead>
<tr>
<th>Тип промывочного агента</th>
<th>Преимущества</th>
<th>Недостатки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нефть, газированная азотом</td>
<td>Низкая плотность</td>
<td>Высокая пожаро- и взрывоопасность, негативное влияние на окружающую среду</td>
</tr>
<tr>
<td>Бурные растворы на углеводородной основе</td>
<td>Низкая плотность (900–1000 кг/м³), минимальное загрязнение нефтяного пласта</td>
<td>Высокая пожаро- и взрывоопасность, негативное влияние на окружающую среду</td>
</tr>
<tr>
<td>Бурные растворы на водной основе с облегчающими добавками (перлит, плавленная микрофрея и др.)</td>
<td>Низкая плотность (снижение плотности до 660 кг/м³), неровность, низкая прочность добавок</td>
<td>Содержит твердую фазу, способную снизить проницаемость продуктивного горизонта, облегчающую добавки "влетают" на поверхность</td>
</tr>
<tr>
<td>Бурные растворы, содержащие афроны</td>
<td>Не содержит твердой фазы, не горят</td>
<td>Сравнительно высокая стоимость ((\text{близкая к стоимости воды}))</td>
</tr>
<tr>
<td>Газо-водяные смеси (ГВС)</td>
<td>Низкая плотность (снижение плотности до 300 кг/м³)</td>
<td>Недостаточная изученность процессов, проходящих на забое скважин, необходимость применения специального оборудования для получения ГВС</td>
</tr>
<tr>
<td>Газ, воздух</td>
<td>Низкая плотность (при использовании воздуха и инертных газов)</td>
<td>Ухудшение условий очистки водяных от выбуренной породы, вулканического выдоха (условия хранения могут быть только в "сухих" разрезах)</td>
</tr>
</tbody>
</table>

Исследование реологии газожидкостных смесей

Были исследованы следующие составы:
1) вода + комплекс ПАВ (0,1%) + глицирин (1%) + ПАА FR-107 (0,05%) + КМК-БУР-2 (1%) + бактерицид (0,05%) + ГЖК (0,5%) + каустическая сода (0,5%);
2) вода + комплекс ПАВ (0,1%) + глицирин (1%) + ПАА FR-107 (0,05%) + "КК. Робус" (0,05 % + бактерицид (0,05 %) + ГЖК (0,5%) + каустическая сода (0,5%);
3) вода + комплекс ПАВ (0,1%) + глицирин (1%) + ПАА «Praestol» (0,05%) + КМК-БУР-2 (1%) + бактерицид (0,05%) + ГЖК (0,5%) + каустическая сода (0,5%);
4) вода + комплекс ПАВ (0,1%) + глицирин (1%) + ПАА «Praestol» (0,05%) + КМЦ (1%) + бактерицид (0,05%) + ГЖК (0,5%) + каустическая сода (0,5%);
5) вода + комплекс ПАВ (0,1%) + глицирин (1%) + робус (0,05%) + КМК (1%) + бактерицид (0,05%) + ГЖК (0,5%) + каустическая сода (0,5%).

В табл. 3 представлены результаты исследования реологических параметров этих смесей. Реологические свойства газожидкостных смесей исследовались на ротационном вискозиметре "Rheotest RN 4.1", определение статического напряжения сдвига (СНС) проводилось на приборе СНС-2. Для оценки реологических характеристик были приняты следующие допущения: не учитывалась степень разрушения тиксотропной структуры ГЖС, предполагалось незначительное влияние этого эффекта на результаты показаний; измерения проводились при нормальном атмосферном давлении и комнатной температуре.
ре. Допускалось, что реологические ха-
рактеристики ГЖС могут изменяться во
время измерений только при изменении
физических условий, но при восстановле-
нии этих условий характеристики о-
ставляются адекватными [13].

Экспериментальные данные и ре-
зультаты их обработки доказывают, что
течение исследуемых газожидкостных
смесей в диапазоне скоростей сдвига от
100 до 600 с⁻¹ может быть описано рео-
логическим уравнением Остывальда–де
Ваале со степенью определенности
σ = 0,96…1,00. Графическое подтвер-
ждение представлено на рис. 3. Иссле-
дуемые ГЖС обладают свойствами
твердого тела, которые проявляются в
наличии высоких значений СНС.

Проведённые исследования показали,
что применение использованных в данной
работе стабилизаторов и структурообра-
зателей позволяет получить стабильные
gазожидкостные смеси, показанные к при-
менению в условиях АНПД, но для этого
необходимо провести изучение прони-
кающей способности растворов в гонные
породы. С точки зрения технологической
и экономической эффективности для
окончательных рекомендаций по компо-
зициям ГЖС представляет интерес состав,
включающий в себя в качестве структуро-
образующей и стабилизирующей до-
бавки ПАА РР-107 (0,05 %) + КМК-БУР-2
(1 %); в дальнейшем планируется прове-
ст исследования по изучению его прони-
кающей способности в гонные породы.

<table>
<thead>
<tr>
<th>№</th>
<th>Вязкость ГЖС при 100 с⁻¹, мПа·с</th>
<th>Вязкость ГЖС при 600 с⁻¹, мПа·с</th>
<th>Напряжение сдвига ГЖС при 100 с⁻¹, Па</th>
<th>Напряжение сдвига ГЖС при 600 с⁻¹, Па</th>
<th>СНС ГЖС, Па</th>
<th>Показатель текучести n</th>
<th>Коэффициент консистенции k, Па·с⁽¹⁾</th>
<th>Степень определенности, σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123,10</td>
<td>56,58</td>
<td>12,86</td>
<td>34,12</td>
<td>22,95</td>
<td>0,470</td>
<td>1,51</td>
<td>0,97</td>
</tr>
<tr>
<td>2</td>
<td>134,70</td>
<td>53,96</td>
<td>14,11</td>
<td>32,54</td>
<td>62,55</td>
<td>0,394</td>
<td>2,34</td>
<td>0,96</td>
</tr>
<tr>
<td>3</td>
<td>165,20</td>
<td>68,51</td>
<td>17,33</td>
<td>41,35</td>
<td>74,25</td>
<td>0,461</td>
<td>2,04</td>
<td>0,99</td>
</tr>
<tr>
<td>4</td>
<td>366,70</td>
<td>132,30</td>
<td>38,75</td>
<td>79,94</td>
<td>49,50</td>
<td>0,400</td>
<td>5,99</td>
<td>1,00</td>
</tr>
<tr>
<td>5</td>
<td>148,60</td>
<td>53,94</td>
<td>15,54</td>
<td>32,56</td>
<td>91,35</td>
<td>0,463</td>
<td>1,74</td>
<td>0,99</td>
</tr>
</tbody>
</table>

Рис. 3. Реологическая характеристика ГЖС.
Заключение

Ввод в качестве реагента стабилизатора комплекса из высокомолекулярного акрилова полимера ФР-107 и карбоксиметил крахмала КМК-БУР-2 позволяет получить стабильные газожидкостные смеси, обладающие пенообразующей способностью при повторном перемешивании после разрушения пен, что необходимо для обеспечения многоциклового использования раствора.

Реологическое поведение данных газожидкостных смесей описывается степенной моделью Оствальда—де Ваале, а низкие значения коэффициента нелинейности характеризуют их высокую псевдопластичность, что позволяет использовать их для вскрытия продуктивных пластов при закачивании скважин.

Список литературы

References

2. Melekhin A.A., Chernyshov S.E., Turkakov M.S. Rashhirjawiesja tamponnahuye sostavy dija likvidaciog plogovenjiki krepeleni obysadnyx kolon dobyvavujuih skvazhin [Expanding plugging compositions
for the elimination of acquisitions in the mount casing wells]. *Neftyanoe khozyaystvo – Oil industry*, 2012, no. 2, pp. 50–52.

Об авторах

Яковлев Андрей Андреевич (Санкт-Петербург, Россия) – доктор технических наук, профессор, профессор кафедры механизации Национального минерально-сырьевого университета «Горный» (199106, г. Санкт-Петербург, 21-я линия В.О., 2; e-mail: andre_a_yakovlev@mail.ru).

Турицина Мария Владимировна (Санкт-Петербург, Россия) – аспирант кафедры бурения скважин Национального минерально-сырьевого университета «Горный» (199106, г. Санкт-Петербург, 21-я линия В.О.; 2, e-mail: turitsyna_maria@mail.ru).

About the authors

Яковлев Андрей A. (Saint-Petersburg, Russia) – dr. professor, department for mechanics, National mineral and resources University «Gornyi» (199106, Saint-Petersburg, 21st line B.O., 2; e-mail: andre_a_yakovlev@mail.ru).

Турицина Мария V. (Saint-Petersburg, Russia) – graduate student, department for well-drilling, National mineral and resources University «Gornyi» (199106, Saint-Petersburg, 21st line B.O., 2; e-mail: turitsyna_maria@mail.ru).

Получено 12.05.2012